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Abstract: Accurate three-dimensional (3D) vegetation extraction, including low-lying 
plants such as grasses, shrubs, and ground cover, is critical for effective monitoring and 
management of urban ecological systems. However, precise classification and mapping of 
3D vegetation in urban environments, particularly within private and densely constructed 
areas remains a complex challenge. This study explores the potential of Object-Based 
Image Analysis (OBIA) for classifying different types of low vegetation using very high 
spatial resolution imagery. The performance of OBIA was compared across several 
classifiers, including Support Vector Machine (SVM), Nearest Neighborhood (NN), 
Maximum Likelihood (ML), and Random Forest (RF). The classification process involved 
segmenting the image into homogeneous objects using the Segment Mean Shift tool in 
ArcGIS, followed by supervised classification based on labeled training samples for 
various vegetation classes, such as grasses, shrubs, trees, hedges, and green roofs. Key 
parameters, including spectral detail, spatial detail, and minimum segment size, were 
optimized to improve segmentation results. The combination of spectral detail = 18, 
spatial detail = 5, and minimum segment size = 5 pixels yielded the best segmentation, 
balancing spectral and spatial coherence. A total of 1,000 ground truth samples were 
collected to validate the classification, with results evaluated through a confusion matrix. 
Grass was classified with the highest accuracy (over 93% user accuracy), while Hedges 
and Shrubs had the lowest accuracy (often below 60%). SVM performed best for trees 
(86% producer accuracy), RF for Hedges (75% producer accuracy), and ML for Shrubs 
(56.5% producer accuracy). Overall, Grass was the easiest to classify, while Hedges and 
Shrubs were the most challenging. To further enhance accuracy, point cloud data will be 
integrated to introduce 3D structural information into the classification process. This data 
provides precise height and surface measurements, offering geometric insights that 
complement the spectral information. By combining these two data sources, the 
methodology enables more accurate differentiation of low vegetation types based on both 
spectral and structural characteristics. The final output will support a Digital Twin 
platform, offering a detailed urban vegetation database for urban planning, environmental 
monitoring, and smart city applications. This study demonstrates that OBIA with high-
resolution imagery can effectively classify urban greenery, though some challenges remain 
for certain vegetation types like hedges and shrubs and 3D information from point clouds 
can most likely assist in a higher classification rate. 
 

1 Introduction 

In the era of rapidly expanding cities dominated by concrete, urban greenery acts as a living 
thread that brings balance and vitality to urban life. It offers numerous benefits, including 
improved air quality, enhanced public health, reduced carbon emissions, and increased 
property values (RAUPP et al. 2006; SÆBØ et al. 2012). Effective and sustainable urban planning 
requires a comprehensive inventory of urban vegetation to evaluate the ecological services it 
provides. Many European municipalities conduct detailed inventories of public green spaces, 
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often focusing on individual trees and recording attributes like species, height, and trunk 
diameter (MA et al. 2021). However, these efforts are time-consuming, costly, and frequently 
overlook non-tree vegetation such as shrubs and grasses, limiting a full understanding of urban 
ecosystems (NEYNS & CANTERS 2022). Moreover, traditional surveys focus largely on public 
land, leaving private green spaces unmonitored. Though individually small, these areas 
collectively cover large portions of urban landscapes and play a critical role in providing 
ecosystem services in dense cities (BAKER et al. 2018; NEYNS & CANTERS 2022). Advances in 
remote sensing technologies, such as high-resolution satellite imagery and point cloud data, 
have improved the ability to map vegetation with greater detail and frequency (GUO et al. 
2021). Despite progress in modeling man-made features, capturing the complexity of natural 
elements like trees, shrubs, and lawns remains challenging (MAN et al. 2020). The integration 
of Light Detection and Ranging (LiDAR) technology marks a major step forward, enabling 
detailed three-dimensional analyses of vegetation structure and its environmental impact 
(ZHANG et al. 2023). LiDAR-based point cloud data allows for more frequent, cost-effective, 
and inclusive vegetation inventories, incorporating features like shrubs and hedges that are 
often neglected in traditional surveys despite their ecological importance (BURMEISTER et al. 
2023). These technological and methodological advances offer immense potential to close 
existing research and monitoring gaps, enabling more efficient, inclusive, and sustainable 
urban vegetation management. 

2 Materials and Methods 

2.1 Data 

The dataset used comprises high-resolution multispectral images captured from nadir aerial 
views at a spatial resolution of 8 cm, acquired in 2023. These images, containing four spectral 
bands (Red, Green, Blue, and Near-Infrared), were utilized to extract and classify vegetation, 
particularly low-lying plants and ground cover by leveraging their detailed spectral 
information. The aerial images set was cordially provided to this project by the City Surveying 
Office ("Stadtmessungsamt") of the state capital Stuttgart ("Landeshauptstadt Stuttgart") of the 
state Baden-Württemberg. 

2.2 Study Area 

The study site is Asemwald, situated on the southern outskirts of the state capital. Asemwald, 
located in Stuttgart, Germany, has approximate geographic coordinates of 48.7260° N latitude 
and 9.1932° E longitude This area is characterized by a distinctive combination of high-rise 
residential buildings and a diverse array of vegetation types, including landscaped green 
spaces, scattered trees, and patches of natural vegetation. The heterogeneous urban fabric of 
Asemwald presents a more complex and dynamic environment compared to uniform urban 
settings. This variability makes it particularly suitable for evaluating and validating models 
intended for urban applications. 
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2.3 Process Overview 

The main aim of this project is to accurately classify and map different types of vegetation 
using object-based image analysis (OBIA) applied to high-resolution multispectral aerial 
imagery captured in nadir view. The object-based approach utilizes spectral analysis in 
combination with machine learning algorithms, particularly supervised classification, to 
interpret and categorize the spectral properties of the landscape. In this phase, the focus is on 
identifying low vegetation. While these methods provide preliminary results, they are limited 
in terms of the complexity of the data they can process. 
Moving forward, the next phase will integrate deep learning techniques, specifically 
convolutional neural networks (CNNs) to enhance classification accuracy and automate feature 
extraction. Deep learning models are capable of learning more complex patterns in the data, 
allowing them to detect subtle variations in the spectral signature of vegetation that traditional 
methods might miss. CNNs, for example, are particularly good at recognizing spatial 
hierarchies in imagery, improving the classification of low vegetation with higher precision. 
Semantic segmentation models further improve the process by classifying each pixel in the 
image into predefined categories, enabling a more detailed analysis of the vegetation. 
Finally, point cloud data will be integrated to add 3D structural information to the classification 
process. Point cloud data provides precise measurements of the terrain’s surface and vegetation 
height, offering a geometric perspective that complements the spectral information from the 
multispectral imagery. By combining the spectral data from the aerial imagery with the 
geometric data from point cloud, the classification process benefits from improved spatial 
precision. This integration allows for more accurate differentiation between types of low 
vegetation and better identification of their structural characteristics, such as height and 
density. Terrestrial multispectral images and derived points clouds can increase the reliability 
of object detection in areas identified as critical in the aerial image/point cloud approach. 
Ultimately, combining spectral and geometric properties, results in a more detailed and 
accurate classification of low vegetation. 

2.4 Methodology for the preliminary analysis based on aerial image data only 

For the preliminary analysis, five vegetation classes- grasses, shrubs, hedges, trees, and green 
roofs were selected for classification within an urban environment. Initially, the entire image 
was classified into various vegetation categories. However, this approach did not provide 
satisfactory results due to the inference of non-vegetative areas e.g., buildings, roads etc. To 
improve accuracy, a pre-processing step was introduced where non-vegetative areas were first 
removed from the image. This was achieved by separating the image into vegetation and non-
vegetation areas, effectively masking out non-vegetated regions. 
In order to achieve this, the image was initially classified into 36 classes using an unsupervised 
classification approach. Subsequently, the classification result was reclassified into two broad 
categories: vegetation and non-vegetation. To isolate the vegetation class, the Con tool in 
ArcGIS was used, extracting only the pixels corresponding to the vegetation category. These 
extracted vegetation areas were then converted into polygons using the Raster to Polygon tool. 
To simplify the dataset, the Dissolve tool was applied to merge all individual polygons into a 
single unified polygon representing the vegetated areas. Finally, the Clip Raster tool was used 
to clip the original image, effectively removing all non-vegetated regions and retaining only 
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the areas identified as vegetation. By focusing solely on the vegetated areas, the subsequent 
classification process became more targeted and efficient. This refinement significantly 
improved the quality and accuracy of the classification results, as it reduced confusion between 
vegetated and non-vegetated surfaces and allowed the classifiers to better distinguish between 
different vegetation types. 
The classification process employed an object-based approach using a supervised classification 
method using the support vector machine classifier, nearest neighborhood classifier, maximum 
likelihood classifier and random vector classifier. This supervised classification is to categorize 
all image pixels into distinct vegetation classes, including the low vegetation. As part of the 
Object-Based Image Analysis (OBIA) approach, the segments were categorized into groups of 
pixels with similar characteristics, using them as training samples.  
The workflow consisted of several key steps, as illustrated in Fig. 1. Firstly, the segmentation 
process was performed to partition the entire image into multiple homogeneous segments, 
facilitating object-based analysis using the Segment Mean Shift tool in ArcGIS, incorporating 
various spectral and spatial details, along with a specified minimum segment size in pixels. 
Different parameters were tested to achieve the optimal segmentation results. During the 
segmentation process, a series of parameter combinations were systematically tested to 
determine the most effective configuration for object-based image analysis. Specifically, 
different values for spectral detail, spatial detail, and minimum segment size were evaluated to 
optimize segment delineation based on both spectral and spatial characteristics of the imagery. 

 
Fig. 1:  Methodology for the preliminary analysis based on aerial image data only 

For spectral detail, values of 20, 15, and 18 were tested. A spectral detail value of 18 was found 
to produce the most accurate segmentation results, as it effectively captured variations in 
spectral reflectance among different vegetation types without causing excessive over-
segmentation. Higher values, such as 20, tended to create fragmented segments, while lower 
values, such as 15, failed to sufficiently differentiate between spectrally similar classes. In 
terms of spatial detail, values of 15, 10, and 5 were examined. The best performance was 
achieved with a spatial detail value of 5, which allowed the algorithm to extract fine spatial 
structures and preserve the shape and boundary of vegetation objects. Higher spatial detail 
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values led to overly generalized segments that failed to represent spatial variability in the 
landscape. For the minimum segment size, values of 20, 10, and 5 pixels were compared. A 
minimum segment size of 5 pixels produced the most suitable segmentation outcome by 
allowing small yet meaningful vegetation features to be captured, while still minimizing noise. 
Larger minimum segment sizes tended to merge distinct vegetation patches, leading to a loss 
of detail in the classification. Overall, the selected combination spectral detail = 18, spatial 
detail = 5, and minimum segment size = 5 pixels provided the most effective segmentation 
results, offering a balanced representation of spectral heterogeneity and spatial coherence, 
which is critical for achieving high classification accuracy in object-based approaches. 
Training samples were collected for the various vegetation classes to effectively train the 
classification algorithms. These samples were carefully selected from representative areas of 
each class, ensuring they accurately reflected the spectral and spatial characteristics of the 
vegetation types present in the study area. By using these labeled training samples, the 
classifiers were able to learn the distinguishing features of each class-such as grasses, shrubs, 
trees, hedges, and green roofs, based on their spectral signatures and object-based properties. 
The training data served as the foundation for supervised classification, guiding the algorithms 
in assigning the correct class labels to the segmented image objects. The quality and 
representativeness of the training samples played a critical role in the performance and 
accuracy of the final classification, as they directly influenced the classifier’s ability to 
differentiate between similar vegetation types. 
Following this, different supervised classification classifiers such as SVM, NN, ML, and RF 
available in ArcGIS was applied to categorize the segmented image into the predefined five 
vegetation classes, ensuring a detailed and accurate classification of urban greenery. 

Validation data 

A total of 980 ground truth samples were collected to validate the classification results. These 
samples were generated using the "Create Accuracy Assessment Points" tool in ArcGIS, which 
randomly distributes points across the classified map. Each of these 980 points was then 
manually labeled by visually interpreting high-resolution reference imagery to determine the 
true land cover class at each location. Once the reference labels were assigned, a confusion 
matrix was generated using the "Compute Confusion Matrix" tool in ArcGIS. This matrix 
compares the manually interpreted ground truth data with the classified results to evaluate the 
model’s performance by calculating accuracy metrics such as user accuracy, producer 
accuracy, and the kappa coefficient. 

3 Results 

A visual interpretation is shown in Fig 2, representing the original aerial image and the 
classification results produced by various classifiers which provides a comparative overview, 
allowing for an intuitive understanding of each model’s performance and how they differ in 
predicting outcomes. 
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Fig. 2:  Classification results of different classifiers. Aerial image: © 2024, Stadtmessungsamt 

Stuttgart 

The classification performance varied across different vegetation classes, with distinct 
strengths and weaknesses observed for each classifier. Among the four classifiers - SVM, RF, 
NN, and ML each performed best for different types of vegetation. SVM was most effective at 
classifying trees, achieving the highest producer accuracy and the most correct classifications, 
while also performing well for grass. RF stood out in classifying hedges, with the highest user 
and producer accuracies, and also performed excellently for grass and green roofs. ML was 
best for identifying shrubs/bushes, showing the highest producer accuracy and most correct 
predictions in that class, and also performed well in detecting green roofs. Overall, grass was 
the easiest class for all models, while hedges and shrubs posed more challenges, with RF and 
ML handling them more effectively than others. 
Green roofs are frequently misclassified as grass due to their similar spectral reflectance 
characteristics, particularly in the visible and near-infrared (NIR) bands. Likewise, shrubs and 
hedges are often confused with trees, as these vegetation types also exhibit overlapping spectral 
signatures. These challenges arise primarily because the classification relies solely on spectral 
data, which lacks information about the vertical structure of the features. Incorporating height 
information (e.g. 3D point clouds) such as from LiDAR or stereo photogrammetry can 
significantly enhance classification accuracy by capturing the three-dimensional characteristics 
of vegetation. This additional structural context enables better differentiation between low-
lying vegetation like grass and green roofs, and taller features such as shrubs and trees. 
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Tab. 1: Correctly classified ground points, and Kappa values 

  SVM RF NN ML Total ground points 

Grass 610 545 596 604 682 

Hedges 2 6 4 5 8 

Shrubs/Bushes 38 48 25 56 99 

Trees 147 135 91 71 169 

Green Roofs 17 18 16 18 22 

            

Kappa 0.6615 0.57289 0.501 0.5588   

 

 
Fig. 3:  Classification accuracies (%) of four classifiers- Support Vector Machine (SVM), Random 

Forest (RF), Nearest Neighborhood (NN), and Maximum Likelihood (ML) - showing user and 
producer accuracy for urban vegetation classification 

4 Conclusion 

In conclusion, the performance of the four classifiers SVM, RF, NN, and ML varied across 
different vegetation types, with SVM excelling in tree classification, RF performing best for 
hedges, and ML showing superior accuracy for shrubs. Grass was consistently the easiest to 
classify, while hedges and shrubs posed more challenges. Misclassifications, such as green 
roofs being confused with grass, arose due to similar spectral reflectance characteristics. 
Additionally, the confusion between shrubs, hedges, and trees was largely due to overlapping 
spectral signatures. These challenges can be addressed by incorporating height information 
from LiDAR or stereo photogrammetry, which would provide essential 3D structural data to 
enhance classification accuracy. By combining spectral and structural data, this approach can 
better differentiate between similar vegetation types, leading to more precise and reliable urban 
vegetation classification. This advancement is crucial for applications in urban planning, 
ecological monitoring, and smart city initiatives, offering a more comprehensive and accurate 
approach to mapping urban vegetation. 
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