Photogrammetry \& Robotics Lab

On the role and evaluation of rigorous and approximate estimation methods

DGPF-Tagung, 12. 03. 2024 Remagen
Wolfgang Förstner

Motivation

How much would you pay more/less if

- the accuracy (stdv) of an instrument halves/doubles?
- an algorithm leads to half/double the accuracy of its result?
- if an algorithm provides the uncertainty of the result?
- If an algorithm is faster/slower by a factor 2?
- If CPU-time of an algorithm is predictable?

Notions

- Estimation methods: observations \rightarrow parameters
(least squares, maximum likelihood, ...)
- Rigorous: following some optimization principle
- Approximate: simplified, suboptimal solutions
\rightarrow e.g. hierarchy of approximations $\quad \Sigma \longrightarrow \operatorname{Diag}\left(\sigma_{n}^{2}\right) \longrightarrow \sigma^{2} I_{N}$
- Role: approximations often are fast and cheap
- Evaluation
- Comparison: degree of loss in accuracy, gain in speed
- Uncertainty of suboptimal methods

1. Example: Motion from point pairs

Motion from point pair

Given: set of point pairs

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{x}_{i}^{\prime}\right\}, i=1, \ldots, I
$$

Assumption: related by rigid motion $\quad \boldsymbol{x}_{i}^{\prime}=R \boldsymbol{x}_{i}+\boldsymbol{t}$
Task: Estimate motion $(\widehat{R}, \widehat{\boldsymbol{t}})$

Classical solution (Arun et al. 1987)

- Centre data
- SVD \rightarrow rotation
- translation

Arun's solution

1. Centre data in both systems

$$
\begin{aligned}
& \overline{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}-\boldsymbol{x}_{C}, \quad \text { with } \quad \boldsymbol{x}_{C}=\sum_{i} \boldsymbol{x}_{i} / I \\
& \overline{\boldsymbol{x}}_{i}^{\prime}=\boldsymbol{x}_{i}^{\prime}-\boldsymbol{x}_{C}^{\prime}, \quad \text { with } \quad \boldsymbol{x}_{C}^{\prime}=\sum_{i}^{i} \boldsymbol{x}_{i}^{\prime} / I
\end{aligned}
$$

2. Determine rotation

$$
U D V=\operatorname{SVD}\left(\sum_{i} \overline{x_{i}} \overline{x_{i}^{\prime}}\right) \quad R=V \operatorname{Diag}\left(1,1, \operatorname{det}(U V) U^{\top}\right.
$$

3. Estimated motion

$$
\left(R, \boldsymbol{x}_{C}^{\prime}-R \boldsymbol{x}_{C}\right)
$$

Is Arun's method optimal/rigorous?

Pro:

- It minimizes the sum of the squared distances (LS)
- If all coordinates have the same accuracy (ML)

Contra:

- Real data have no homogeneous accuracy
- Not statistically rigorous: uncertainty of data unused
\rightarrow ?

Outline

1. An example: motion from point pairs
2. Statistically optimal estimation
a. ML estimation
b. Visualization, effect of CovM
3. Uncertainty of approximate estimates
4. Characterizing accuracy loss
5. Examples
a. Motion from point and plane pairs
b. Bundle adjustment
6. Closing

2. Statistically optimal estimation

Statistically optimal estimation (ML)

Maximum likelihood estimation
(my teacher said: method for self-confident people)

- Data are sample from specified distribution
- Distribution is parametrized
- Parameters are functionally related by constraints
- Estimated parameters give best explanation of observations

Formal setup of ML-estimation

- Observations: $\boldsymbol{l}=\left[l_{n}\right], n=1, \ldots, N$
- Distribution: Gaussian $\underline{l} \mid \boldsymbol{y}, \sigma_{0}^{2} \Sigma_{l l}^{a} \sim \mathcal{N}\left(\boldsymbol{y}, \sigma_{0}^{2} \Sigma_{l l}^{a}\right)$ or

$$
p\left(\boldsymbol{l} \mid \boldsymbol{y}, \sigma_{0}^{2} \Sigma_{l l}^{a}\right)=k \exp \left(-(\boldsymbol{l}-\boldsymbol{y})^{\top}\left(\sigma_{0}^{2} \Sigma_{l l}^{a}\right)^{-1}(\boldsymbol{l}-\boldsymbol{y}) / 2\right)
$$ parameters:

- \boldsymbol{y} unknown mean observation (expected value)
- $\Sigma_{l l}^{a}$: given approximate covariance matrix
- σ_{0}^{2} : unknown variance factor
- Constraints with additional unknown parameters x

$$
\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{y})=\mathbf{0}
$$

Task

Optimization task: find values \boldsymbol{x} and \boldsymbol{y}, which

$$
\begin{array}{ll}
\operatorname{minimize} & (\boldsymbol{l}-\boldsymbol{y})^{\top} W_{l l}^{a}(\boldsymbol{l}-\boldsymbol{y}) \quad \text { with } \quad W_{l l}^{a}=\left(\Sigma_{l l}^{a}\right)^{-1} \\
\text { subject to } & \boldsymbol{g}(\boldsymbol{x}, \boldsymbol{y})=\mathbf{0}
\end{array}
$$

Statistically optimal method

Input: observations l
Method:

- parameters of distribution
- constraints
- Optimization criterion

Output: [$\widehat{\sigma}_{0}^{2},(\widehat{\boldsymbol{x}}, \widehat{\boldsymbol{y}}), \Sigma_{\widehat{x x}}$]

- Estimate $\widehat{\sigma}_{0}^{2}$ for variance factor \rightarrow model fit
- Estimates ($\widehat{\boldsymbol{x}}, \widehat{\boldsymbol{y}}$) for unknown parameters,
\rightarrow Corrections $\widehat{\boldsymbol{v}}=\widehat{\boldsymbol{y}}-\boldsymbol{l}$, residuals/errors $\widehat{e}=l-\widehat{\boldsymbol{y}}=-\widehat{\boldsymbol{v}}$
- predicted covariance matrix $\Sigma_{\widehat{x x}}$ of $\widehat{\boldsymbol{x}}$

Solution for linear constraints

For linear model

$$
\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{y})=A \boldsymbol{x}+B^{\top} \boldsymbol{y}+\boldsymbol{b}=\mathbf{0}
$$

Use substitute corrections

$$
\boldsymbol{n}=B^{\top} \boldsymbol{l}+\boldsymbol{b} \quad \text { and } \quad \mathbb{D}(\underline{\boldsymbol{n}})=\Sigma_{n n}=B^{\top} \Sigma_{l l} B
$$

Estimates

$$
\begin{aligned}
& \widehat{\boldsymbol{x}}=-\left(A^{\top} \Sigma_{n n}^{-1} A\right)^{-1} A^{\top} \Sigma_{n n}^{-1} \boldsymbol{n}(\boldsymbol{l}) \\
& \widehat{\boldsymbol{y}}=\boldsymbol{l}-\Sigma_{l l} B \Sigma_{n n}^{-1} \boldsymbol{g}(\widehat{\boldsymbol{x}}, \boldsymbol{l})
\end{aligned}
$$

Covariance matrix

$$
\Sigma_{\widehat{x x}}=\left(A^{\top}\left(B^{\top} \Sigma_{l l} B\right)^{-1} A\right)^{-1}
$$

Visualization of ML estimation

Stochastical models:

$$
\begin{aligned}
& \underline{\underline{l}} \sim \mathcal{N}\left(\boldsymbol{a} x, I_{2}\right) \\
& \underline{\boldsymbol{l}} \sim \mathcal{N}(\boldsymbol{a} x, \Sigma)
\end{aligned}
$$

Constraint (white line)

$$
\boldsymbol{a} x-\boldsymbol{y}=\mathbf{0}
$$

Estimates

$$
\begin{aligned}
& \boldsymbol{a} \widehat{x} \mid I_{2} \\
& \boldsymbol{a} \widehat{x} \mid \Sigma
\end{aligned}
$$

(which is rigorous/optimal?)

Results of ML estimation

Estimates
$a \widehat{x}\left|I_{2} \quad a \widehat{x}\right| \Sigma$
Covariance matrix (here of $a \widehat{x}$)
blue and red segments (flat/singular ellipses)
(sqrt) variance factors ratio of thin and thick standard ellipses

Exploring extreme cases

- Can changing the covariance matrix have zero effect?
- Can the mean of 0 and 1 be -1?
- Can for given observations and constraints the unknown parameters be arbitrary?

Cdy-app

Result of exploration

- Changing the model may have no effect
- You can find a model for each result
\rightarrow We need to carefully specify (common sense!)

Questions:

- How to compare quality of methods?
- Can we do the same with approximate methods?
(eg. those using SVD or with complex algebraic derivation?

Type of approximations

Approximations in estimation methods

Motivation for using approximations:

- Computational efficiency
- Lack of knowledge about uncertainty, systematic errors, internals of a method, ...

Examples for approximations

- Using a non-statistical approach
e.g. minimizing residuals of constraints (algebraic minim.)
- Early stopping of iteration process
e.g. a single iteration, assuming good approximate values
\rightarrow Fixed computing time
- Simplifying CovM of the observations
e.g. neglecting correlations, assuming constant stdv.
- Simplifying Jacobians J
e.g. evaluating at non-optimal point, fixing J after 1 . iter.

Minimal and closed form solutions

Examples

- 5 point algorithm for essential matrix
- 5 point algorithm for cylinder
- 7 point algorithm for fundamental matrix
- Plane estimation from point clouds
- Motion estimation from point pairs
- Motion estimation from plane pairs
- Homography estimation from points

See http://aag.ciirc.cvut.cz/minimal/ (172 entries)

Questions

- Can we provide uncertainty for approximate solutions?
\rightarrow would allow to compare CovM of methods

Two paths

1. Perform simulations \rightarrow potentially high effort
2. Derive algebraic expression \rightarrow short cut
(may be only for class of approximations)
3. Uncertainty of approximate estimates a. from simulations
b. from algebra

a. Empirical covariance matrix

Method M (black box)

$$
M: \quad \boldsymbol{l} \mapsto \boldsymbol{x}(\boldsymbol{l})
$$

1. Specify experimental design:

- ideal, consistent

$$
(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{l}}) \text { consistent with } \boldsymbol{k}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{l}})=\mathbf{0}
$$

- Assume uncertainty $\Sigma_{l l}$ of observations

2. Sample J observations

$$
\boldsymbol{l}_{j} \sim \mathcal{N}\left(\tilde{l}, \Sigma_{l l}\right)
$$

3. Derive empirical mean and CovM of $\quad \widehat{x}_{j}=\boldsymbol{x}\left(\boldsymbol{l}_{j}\right)$
... Choice of Design

- Free choice of parameters and CovM
- Use results of real case (user friendly)
estimated parameters: $\tilde{x}:=\widehat{x}$
Fitted observations: $\quad \tilde{l}:=\boldsymbol{l}+\widehat{v}$
- Parametrize experimental design
e.g. depending on \# images (T), focal length (f), \#points (I), overlap (o), ...
$\tilde{\boldsymbol{x}}=\tilde{\boldsymbol{l}}(T, f, I, o) \quad$ and $\quad \tilde{\boldsymbol{l}}=\tilde{\boldsymbol{l}}(T, f, I, o) \mapsto \Sigma_{\widehat{x} \widehat{x}}(T, f, I, o)$
(algebraic derivation)

CovM for minimal solutions

2a. CovM for minimal solutions (1/2)

Determine U parameters x from U observations Assumption for observed values

$$
\boldsymbol{y} \sim \mathscr{M}\left(\mathbb{E}(\underline{\boldsymbol{l}}), \Sigma_{l l}\right) \quad \text { with } \quad \underline{\boldsymbol{l}}+\underline{\boldsymbol{v}}=\mathbb{E}(\underline{\boldsymbol{l}})
$$

Constraints
between parameters and observations (G) among parameters only (H)

$$
\underset{U \times 1}{\boldsymbol{k}(\boldsymbol{x}, \boldsymbol{y})}=\left[\begin{array}{c}
\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{y}) \\
G \times 1 \\
\boldsymbol{h (x)} \\
H \times 1
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right]
$$

a1. CovM for minimal solutions (2/2)

Direct solution, may be complex, multiple parameters

$$
\boldsymbol{x}_{t}=\boldsymbol{f}_{t}(\boldsymbol{l}), t=1, \ldots, T
$$

But: covariance matrix of each pair $\left(\boldsymbol{x}_{t}, \boldsymbol{l}\right), t=1, \ldots, T$

$$
\Sigma_{x_{t} x_{t}}=A_{t}^{-1} B_{t}^{\top} \Sigma_{l l} B_{t} A_{t}^{-\top}
$$

with

$$
\underset{U \times U}{A}(\boldsymbol{x}, \boldsymbol{l})=\left.\frac{\partial \boldsymbol{k}}{\partial \boldsymbol{x}^{\boldsymbol{\top}}}\right|_{x, l} \quad \text { and } \quad \underset{U \times N}{B^{\top}}(\boldsymbol{x}, \boldsymbol{l})=\left.\frac{\partial \boldsymbol{k}}{\partial \boldsymbol{l}^{\boldsymbol{\top}}}\right|_{x, l}
$$

Example: Fundamental matrix F

Matrix F from 7 point pairs $\left[\mathrm{x}^{\prime} ; \mathrm{x}^{\prime \prime}\right]_{i}, 42$ observations

$$
\underset{7 \times 1}{\boldsymbol{g}}=\left[\mathrm{x}_{i}^{\prime \top}{ }^{\prime \top} \mathrm{Fx}_{i}^{\prime \prime}\right]=\mathbf{0} \quad \text { and } \quad \underset{2 \times 1}{\boldsymbol{h}}=\left[\begin{array}{c}
\|\mathrm{F}\|-1 \\
\operatorname{det}(\mathrm{~F})
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Minimal solution with SVD, leads to up to 3 pairs

$$
\left(\mathrm{F}_{t},\left[\left[\mathbf{x}^{\prime}, \mathrm{x}^{\prime \prime}\right]_{i}\right]\right), t=1,2,3
$$

Jacobians wrt 9 parameters $\mathbf{f}=\mathrm{vecF}$ and obserations

$$
\underset{9 \times 9}{A}=\left[\begin{array}{c}
{\left[\mathbf{x}_{i}^{\prime \prime \top} \otimes \mathbf{x}_{i}^{\top}\right]} \\
\operatorname{vec}^{\top}(\mathrm{F}) \\
\operatorname{vec}^{\top}\left(\mathrm{F}^{J}\right)
\end{array}\right], \quad \underset{9 \times 42}{B}=\left[\begin{array}{c}
I_{7} \otimes \operatorname{vec}^{\top}(\mathrm{F}) \\
\mathbf{0}^{\top} \\
\mathbf{0}^{\top}
\end{array}\right]
$$

Insight

- In spite of algebraically complex solution comparably simple variance propagation
- Correct rank 7 of estimated covariance matrix since rank of B is 7
- Assumptions for general cases
- Only U constraints are used
- Minimal solution $\boldsymbol{x}=\boldsymbol{f}(\boldsymbol{l})$ is differentiable (no decisions)

CovM for direct non-minimal solutions

a2. CovM for direct non-minimal solutions

Determine U parameters \boldsymbol{x} from N observations \boldsymbol{l}
Class of solutions: G constraints linear in parameters

$$
\boldsymbol{g}(\mathbf{x}, \boldsymbol{y})=\underset{G \times U}{A(\boldsymbol{y})} \mathbf{x}=\mathbf{0} \quad \text { and } \quad|\mathbf{x}|^{2}=1 \quad \text { with } \quad \operatorname{rk}(A)=U-1
$$

Example: homography matrix form > 8 point pairs

a2. CovM for direct non-minimal solutions

Residuals

$$
\boldsymbol{g}=A(\boldsymbol{l}) \boldsymbol{x} \neq \mathbf{0}
$$

Minimize sum of squared residuals

$$
\widehat{\boldsymbol{x}}=\min _{x,|x|=1} \boldsymbol{g}(\boldsymbol{x})^{\top} \boldsymbol{g}(\boldsymbol{x})
$$

LS solution with one constraint

Covariance matrix of estimate $\widehat{\boldsymbol{x}}$?

Interprete solution as (quasi) Gauss-Markov model Starting from mean/true value $\tilde{\boldsymbol{x}}$, thus

$$
\mathrm{x}=\widetilde{\mathrm{x}}+\Delta \mathrm{x} \quad \text { and } \quad \boldsymbol{l}=\boldsymbol{y}+\boldsymbol{v}
$$

Linearize constraints $g=g(\mathrm{x}, l)=A(l) \mathrm{x}$

$$
A(\boldsymbol{l}) \mathbf{x}=A(\boldsymbol{y}) \tilde{\mathbf{x}}+A(\boldsymbol{y}) \Delta \mathrm{x}-B^{\top}(\tilde{\mathbf{x}}, \boldsymbol{y}) \underline{\boldsymbol{v}}
$$

With

$$
A(\boldsymbol{y}) \mathbf{x}=\mathbf{0} \quad \text { and } \quad \boldsymbol{v}_{g}=B^{\top}(\tilde{\mathbf{x}}, \boldsymbol{y}) \boldsymbol{v}
$$

We obtain linearized model (GM-model)

$$
\boldsymbol{g}+\boldsymbol{v}_{g}=A \Delta \mathrm{x} \quad \text { with } \quad \mathrm{x}^{\top} \Delta \mathrm{x}=0
$$

Solution of GM model

...after some steps (see text)

$$
\widehat{\Delta \mathrm{x}}=A_{1}^{+} g
$$

With rank constrained matrix

$$
A_{1}=U D_{1} V^{\top}, D_{1}=\operatorname{Diag}\left(\left[d_{1}, \ldots, d_{U-1}, 0\right]\right) \quad \text { with } \quad A(l)=U D V^{\top}
$$

Covariance matrix

$$
\Sigma_{\widehat{x x}}=A_{1}^{+} \Sigma_{g g} A_{1}^{+\top} \quad \text { with } \quad \Sigma_{g g}=B^{\top} \Sigma_{l l} B
$$

Thus finally

$$
\Sigma_{\widehat{x} \widehat{x}}=A_{1}^{+} B^{\top} \Sigma_{l l} B A_{1}^{+\top}
$$

Insight

- Closed form solution using SVD
- Covariance matrix
- exploits SVD of $A(l)$
- Takes covariance matrix of residuals

$$
\underline{g}=A(\underline{l}) x
$$

into account
\checkmark additional constraints enforce covariance matrix (e.g. determinant constraint of matrix F)
\rightarrow Uncertainty measures for large class of methods

Comparing the quality of methods

The task of comparing covariance matrices

Given:

Covariance matrix C
reference from method, from specification
Covariance matrix Σ
to be evaluated, from data or from method
Question:
Is method leading to Σ better than method with C
\rightarrow Various measures

Basic Idea

If both covariance matrices differ not too much then quotient

$$
Q=\Sigma C^{-1}
$$

should be close to unit matrix

Ratios of standard deviations

For diagonal covariance matrices
the ratios of the standard deviation for each $\widehat{\boldsymbol{x}}_{u}$

$$
r_{u}:=\sqrt{\left(\Sigma C^{-1}\right)_{u u}} \approx \frac{\sigma_{x u}^{\Sigma}}{\sigma_{x^{2}}^{C}}
$$

Report (pretty standard)

- All ratios

$$
\begin{aligned}
& \boldsymbol{r}=\left[r_{1}, \ldots, r_{u}, \ldots, r_{U}\right]^{\top} \\
& \bar{r}=\frac{1}{\sqrt{U}}|\boldsymbol{r}|_{2}=\sqrt{1 / U \sum_{u} r_{u}^{2}}
\end{aligned}
$$

- The maximum ratio

$$
r_{\max }=\max _{u}\left(r_{u}\right)
$$

Ratios of standard deviations

Take correlations into account
\rightarrow Replace squared ratios by eigenvalues

$$
\lambda_{u}=\mu_{u}^{2}=\lambda\left(\Sigma C^{-1}\right)
$$

$=$ variances in direction of the eigenvectors
Report principle ratios

- All ratios
- The mean ratio
- The maximum ratio

$$
\begin{aligned}
& \boldsymbol{\mu}=\left[\mu_{1}, \ldots, \mu_{u}, \ldots, \mu_{U}\right]^{\top} \\
& \bar{\mu}=\frac{1}{\sqrt{U}}|\boldsymbol{\mu}|_{2}=\sqrt{1 / U \sum_{u} \mu_{u}^{2}} \\
& \mu_{\max }=\max _{u}\left(\mu_{u}\right)
\end{aligned}
$$

Interpretation

All measures

- Are unitless
- Can be interpreted as
- Ratios of standard deviates
- Loss/gain of accuracy
- Generally: using the eigenvalues
- takes correlations into account
- Is independent on coordinate system

Evaluating large vectors

Methods may provide large/very large vectors $\widehat{\boldsymbol{x}}$ (Bundle adjustment, SLAM, surfaces)
With reference values $\tilde{\boldsymbol{x}}$ we may use F-statistics

$$
\left.F=\frac{1}{U}(\widehat{\boldsymbol{x}}-\tilde{\boldsymbol{x}})^{\top} C^{-1}(\widehat{\boldsymbol{x}}-\tilde{\boldsymbol{x}}) \right\rvert\, H_{0} \sim F(U, \infty)
$$

Usually, $F>1$, therefore report accuracy loss

$$
\Delta F=\sqrt{F-1}=\frac{\sigma_{b}}{\sigma_{x}}
$$

appr. relative bias induced by approximation

Examples: Accuracy loss During Point Cloud Registration

Example 1: Pose estimation of LIDAR sensor Simplification of covariance matrix

Example: Pose estimation of LiDAR sensor

Given: reference coordinates of 3D points
Observed: I 3D points with LiDAR sensor
Sought: pose of sensor
Model: Similarity

Q: How much worse is

- estimation with global diagonal matrix, and
- estimation with local diagonal matrix

Compared to ML-solution?

Configuration

Visualization

- Position
- Points with uncertainty ellipsoids
\rightarrow
- inhomogeneous,
- highly anisotropic

Configuration and models

Configuration

- $I=100$ in box $200 \times 900 \times 20[\mathrm{~m}]^{3}$ at distance $550[\mathrm{~m}]$
- Leica sensor RTC360

$$
\sigma_{d}=\sqrt{(0.001[\mathrm{~m}])^{2}+\left(10^{-5} d\right)^{2}} \text { and } \sigma_{\alpha}=18^{\prime \prime}
$$

Models

- Inhomogeneous anisotropic: $\Sigma_{X_{i}^{\prime} X_{i}^{\prime}}^{(W)}=f\left(d\left(X_{i}\right)\right)$
- Inhomogeneous isotropic: $\quad \sum_{X_{i}^{\prime} X_{i}^{\prime}}^{(w)}=\operatorname{tr}\left(\sum_{X_{i}^{\prime} X_{i}^{\prime}}^{(W)} / 3 I_{3}\right.$
- Homogeneous, isotropic:

$$
\Sigma_{X X}^{(1)}=\operatorname{tr}\left(\Sigma_{X X}^{(W)}\right) /(3 I) I_{3 I}
$$

Loss in accuracy

Ratio of standard deviations
$r_{u}^{m r}=\sigma_{\widehat{p}_{u}}^{(m)} / \sigma_{\widehat{p}_{u}}^{(r)} \quad$ with $\quad m=1, w, W$
e.g. for $[s, R, t]$

$$
\boldsymbol{r}^{1 W}=[2.68,1.57,1.68,2.3,6.01,3.88,2.02]
$$

Max ratios

$$
r_{\max }^{1 W}=6.01, \quad r_{\max }^{w W}=2.94, \quad r_{\max }^{1 w}=2.05
$$

Mean ratios (including correlations!)

$$
\bar{\mu}^{1 W}=2.59, \quad \bar{\mu}^{w W}=1.80, \quad \bar{\mu}^{1 w}=1.82
$$

\rightarrow loss may be relevant

Example 2: Registration of LiDAR sensors

 Simplification of covariance matrix
Example: registration of two LiDAR sensors

... same setup as before

Basis 200 m

Example for adding CovM

$$
\Sigma=\left[\begin{array}{ll}
5.0 & 1.3 \\
1.3 & 0.5
\end{array}\right]+\left[\begin{array}{cc}
3.0 & -1.1 \\
-1.1 & 0.5
\end{array}\right] \quad \Sigma=\left[\begin{array}{cc}
2 & 2.7 \\
2.7 & 4.4
\end{array}\right]+\left[\begin{array}{cc}
2.5 & -1.8 \\
-1.8 & 1.5
\end{array}\right]
$$

thicker

nearly isotropic

Basis 200 m: Loss in accuracy

Ratio of standard deviations of 7 parameters \widehat{p}_{u}
$r_{u}^{m r}=\sigma_{\widehat{p}_{u}}^{(m)} / \sigma_{\widehat{p}_{u}}^{(r)} \quad$ with $\quad m \in\{1, w, W\}$

$$
\boldsymbol{r}^{02}=[1.71,1.67,2.17,4.14,2.18,1.52,2.29]
$$

Max ratios

$$
r_{\max }^{1 W}=4.14, \quad r_{\max }^{w W}=2.32, \quad r_{\max }^{1 w}=1.87
$$

\rightarrow loss may be relevant

Basis 1000 m

Basis 1000 m: Loss in accuracy

Ratio of standard deviations
e.g.

$$
r_{u}^{m r}=\sigma_{\widehat{p}_{u}}^{(m)} / \sigma_{\widehat{p}_{u}}^{(r)} \quad \text { with } \quad m \in\{0,1,2\}:=\{1, w, W\}
$$

$$
\boldsymbol{r}^{02}=[1.24,1.20,2.00,1.72,1.91,1.20,2.12]
$$

Max ratios

$$
r_{\max }^{1 W}=2.00, \quad r_{\max }^{w W}=1.75, \quad r_{\max }^{1 w}=1.29
$$

\rightarrow loss is smaller, still may be relevant

Example 3: Registration of LiDAR sensors
 Comparing approximate methods

Task

Given: plane pairs $\left(\mathbf{A}, \mathbf{A}^{\prime}\right)_{i}, i=1, \ldots, I$
Model:

$$
\mathbf{A}_{i}^{\prime}=\mathrm{M}^{-\mathrm{T}} \mathbf{A}_{i} \quad \text { with } \quad \mathbf{A}_{i}=\left[\begin{array}{c}
\boldsymbol{n}_{i} \\
-s_{i}
\end{array}\right], \mathbf{A}_{i}^{\prime}=\left[\begin{array}{c}
\boldsymbol{n}_{i}^{\prime} \\
-s_{i}^{\prime}
\end{array}\right]
$$

Constraints, linear in (R, \boldsymbol{t})

$$
\mathbf{0}=R \boldsymbol{n}-\boldsymbol{n}^{\prime} \quad \text { and } \quad \mathbf{0}=\boldsymbol{n}^{\top} \boldsymbol{t}-s+s^{\prime}
$$

\rightarrow Closed form solution by Khoshelham (2016)

Data sets

Faro and Zeb-Sensor, segmented into planes

Compare approximate methods with ML

Three approximate methods

ALG: Khoshelhams algebraic solution

$$
\widehat{\boldsymbol{x}}=\min _{x,|x|=1} \boldsymbol{g}(\boldsymbol{x})^{\top} \boldsymbol{g}(\boldsymbol{x})
$$

ALGw: ALG + weighted ALG (two-step)

$$
\widehat{\boldsymbol{x}}=\min _{x,|x|=1} \boldsymbol{g}(\boldsymbol{x})^{\top} W_{g g} \boldsymbol{g}(\boldsymbol{x})
$$

ML+1: ALG + 1 iteration ML (two-step)

Experimental setup

- Real data: Faro and Zeb-1 Sensor
- Segmentation into planes

269 planes from 4.4 Mio., and 261 from 1.5 Mio. Points

- Accuracy: 1.2 mm and 25 mm
- Take estimated parameters/observations as true
- Contaminate according to accuracy
- Repeated sampling: J = 100
- 57 plane matches

Accuracy loss

Average loss $\bar{\mu}$ and maximum loss $\mu_{\max }$
Optimum value: no loss, bottom line ($1=10^{0}$)

\rightarrow Both upgraded approximate method perform well

Comparison with ICP

- ICP with point-to-point correspondences
- ICP with point-to-plane correspondences

Method	Average loss	Maximum loss
ML-1	1.24	2.04
ALGw	1.61	2.76
ALG	45.15	104.80
ICP-pl	3.66	6.09
ICP-pt	5.82	12.11

- With ALG quite high accuracy loss
- ICP-pl factor 2 better than ICP-pt
- Upgraded approximations: average loss < 60 \%

Approximations in Bundle Adjustment

Approximations in Bundle Adjustment

- Using wrong Jacobians
- Neglecting correlations
- Omitting updates during iteration process

Bundle adjustment with constraints only

Constraints for each point
Relating image coordinates \boldsymbol{x} to pose parameters \boldsymbol{m} Two epipolar constraints

$$
g_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{m}_{1}, \boldsymbol{m}_{2}\right)=0, \quad g_{2}\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{m}_{2}, \boldsymbol{m}_{3}\right)=0
$$

One trifocal constraint

$$
g_{3}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{m}_{1}, \boldsymbol{m}_{2}, \boldsymbol{m}_{3}\right)=0
$$

Epipolar \& Trifocal Constraints

Epipolar \& Trifocal Constraints

1.Epipolar constraint $\quad g_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{m}_{1}, \boldsymbol{m}_{2}\right)=0$

Epipolar \& Trifocal Constraints

$\begin{aligned} & \text { 1. Epipolar constraint } \\ & \text { 2.Epipolar constraint }\end{aligned} \quad g_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{m}_{1}, \boldsymbol{m}_{2}\right)=0$

Epipolar \& Trifocal Constraints

1.Epipolar constraint $\quad g_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{m}_{1}, \boldsymbol{m}_{2}\right)=0$
2.Epipolar constraint $\quad g_{2}\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{m}_{2}, \boldsymbol{m}_{3}\right)=0$
3. Trifocal constraint $\quad g_{3}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{m}_{1}, \boldsymbol{m}_{2}, \boldsymbol{m}_{3}\right)=0$

Normal equation system

Normal equations $N \Delta x=\boldsymbol{n}$
With

$$
N=A^{\top} \underbrace{\Sigma_{n n}^{-1} A}_{=C} \quad \boldsymbol{n}=A^{\top} \underbrace{\Sigma_{n n}^{-1} \Delta \boldsymbol{l}}_{=\boldsymbol{c}} \quad \Sigma_{n n}=B^{\top} \Sigma_{l l} B
$$

Both matrices B and N sparse, not diagonal
\rightarrow

- Solve two equation systems

$$
B^{\top} \Sigma_{l l} B[C, c]=[A, \Delta l] \quad \text { and } \quad A^{\top} C \quad \Delta x=A^{\top} c
$$

- Or, make approximations

Analysis of approximattions

A: evaluate Jacobians at l, instead at $\widehat{l}=\widehat{y}$ (save estimating $\widehat{l}=\widehat{y}$)
B: Neglect correlation in $W_{n n}$

$$
W_{n n}^{[B]}=\operatorname{Diag}\left(W_{n n}\right)
$$

C: A and B
D: use $W_{n n}^{[B]}$ and fix it after $1^{\text {st }}$ iteration (result also depends on approximate values)

Data sets

name	image size	focel length	distance
BUILDING	5 MPixel	1589 pixel	approx $15 \mathrm{~m}-60 \mathrm{~m}$
FIELD	12 MPixel	2347 pixel	100 m

Table 5: Datasets with some characteristics

Accuracy loss

Accuracy loss ΔF in \% as a function of noise $\sigma_{0 l}$

Results: effect of observational noise

Input: Noise level moderate (0.2 to 6 pixels)

Accuracy losses:

- Effect of approximate Jacobian (A): 5 \% to 25 \%
- Effect of neglected correlations (B): 10 \% to 35 \%
- Combined effect: 10 \% to 45 \%
- Fixing approximate weight matrix: 10 \% to 45 \%

Results: effect of approximate values (D)

Scatter of approximate values: Relative pose errors

Accuracy loss:

$\sigma_{0 x}[\mathrm{mrad}]$	1.0	3.0	10.0	30.0	100.0
$\sigma_{0 x}\left[{ }^{\circ}\right]$	0.06	0.17	0.57	1.72	5.73
BUILDING					
CASE D	9.82	10.52	17.16	20.97	31.44
FIELD					
CASE D	11.50	13.28	14.52	16.94	25.36

\rightarrow Stays below 30 \%

Relevance of analysis and results

Relevance of analysis and results

The user's perspective (consumer)

The author's perspective (producer)

The user's perspective

- Approximate methods may be acceptable
- Choice
- Approximate method with precise instrument
- Rigorous method with less precise instrument
- Need for constant/predictable CPU-time?
robotics, interactive systems
- Does the user need uncertainty information?

Some approximations do not provide this
Cramer-Rao bound as criterium for optimal method

The author's perspective

Authors motivation to publish methods

- Establish a reference method for a unsolved problem
- Provide a more efficient solution
- Provide analysis of a method's accuracy
- Provide approximate method with specified accuracy
- Consider potential user's requirements

Requirements for publication

- Improvement: stdv -20 \%, CPU-time -30 \% (Moore)
- Provide specification sheet for performance

Closure

Closure

- Notion of rigorous method needs to be specified
- ML estimation is golden standard
- Upgrade of approximate method
- Information on uncertainty of approximate parameters
- Add a single ML step \rightarrow nearly optimal results
- Examples show large variety of accuracy losses
- Between 0 and infinity
- Mostly moderate, below factor 2
- The user, not the author, decide on usefulness

Outlook

Are the ideas generalizable to deep learning methods?

Ideas are based on

- Simple distributions
- Linearization
- Algebraic short cuts (general and linear algebra)
= closed world assumption
\rightarrow
Transfer of ideas to deep learning remains a challenge

References

Arun, K. S., T. S. Huang, and S. B. Blostein (1987). Least-Squares Fitting of Two 3D Point Sets. IEEE T-PAMI 9 (5), 698700.

Barath, D., M. Polic, W. Förstner, T. Sattler, T. Pajdla, and Z. Kukelova (2020). Making Affine Correspondences Work in Camera Geometry Computation Supplementary Material. In Proc. of ECCV.
Boyd, S. and L. Vandenberghe (2004). Convex optimization. Cambridge University Press.
Förstner, W. (2024). Selected Notes - Appendix to DGPF Tutorial on Approximate and Rigorous Estimation Methods.
Förstner, W. and K. Khoshelham (2017). Efficient and Accurate Registration of Point Clouds with Plane to Plane Correspondences. In 3rd International Workshop on Recovering 6D Object Pose.
Förstner, W. and B. P. Wrobel (2016). Photogrammetric Computer Vision - Statistics, Geometry, Orientation and Reconstruction. Springer.
Khoshelham, K. (2016, April). Closed-form solutions for estimating a rigid motion from plane correspondences extracted from point clouds. ISPRS Journal of Photogrammetry and Remote Sensing 114, 78-91.
Mangelson, J. G., M. Ghaffari, R. Vasudevan, and R. M. Eustice (2019). Characterizing the uncertainty of jointly distributed poses in the lie algebra. IEEE Transactions on Robotics 36, 1371-1388.
Rao, R. C. (1967). Least squares theory using an estimated dispersion matrix and its application to measurement of signals. In Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., Vol. 1, pp. 355-372. Univ. of Calif. Press. Lemma 5a.
Schneider, J., C. Stachniss, and W. Förstner (2017). On the quality and efficiency of approximate solutions to bundle adjustment with epipolar and trifocal constraints. In Proceedings of the ISPRS Conference on Unmanned Aerial Vehicles in Geomatics (UAV-g).
Solà, J., J. Deray, and D. Atchuthan (2018). A micro Lie theory for state estimation in robotics. CoRR abs/1812.01537.

