### **Photogrammetry & Robotics Lab**

1

# On the role and evaluation of rigorous and approximate estimation methods

DGPF-Tagung, 12. 03. 2024 Remagen

**Wolfgang Förstner** 

## **Motivation**

How much would you pay more/less if

- the accuracy (stdv) of an instrument halves/doubles?
- an algorithm leads to half/double the accuracy of its result?
- if an algorithm provides the uncertainty of the result?
- If an *algorithm* is faster/slower by a factor 2?
- If CPU-time of an algorithm is predictable?

# Notions

- Estimation methods: observations → parameters (least squares, maximum likelihood, ...)
- Rigorous: following some optimization principle
- Approximate: simplified, suboptimal solutions  $\rightarrow$  e.g. hierarchy of approximations  $\Sigma \longrightarrow \text{Diag}(\sigma_n^2) \longrightarrow \sigma^2 I_N$
- Role: approximations often are fast and cheap
- Evaluation
  - Comparison: degree of loss in accuracy, gain in speed
  - Uncertainty of suboptimal methods

#### 1. Example: Motion from point pairs

# **Motion from point pair**

**Given:** set of point pairs  $\{x_i, x'_i\}, i = 1, ..., I$  **Assumption:** related by rigid motion  $x'_i = Rx_i + t$ **Task:** Estimate motion  $(\widehat{R}, \widehat{t})$ 

Classical solution (Arun et al. 1987)

- Centre data
- SVD → rotation
- translation

### **Arun's solution**

1. Centre data in both systems

$$ar{m{x}}_i = m{x}_i - m{x}_C, \hspace{0.2cm} ext{with} \hspace{0.2cm} m{x}_C = \sum_i m{x}_i/I \ ar{m{x}'}_i = m{x}'_i - m{x}'_C, \hspace{0.2cm} ext{with} \hspace{0.2cm} m{x}'_C = \sum_i^i m{x}'_i/I$$

2. Determine rotation  $UDV = SVD(\sum_{i} \bar{x_i} \bar{x'_i})$   $R = V Diag(1, 1, det(UV) U^T)$ 

3. Estimated motion

 $(R, \boldsymbol{x}_C' - R \boldsymbol{x}_C)$ 

# **Is Arun's method optimal/rigorous?**

Pro:

- It minimizes the sum of the squared distances (LS)
- If all coordinates have the same accuracy (ML)

Contra:

- Real data have no homogeneous accuracy
- Not statistically rigorous: uncertainty of data unused

# Outline

- 1. An example: motion from point pairs
- 2. Statistically optimal estimation
  - a. ML estimation
  - b. Visualization, effect of CovM
- 3. Uncertainty of approximate estimates
- 4. Characterizing accuracy loss
- 5. Examples
  - a. Motion from point and plane pairs
  - b. Bundle adjustment
- 6. Closing

#### 2. Statistically optimal estimation

# Statistically optimal estimation (ML)

#### Maximum likelihood estimation (my teacher said: method for self-confident people)

- Data are sample from specified distribution
- Distribution is parametrized
- Parameters are functionally related by constraints
- Estimated parameters give best explanation of observations

## **Formal setup of ML-estimation**

- Observations:  $\boldsymbol{l} = [l_n], n = 1, ..., N$
- Distribution: Gaussian  $\underline{l} \mid y, \sigma_0^2 \Sigma_{ll}^a \sim \mathcal{N}(y, \sigma_0^2 \Sigma_{ll}^a)$  or

$$p(\boldsymbol{l} \mid \boldsymbol{y}, \sigma_0^2 \boldsymbol{\Sigma}_{ll}^a) = k \exp\left(-(\boldsymbol{l} - \boldsymbol{y})^{\mathsf{T}} (\sigma_0^2 \boldsymbol{\Sigma}_{ll}^a)^{-1} (\boldsymbol{l} - \boldsymbol{y})/2\right)$$

#### parameters:

- y unknown mean observation (expected value)
- $\sum_{ll}^{a}$  : given approximate covariance matrix
- $\sigma_0^2$ : unknown variance factor
- Constraints with additional unknown parameters  $oldsymbol{x}$   $oldsymbol{g}(oldsymbol{x},oldsymbol{y}) = oldsymbol{0}$

#### Task

Optimization task: find values x and y, which

minimize  $(\boldsymbol{l} - \boldsymbol{y})^{\mathsf{T}} W_{ll}^{a} (\boldsymbol{l} - \boldsymbol{y})$  with  $W_{ll}^{a} = (\Sigma_{ll}^{a})^{-1}$ subject to  $\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{0}$ 

# **Statistically optimal method**

Input: observations *l* Method:

- parameters of distribution
- constraints
- Optimization criterion

Output: [  $\widehat{\sigma}_0^2$  ,  $(\widehat{m{x}}, \widehat{m{y}})$  ,  $\Sigma_{\widehat{xx}}$  ]

- Estimate  $\hat{\sigma}_0^2$  for variance factor  $\rightarrow$  model fit
- Estimates  $(\widehat{x}, \widehat{y})$  for unknown parameters,
   Corrections  $\widehat{v} = \widehat{y} l$ , residuals/errors  $\widehat{e} = l \widehat{y} = -\widehat{v}$
- predicted covariance matrix  $\Sigma_{\widehat{x}\widehat{x}}$  of  $\widehat{x}$

### **Solution for linear constraints**

For linear model

$$oldsymbol{g}(oldsymbol{x},oldsymbol{y}) = oldsymbol{A}oldsymbol{x} + oldsymbol{B}^{\mathsf{T}}oldsymbol{y} + oldsymbol{b} = oldsymbol{0}$$
  
Jse substitute corrections

 $\boldsymbol{n} = \boldsymbol{B}^{\mathsf{T}}\boldsymbol{l} + \boldsymbol{b}$  and  $\mathbb{D}(\underline{\boldsymbol{n}}) = \boldsymbol{\Sigma}_{nn} = \boldsymbol{B}^{\mathsf{T}}\boldsymbol{\Sigma}_{ll}\boldsymbol{B}$ Estimates

$$\widehat{\boldsymbol{x}} = -(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{\Sigma}_{nn}^{-1}\boldsymbol{A})^{-1} \boldsymbol{A}^{\mathsf{T}}\boldsymbol{\Sigma}_{nn}^{-1} \boldsymbol{n}(\boldsymbol{l})$$
$$\widehat{\boldsymbol{y}} = \boldsymbol{l} - \boldsymbol{\Sigma}_{ll}\boldsymbol{B}\boldsymbol{\Sigma}_{nn}^{-1} \boldsymbol{g}(\widehat{\boldsymbol{x}}, \boldsymbol{l})$$

Covariance matrix

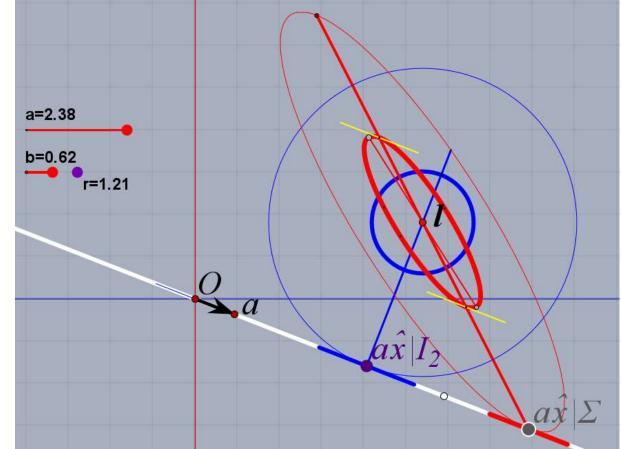
$$\Sigma_{\widehat{x}\widehat{x}} = (A^{\mathsf{T}}(B^{\mathsf{T}}\Sigma_{ll}B)^{-1}A)^{-1}$$

14

# **Visualization of ML estimation**

Stochastical models:

 $\begin{array}{l} \frac{l}{\sim} \sim \mathcal{N}(\boldsymbol{a} \boldsymbol{x}, \boldsymbol{l}_2) \\ \frac{l}{\sim} \sim \mathcal{N}(\boldsymbol{a} \boldsymbol{x}, \boldsymbol{\Sigma}) \end{array}$ Constraint (white line)  $\boldsymbol{a} \boldsymbol{x} - \boldsymbol{y} = \boldsymbol{0}$ Estimates  $\begin{array}{c} \boldsymbol{a} \widehat{\boldsymbol{x}} \mid \boldsymbol{l}_2 \\ \boldsymbol{a} \widehat{\boldsymbol{x}} \mid \boldsymbol{\Sigma} \end{array}$ 

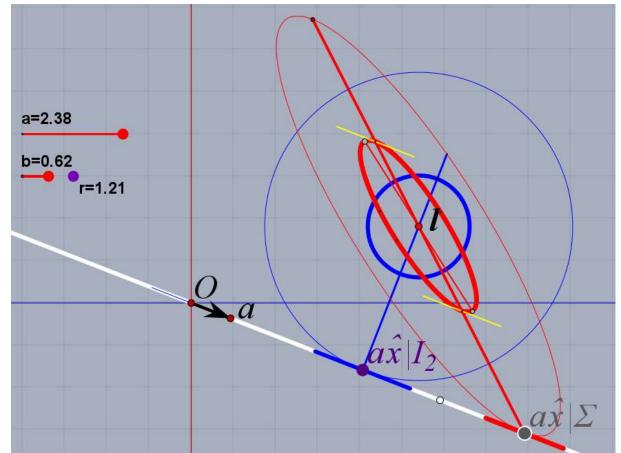


(which is rigorous/optimal?)

## **Results of ML estimation**

#### Estimates

 $a \hat{x} \mid l_2$   $a \hat{x} \mid \Sigma$ Covariance matrix (here of  $a \hat{x}$ ) blue and red segments (flat/singular ellipses) (sqrt) variance factors ratio of thin and thick standard ellipses



### **Exploring extreme cases**

- Can changing the covariance matrix have zero effect?
- Can the mean of 0 and 1 be -1?
- Can for given observations and constraints the unknown parameters be arbitrary?



## **Result of exploration**

- Changing the model may have no effect
- You can find a model for each result
- We need to carefully specify (common sense!)

Questions:

- How to compare quality of methods?
- Can we do the same with approximate methods? (eg. those using SVD or with complex algebraic derivation?

#### Type of approximations

# **Approximations in estimation methods**

Motivation for using approximations:

- Computational efficiency
- Lack of knowledge about uncertainty, systematic errors, internals of a method, ...

# **Examples for approximations**

- Using a non-statistical approach e.g. minimizing residuals of constraints (algebraic minim.)
- Early stopping of iteration process

   e.g. a single iteration, assuming good approximate values
   → Fixed computing time
- Simplifying CovM of the observations
   e.g. neglecting correlations, assuming constant stdv.
- Simplifying Jacobians J
  - e.g. evaluating at non-optimal point, fixing J after 1. iter.

# Minimal and closed form solutions

Examples

- 5 point algorithm for essential matrix
- 5 point algorithm for cylinder
- 7 point algorithm for fundamental matrix
- Plane estimation from point clouds
- Motion estimation from point pairs
- Motion estimation from plane pairs
- Homography estimation from points

See http://aag.ciirc.cvut.cz/minimal/ (172 entries)

## Questions

- Can we provide uncertainty for approximate solutions?
  - $\rightarrow$  would allow to compare CovM of methods

Two paths

- **1**. Perform simulations  $\rightarrow$  potentially high effort
- 2. Derive algebraic expression  $\rightarrow$  short cut (may be only for class of approximations)

3. Uncertainty of approximate estimates
a. from simulations
b. from algebra

## a. Empirical covariance matrix

Method M (black box)

 $M: \boldsymbol{l} \mapsto \boldsymbol{x}(\boldsymbol{l})$ 

1. Specify experimental design:

• ideal, consistent

 $(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{l}})$  consistent with  $\boldsymbol{k}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{l}}) = \boldsymbol{0}$ 

• Assume uncertainty  $\Sigma_{ll}$  of observations

2. Sample J observations

$$\boldsymbol{l}_{j} \sim \mathcal{N}(\tilde{\boldsymbol{l}}, \boldsymbol{\Sigma}_{ll})$$

**3.** Derive empirical mean and CovM of  $\widehat{x}_j = x(l_j)$ 

## ... Choice of Design

- Free choice of parameters and CovM
- Use results of real case (user friendly) estimated parameters:  $ilde{x} := \hat{x}$  Fitted observations:  $ilde{l} := l + \hat{v}$
- Parametrize experimental design
   e.g. depending on
   # images (T), focal length (f), #points (I), overlap (o), ...

$$\tilde{x} = \tilde{l}(T, f, I, o)$$
 and  $\tilde{l} = \tilde{l}(T, f, I, o) \mapsto \Sigma_{\widehat{xx}}(T, f, I, o)$   
(algebraic derivation)

#### CovM for minimal solutions

# 2a. CovM for minimal solutions (1/2)

Determine U parameters x from U observations Assumption for observed values

 $\boldsymbol{y} \sim \mathcal{M}(\mathbb{E}(\boldsymbol{\underline{l}}), \boldsymbol{\Sigma}_{ll}) \quad \text{with} \quad \boldsymbol{\underline{l}} + \boldsymbol{\underline{v}} = \mathbb{E}(\boldsymbol{\underline{l}})$ 

Constraints

between parameters and observations (G) among parameters only (H)

$$m{k}(m{x},m{y}) = \left[egin{array}{c} m{g}(m{x},m{y})\ _{G imes 1}\ m{h}(m{x})\ _{H imes 1}\end{array}
ight] = \left[egin{array}{c} m{0}\ m{0}\end{array}
ight]$$

#### a1. CovM for minimal solutions (2/2)

Direct solution, may be complex, multiple parameters

$$x_t = f_t(l), t = 1, ..., T$$

But: covariance matrix of each pair  $(\boldsymbol{x}_t, \boldsymbol{l}), t = 1, ..., T$ 

$$\boldsymbol{\Sigma}_{x_t x_t} = \boldsymbol{A}_t^{-1} \boldsymbol{B}_t^{\mathsf{T}} \boldsymbol{\Sigma}_{ll} \boldsymbol{B}_t \boldsymbol{A}_t^{-\mathsf{T}}$$

with

$$\underset{U \times U}{A}(\boldsymbol{x}, \boldsymbol{l}) = \left. \frac{\partial \boldsymbol{k}}{\partial \boldsymbol{x}^{\mathsf{T}}} \right|_{x, l} \quad \text{and} \quad \underset{U \times N}{B}^{\mathsf{T}}(\boldsymbol{x}, \boldsymbol{l}) = \left. \frac{\partial \boldsymbol{k}}{\partial \boldsymbol{l}^{\mathsf{T}}} \right|_{x, l}$$

29

### **Example: Fundamental matrix F**

Matrix F from 7 point pairs  $[\mathbf{x}'; \mathbf{x}'']_i$ , 42 observations

$$\mathbf{g}_{7\times 1} = [\mathbf{x}_{i'}{}^{\mathsf{T}}\mathsf{F}\mathbf{x}_{i'}{}^{"}] = \mathbf{0} \quad \text{and} \quad \mathbf{h}_{2\times 1} = \begin{bmatrix} ||\mathsf{F}|| - 1 \\ \det(\mathsf{F}) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Minimal solution with SVD, leads to up to 3 pairs

$$(\mathsf{F}_t, [[\mathbf{x}', \mathbf{x}'']_i]), t = 1, 2, 3$$

Jacobians wrt 9 parameters  $\mathbf{f} = \mathrm{vec}\mathsf{F}$  and obserations

$$A_{9\times9} = \begin{bmatrix} \mathbf{x}_{i}^{"} \otimes \mathbf{x}_{i}^{\mathsf{T}} \\ \operatorname{vec}^{\mathsf{T}}(\mathsf{F}) \\ \operatorname{vec}^{\mathsf{T}}(\mathsf{F}^{2}) \end{bmatrix}, \qquad B_{9\times42} = \begin{bmatrix} I_{7} \otimes \operatorname{vec}^{\mathsf{T}}(\mathsf{F}) \\ \mathbf{0}^{\mathsf{T}} \\ \mathbf{0}^{\mathsf{T}} \end{bmatrix}$$

(cofactor matrix  $F^{2}$ )

# Insight

- In spite of algebraically complex solution comparably simple variance propagation
- Correct rank 7 of estimated covariance matrix since rank of B is 7
- Assumptions for general cases
  - Only U constraints are used
  - Minimal solution  $\boldsymbol{x} = \boldsymbol{f}(\boldsymbol{l})$  is differentiable (no decisions)

#### CovM for direct non-minimal solutions

### a2. CovM for direct non-minimal solutions

Determine U parameters x from N observations lClass of solutions: G constraints linear in parameters

$$g(\mathbf{x}, \mathbf{y}) = A(\mathbf{y}) \mathbf{x} = \mathbf{0}$$
 and  $|\mathbf{x}|^2 = 1$  with  $\operatorname{rk}(A) = U - 1$   
 $_{G \times U}$ 

Example: homography matrix form > 8 point pairs

## a2. CovM for direct non-minimal solutions

Residuals

$$\boldsymbol{g} = \boldsymbol{A}(\boldsymbol{l})\boldsymbol{x} \neq \boldsymbol{0}$$

Minimize sum of squared residuals  $\widehat{\boldsymbol{x}} = \min_{x, |x|=1} \boldsymbol{g}(\boldsymbol{x})^\mathsf{T} \boldsymbol{g}(\boldsymbol{x})$ 

LS solution with one constraint

#### Covariance matrix of estimate $\hat{x}$ ?

Interprete solution as (quasi) Gauss-Markov model Starting from mean/true value  $\tilde{x}$ , thus  $\mathbf{x} = \tilde{\mathbf{x}} + \Delta \mathbf{x}$  and  $\mathbf{l} = \mathbf{y} + \mathbf{v}$ 

Linearize constraints  $g = g(\mathbf{x}, \mathbf{l}) = A(\mathbf{l}) \mathbf{x}$ 

$$A(\boldsymbol{l}) \mathbf{x} = A(\boldsymbol{y}) \, \tilde{\mathbf{x}} + A(\boldsymbol{y}) \, \Delta \mathbf{x} - B^{\mathsf{T}}(\tilde{\mathbf{x}}, \boldsymbol{y}) \, \boldsymbol{v}$$

With

$$A(\mathbf{y})\mathbf{x} = \mathbf{0}$$
 and  $\mathbf{v}_g = B^{\mathsf{T}}(\tilde{\mathbf{x}}, \mathbf{y})\mathbf{v}$ 

We obtain linearized model (GM-model)

$$\boldsymbol{g} + \boldsymbol{v}_g = \boldsymbol{A} \Delta \mathbf{x} \text{ with } \mathbf{x}^{\mathsf{T}} \Delta \mathbf{x} = 0$$

### **Solution of GM model**

...after some steps (see text)

 $\widehat{\Delta \mathbf{x}} = A_1^+ \boldsymbol{g}$ With rank constrained matrix

$$A_1 = UD_1V^{\mathsf{T}}, D_1 = \text{Diag}([d_1, ..., d_{U-1}, 0]) \text{ with } A(l) = UDV^{\mathsf{T}}$$

Covariance matrix

$$\Sigma_{\widehat{x}\widehat{x}} = A_1^+ \Sigma_{gg} A_1^{+\mathsf{T}} \quad \text{with} \quad \Sigma_{gg} = B^{\mathsf{T}} \Sigma_{ll} B$$

Thus finally

$$\sum_{\widehat{x}\widehat{x}} = A_1^+ B^\mathsf{T} \Sigma_{ll} B A_1^{+\mathsf{T}}$$

36

## Insight

- Closed form solution using SVD
- Covariance matrix
  - exploits SVD of A(l)
  - Takes covariance matrix of residuals

$$\underline{g} = A(\underline{l})x$$

into account

 ✓ additional constraints enforce covariance matrix (e.g. determinant constraint of matrix F)

#### $\rightarrow$ Uncertainty measures for large class of methods

#### Comparing the quality of methods

# The task of comparing covariance matrices

### Given:

Covariance matrix C

reference from method, from specification

Covariance matrix  $\Sigma$ 

to be evaluated, from data or from method

### **Question:**

Is method leading to  $\boldsymbol{\Sigma}$  better than method with C

 $\rightarrow$  Various measures

## **Basic Idea**

If both covariance matrices differ not too much then quotient

$$Q = \Sigma C^{-1}$$

should be close to unit matrix

## **Ratios of standard deviations**

For diagonal covariance matrices the ratios of the standard deviation for each  $\widehat{x}_u$ 

$$r_u := \sqrt{(\Sigma C^{-1})_{uu}} \approx \frac{\sigma_{x_u}^{\Sigma}}{\sigma_{x^2}^C}$$

Report (pretty standard)

- All ratios
- The mean ratio
- The maximum ratio

$$\boldsymbol{r} = [r_1, \dots, r_u, \dots, r_U]^\mathsf{T}$$
$$\overline{r} = \frac{1}{\sqrt{U}} |\boldsymbol{r}|_2 = \sqrt{1/U \sum_u r_u^2}$$
$$r_{\max} = \max_u (r_u)$$

## **Ratios of standard deviations**

Take correlations into account
→Replace squared ratios by eigenvalues

$$\lambda_u = \mu_u^2 = \lambda(\Sigma C^{-1})$$

= variances in direction of the eigenvectors Report principle ratios

- All ratios
- The mean ratio
- The maximum ratio

$$\boldsymbol{\mu} = [\mu_1, \dots, \mu_u, \dots, \mu_U]^\mathsf{T}$$
$$\overline{\boldsymbol{\mu}} = \frac{1}{\sqrt{U}} |\boldsymbol{\mu}|_2 = \sqrt{1/U \sum_u \mu_u^2}$$
$$\mu_{\max} = \max_u(\mu_u)$$

## Interpretation

#### All measures

- Are unitless
- Can be interpreted as
  - Ratios of standard deviates
  - Loss/gain of accuracy
- Generally: using the eigenvalues
  - takes correlations into account
  - Is independent on coordinate system

### **Evaluating large vectors**

Methods may provide large/very large vectors  $\widehat{x}$ (Bundle adjustment, SLAM, surfaces)

With reference values  $\tilde{x}$  we may use *F*-statistics

$$F = \frac{1}{U} (\widehat{\boldsymbol{x}} - \widetilde{\boldsymbol{x}})^{\mathsf{T}} \boldsymbol{C}^{-1} (\widehat{\boldsymbol{x}} - \widetilde{\boldsymbol{x}}) \mid H_0 \sim F(U, \infty)$$

Usually, F > 1 , therefore report accuracy loss

$$\Delta F = \sqrt{F - 1} = \frac{\sigma_b}{\sigma_x}$$

appr. relative bias induced by approximation

#### Examples: Accuracy loss During Point Cloud Registration

Example 1: Pose estimation of LIDAR sensor Simplification of covariance matrix

## **Example: Pose estimation of LiDAR sensor**

Given: reference coordinates of 3D points Observed: *I* 3D points with LiDAR sensor Sought: pose of sensor Model: Similarity

Q: How much worse is

- estimation with global diagonal matrix, and
- estimation with local diagonal matrix

Compared to ML-solution?

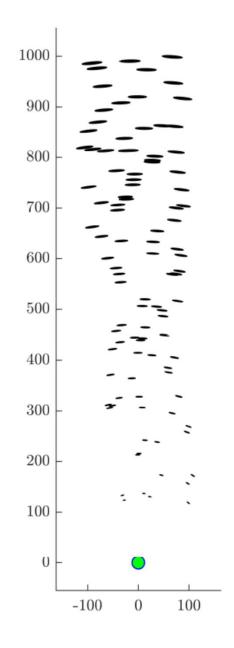
# Configuration

Visualization

- Position
- Points with uncertainty ellipsoids

#### $\rightarrow$

- inhomogeneous,
- highly anisotropic



## **Configuration and models**

#### Configuration

- $I = 100 \text{ in box } 200 \times 900 \times 20 \text{ [m]}^3 \text{ at distance } 550 \text{ [m]}$
- Leica sensor RTC360

$$\sigma_d = \sqrt{(0.001 \text{ [m]})^2 + (10^{-5}d)^2}$$
 and  $\sigma_\alpha = 18''$ 

Models

- Inhomogeneous anisotropic:
- Inhomogeneous isotropic:
- Homogeneous, isotropic:

$$\begin{split} \Sigma_{X'_{i}X'_{i}}^{(W)} &= f(d(X_{i})) \\ \Sigma_{X'_{i}X'_{i}}^{(w)} &= \operatorname{tr}(\Sigma_{X'_{i}X'_{i}}^{(W)})/3 I_{3} \\ \Sigma_{XX}^{(1)} &= \operatorname{tr}(\Sigma_{XX}^{(W)})/(3I) I_{3I} \end{split}$$

### Loss in accuracy

 $r_u^{mr} = \sigma_{\widehat{p}_u}^{(m)} / \sigma_{\widehat{p}_u}^{(r)}$  with m = 1, w, W e.g. for [s, R, t] $r^{1W} = [2.68, 1.57, 1.68, 2.3, 6.01, 3.88, 2.02]$ 

Max ratios

 $r_{\max}^{1W} = 6.01$ ,  $r_{\max}^{wW} = 2.94$ ,  $r_{\max}^{1w} = 2.05$ 

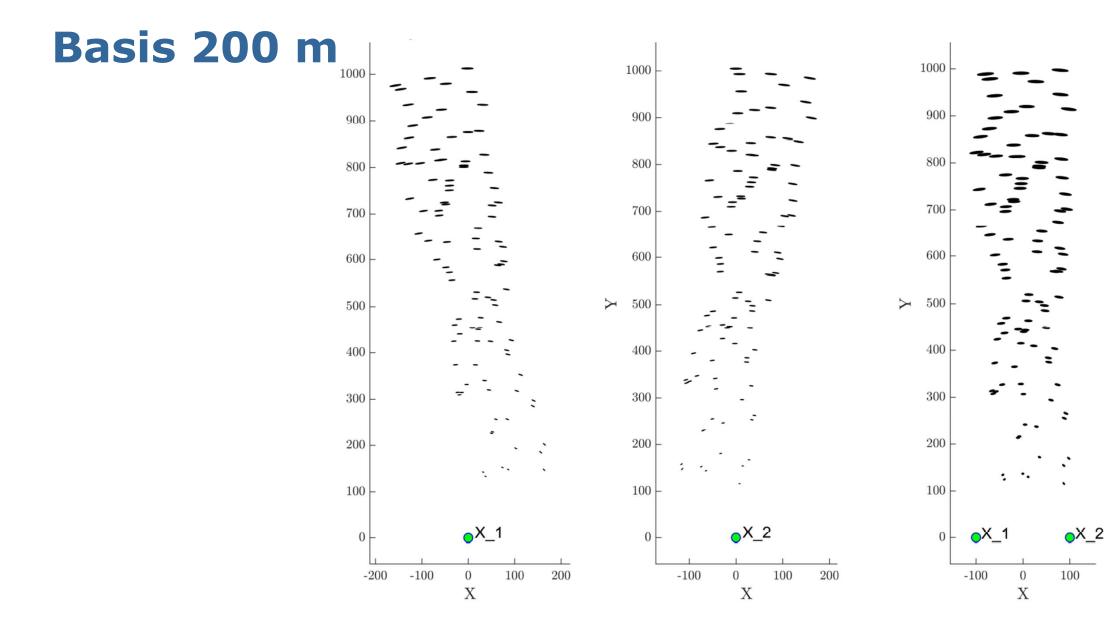
Mean ratios (including correlations!)

 $\overline{\mu}^{1W} = 2.59$ ,  $\overline{\mu}^{wW} = 1.80$ ,  $\overline{\mu}^{1w} = 1.82$  $\rightarrow$ loss may be relevant

#### Example 2: Registration of LiDAR sensors Simplification of covariance matrix

### **Example: registration of two LiDAR sensors**

... same setup as before



## **Example for adding CovM**

$$\Sigma = \begin{bmatrix} 5.0 & 1.3 \\ 1.3 & 0.5 \end{bmatrix} + \begin{bmatrix} 3.0 & -1.1 \\ -1.1 & 0.5 \end{bmatrix} \Sigma = \begin{bmatrix} 2 & 2.7 \\ 2.7 & 4.4 \end{bmatrix} + \begin{bmatrix} 2.5 & -1.8 \\ -1.8 & 1.5 \end{bmatrix}$$
  
thicker nearly isotropic

### **Basis 200 m: Loss in accuracy**

Ratio of standard deviations of 7 parameters  $\hat{p}_u$ 

$$r_u^{mr} = \sigma_{\widehat{p}_u}^{(m)} / \sigma_{\widehat{p}_u}^{(r)}$$
 with  $m \in \{1, w, W\}$   
 $r^{02} = [1.71, 1.67, 2.17, 4.14, 2.18, 1.52, 2.29]$ 

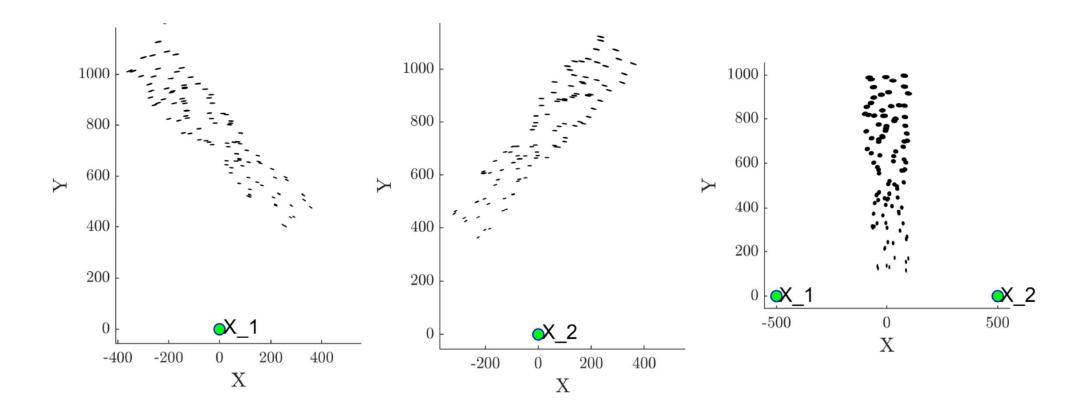
Max ratios

e.g.

$$r_{\max}^{1W} = 4.14$$
,  $r_{\max}^{wW} = 2.32$ ,  $r_{\max}^{1w} = 1.87$ 

 $\rightarrow$  loss may be relevant

### **Basis 1000 m**



56

### Basis 1000 m: Loss in accuracy

#### Ratio of standard deviations

e.g.  $r_u^{mr} = \sigma_{\widehat{p}_u}^{(m)} / \sigma_{\widehat{p}_u}^{(r)}$  with  $m \in \{0, 1, 2\} := \{1, w, W\}$  $r^{02} = [1.24, 1.20, 2.00, 1.72, 1.91, 1.20, 2.12]$ 

#### Max ratios

$$r_{\max}^{1W} = 2.00$$
,  $r_{\max}^{wW} = 1.75$ ,  $r_{\max}^{1w} = 1.29$ 

→ loss is smaller, still may be relevant

#### Example 3: Registration of LiDAR sensors Comparing approximate methods

### Task

Given: plane pairs  $(\mathbf{A}, \mathbf{A}')_i, i = 1, ..., I$ Model:

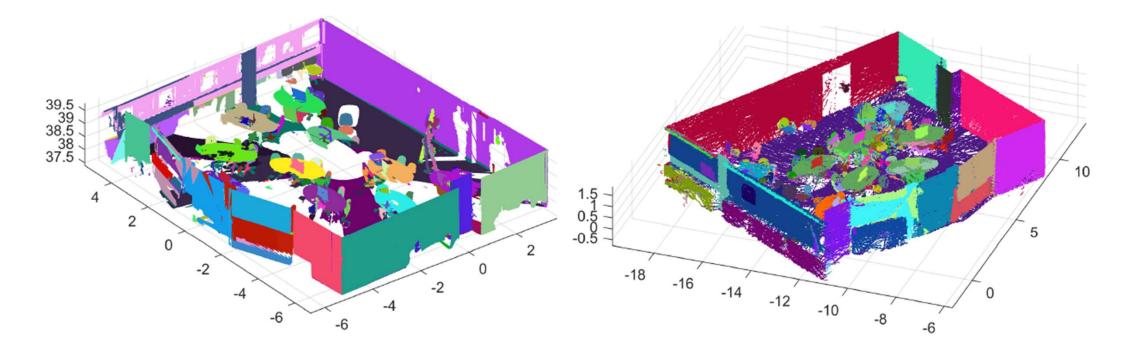
 $\mathbf{A}'_{i} = \mathbf{M}^{-\mathsf{T}} \mathbf{A}_{i}$  with  $\mathbf{A}_{i} = \begin{bmatrix} \mathbf{n}_{i} \\ -s_{i} \end{bmatrix}$ ,  $\mathbf{A}'_{i} = \begin{bmatrix} \mathbf{n}'_{i} \\ -s'_{i} \end{bmatrix}$ Constraints, linear in (R, t)

$$\mathbf{0} = R\mathbf{n} - \mathbf{n}'$$
 and  $\mathbf{0} = \mathbf{n}^{\mathsf{T}}\mathbf{t} - s + s'$ 

→ Closed form solution by Khoshelham (2016)

#### **Data sets**

#### Faro and Zeb-Sensor, segmented into planes



### **Compare approximate methods with ML**

Three approximate methods

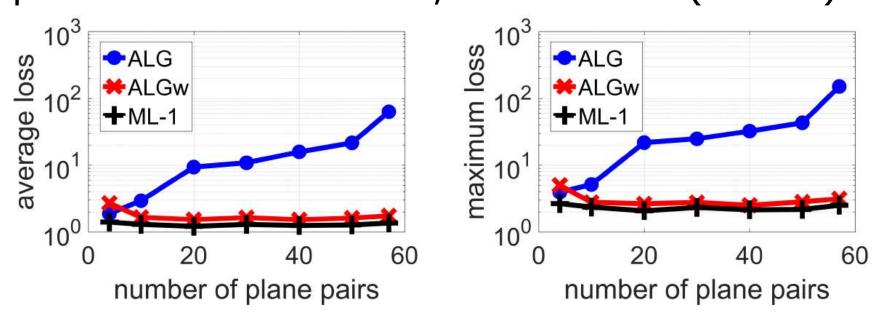
ALG:Khoshelhams algebraic solution $\widehat{x} = \min_{x,|x|=1} g(x)^{\mathsf{T}} g(x)$ ALGw:ALG + weighted ALG (two-step) $\widehat{x} = \min_{x,|x|=1} g(x)^{\mathsf{T}} W_{gg} g(x)$ ML+1:ALG + 1 iteration ML (two-step)

## **Experimental setup**

- Real data: Faro and Zeb-1 Sensor
- Segmentation into planes
   269 planes from 4.4 Mio., and 261 from 1.5 Mio. Points
- Accuracy: 1.2 mm and 25 mm
- Take estimated parameters/observations as true
- Contaminate according to accuracy
- Repeated sampling: J = 100
- 57 plane matches

## **Accuracy loss**

#### Average loss $\overline{\mu}$ and maximum loss $\mu_{max}$ Optimum value: no loss, bottom line (1 = 10<sup>0</sup>)



 $\rightarrow$  Both upgraded approximate method perform well

## **Comparison with ICP**

- ICP with point-to-point correspondences
- ICP with point-to-plane correspondences

| Method | Average loss | Maximum loss |
|--------|--------------|--------------|
| ML-1   | 1.24         | 2.04         |
| ALGw   | 1.61         | 2.76         |
| ALG    | 45.15        | 104.80       |
| ICP-pl | 3.66         | 6.09         |
| ICP-pt | 5.82         | 12.11        |

- With ALG quite high accuracy loss
- ICP-pl factor 2 better than ICP-pt
- Upgraded approximations: average loss < 60 %</p>

#### Approximations in Bundle Adjustment

## **Approximations in Bundle Adjustment**

- Using wrong Jacobians
- Neglecting correlations
- Omitting updates during iteration process

## **Bundle adjustment with constraints only**

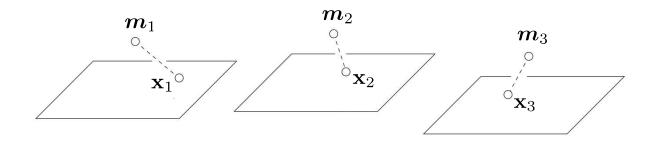
Constraints for each point

Relating image coordinates x to pose parameters mTwo epipolar constraints

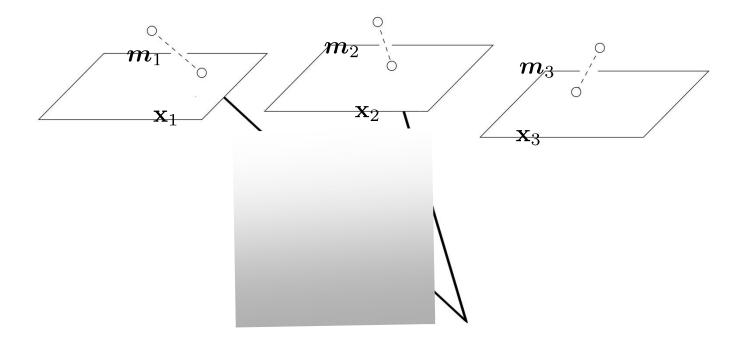
 $g_1(x_1, x_2, m_1, m_2) = 0, \quad g_2(x_2, x_3, m_2, m_3) = 0$ 

One trifocal constraint

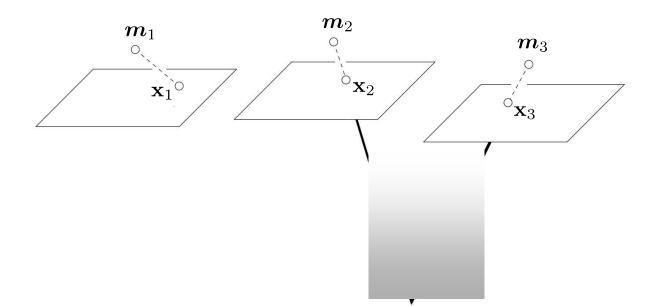
 $g_3(x_1, x_2, x_3, m_1, m_2, m_3) = 0$ 



**1.**Epipolar constraint  $g_1(x_1, x_2, m_1, m_2) = 0$ 

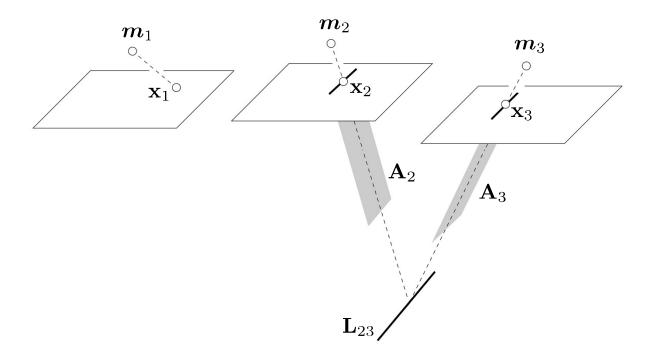


### 1.Epipolar constraint $g_1(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{m}_1, \boldsymbol{m}_2) = 0$ 2.Epipolar constraint



**1.**Epipolar constraint  $g_1(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{m}_1, \boldsymbol{m}_2) = 0$ 2.Epipolar constraint  $g_2(\boldsymbol{x}_2, \boldsymbol{x}_3, \boldsymbol{m}_2, \boldsymbol{m}_3) = 0$ 3.Trifocal constraint

 $g_3(x_1, x_2, x_3, m_1, m_2, m_3) = 0$ 



71

## **Normal equation system**

Normal equations  $N\Delta x = n$ With

$$N = A^{\mathsf{T}} \underbrace{\sum_{nn}^{-1} A}_{=C} \qquad n = A^{\mathsf{T}} \underbrace{\sum_{nn}^{-1} \Delta l}_{=C} \qquad \sum_{nn} = B^{\mathsf{T}} \sum_{ll} B$$

Both matrices *B* and *N* sparse, not diagonal  $\rightarrow$ 

- Solve two equation systems  $B^{\mathsf{T}}\Sigma_{ll}B \ [C, c] = [A, \Delta l] \text{ and } A^{\mathsf{T}}C \ \Delta x = A^{\mathsf{T}}c$
- Or, make approximations

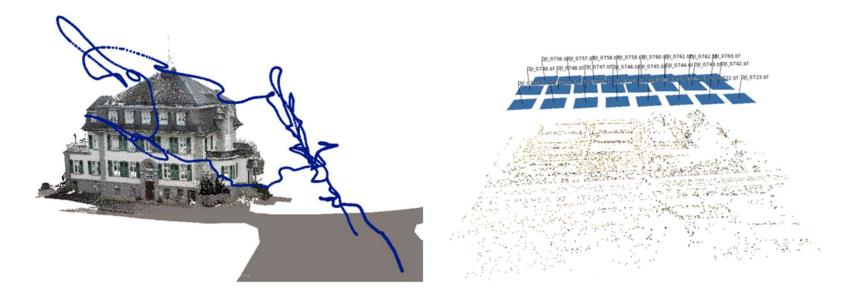
# **Analysis of approximattions**

- A: evaluate Jacobians at l , instead at  $\widehat{l}=\widehat{y}$  (save estimating  $\widehat{l}=\widehat{y}$  )
- B: Neglect correlation in  $W_{nn}$  $W_{nn}^{[B]} = \text{Diag}(W_{nn})$
- C: A and B
- D: use  $W_{nn}^{[B]}$  and fix it after 1<sup>st</sup> iteration (result also depends on approximate values)

### **Data sets**

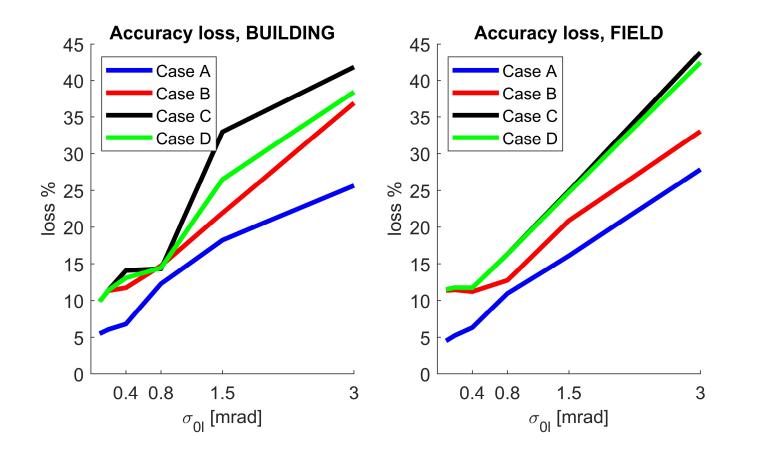
| name     | image size | focel length | distance           |
|----------|------------|--------------|--------------------|
| BUILDING | 5 MPixel   | 1589 pixel   | approx 15 m - 60 m |
| FIELD    | 12 MPixel  | 2347 pixel   | 100 m              |

Table 5: Datasets with some characteristics



### **Accuracy loss**

#### Accuracy loss $\Delta F$ in % as a function of noise $\sigma_{0l}$



### **Results: effect of observational noise**

Input: Noise level moderate (0.2 to 6 pixels)

Accuracy losses:

- Effect of approximate Jacobian (A): 5 % to 25 %
- Effect of neglected correlations (B): 10 % to 35 %
- Combined effect: 10 % to 45 %
- Fixing approximate weight matrix: 10 % to 45 %

# **Results: effect of approximate values (D)**

Scatter of approximate values: Relative pose errors

Accuracy loss:

|   | $\sigma_{0x} \text{ [mrad]}$ | 1.0   | 3.0   | 10.0  | 30.0  | 100.0 |
|---|------------------------------|-------|-------|-------|-------|-------|
| _ | $\sigma_{0x}$ [°]            | 0.06  | 0.17  | 0.57  | 1.72  | 5.73  |
| - | Building                     |       |       |       |       |       |
|   | Case D                       | 9.82  | 10.52 | 17.16 | 20.97 | 31.44 |
|   | Field                        |       |       |       |       |       |
| - | Case D                       | 11.50 | 13.28 | 14.52 | 16.94 | 25.36 |

 $\rightarrow$  Stays below 30 %

77

#### Relevance of analysis and results

## **Relevance of analysis and results**

The user's perspective (consumer)

The author's perspective (producer)

# The user's perspective

- Approximate methods may be acceptable
- Choice
  - Approximate method with precise instrument
  - Rigorous method with less precise instrument
- Need for constant/predictable CPU-time? robotics, interactive systems
- Does the user need uncertainty information?
   Some approximations do not provide this
   Cramer-Rao bound as criterium for optimal method

# The author's perspective

Authors motivation to publish methods

- Establish a reference method for a unsolved problem
- Provide a more efficient solution
- Provide analysis of a method's accuracy
- Provide approximate method with specified accuracy
- Consider potential user's requirements

Requirements for publication

- Improvement: stdv -20 %, CPU-time -30 % (Moore)
- Provide specification sheet for performance

#### Closure

## Closure

- Notion of rigorous method needs to be specified
- ML estimation is golden standard
- Upgrade of approximate method
  - Information on uncertainty of approximate parameters
  - Add a single ML step  $\rightarrow$  nearly optimal results
- Examples show large variety of accuracy losses
  - Between 0 and infinity
  - Mostly moderate, below factor 2
- The user, not the author, decide on usefulness

# Outlook

Are the ideas generalizable to deep learning methods?

Ideas are based on

- Simple distributions
- Linearization
- Algebraic short cuts (general and linear algebra)
- = closed world assumption

 $\rightarrow$ 

Transfer of ideas to deep learning remains a challenge

### References

- Arun, K. S., T. S. Huang, and S. B. Blostein (1987). Least-Squares Fitting of Two 3D Point Sets. *IEEE T-PAMI* 9 (5), 698–700.
- Barath, D., M. Polic, W. Förstner, T. Sattler, T. Pajdla, and Z. Kukelova (2020). Making Affine Correspondences Work in Camera Geometry Computation Supplementary Material. In *Proc. of ECCV*.
- Boyd, S. and L. Vandenberghe (2004). *Convex optimization*. Cambridge University Press.
- Förstner, W. (2024). Selected Notes Appendix to DGPF Tutorial on Approximate and Rigorous Estimation Methods.
- Förstner, W. and K. Khoshelham (2017). Efficient and Accurate Registration of Point Clouds with Plane to Plane Correspondences. In *3rd International Workshop on Recovering 6D Object Pose*.
- Förstner, W. and B. P. Wrobel (2016). *Photogrammetric Computer Vision Statistics, Geometry, Orientation and Reconstruction*. Springer.
- Khoshelham, K. (2016, April). Closed-form solutions for estimating a rigid motion from plane correspondences extracted from point clouds. *ISPRS Journal of Photogrammetry and Remote Sensing 114*, 78–91.
- Mangelson, J. G., M. Ghaffari, R. Vasudevan, and R. M. Eustice (2019). Characterizing the uncertainty of jointly distributed poses in the lie algebra. *IEEE Transactions on Robotics* 36, 1371–1388.
- Rao, R. C. (1967). Least squares theory using an estimated dispersion matrix and its application to measurement of signals. In Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., Vol. 1, pp. 355–372. Univ. of Calif. Press. Lemma 5a.
- Schneider, J., C. Stachniss, and W. Förstner (2017). On the quality and efficiency of approximate solutions to bundle adjustment with epipolar and trifocal constraints. In *Proceedings of the ISPRS Conference on Unmanned Aerial Vehicles in Geomatics (UAV-g)*.
- Solà, J., J. Deray, and D. Atchuthan (2018). A micro Lie theory for state estimation in robotics. CoRR abs/1812.01537.