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Motivation

How much would you pay more/less if

 the accuracy (stdv) of an instrument halves/doubles?
 an algorithm leads to 
half/double the accuracy of its result?
 if an algorithm provides the uncertainty of the result?
 If an algorithm is faster/slower by a factor 2?
 If CPU-time of an algorithm is predictable?
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Notions

 Estimation methods: observations  parameters
(least squares, maximum likelihood, …)

 Rigorous: following some optimization principle
 Approximate: simplified, suboptimal solutions
 e.g. hierarchy of approximations

 Role: approximations often are fast and cheap
 Evaluation
 Comparison: degree of loss in accuracy, gain in speed
 Uncertainty of suboptimal methods
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1. Example: Motion from point pairs
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Motion from point pair

Given: set of point pairs 
Assumption: related by rigid motion
Task: Estimate motion

Classical solution (Arun et al. 1987)
 Centre data
 SVD  rotation
 translation
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Arun’s solution

1. Centre data in both systems

2. Determine rotation

3. Estimated motion
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Is Arun’s method optimal/rigorous?

Pro: 
 It minimizes the sum of the squared distances (LS)
 If all coordinates have the same accuracy (ML)

Contra:
 Real data have no homogeneous accuracy
 Not statistically rigorous: uncertainty of data unused

 ?
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Outline

1. An example: motion from point pairs
2. Statistically optimal estimation

a. ML estimation
b. Visualization, effect of CovM

3. Uncertainty of approximate estimates
4. Characterizing accuracy loss
5. Examples

a. Motion from point and plane pairs
b. Bundle adjustment

6. Closing
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2. Statistically optimal estimation
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Statistically optimal estimation (ML)

Maximum likelihood estimation
(my teacher said: method for self-confident people)

 Data are sample from specified distribution
 Distribution is parametrized
 Parameters are functionally related by constraints
 Estimated parameters give best explanation of observations
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Formal setup of ML-estimation

 Observations:
 Distribution: Gaussian

or

parameters: 
 unknown mean observation (expected value)
 : given approximate covariance matrix
 : unknown variance factor

 Constraints with additional unknown parameters 
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Task 

Optimization task: find values     and    , which  
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Statistically optimal method 

Input: observations
Method: 
 parameters of distribution
 constraints 
 Optimization criterion

Output: [     ,         ,      ]
 Estimate     for variance factor  model fit
 Estimates          for unknown parameters,
Corrections                 , residuals/errors 

 predicted covariance matrix        of  
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Solution for linear constraints

For linear model

Use substitute corrections

Estimates

Covariance matrix
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Visualization of  ML estimation

Stochastical models:

Constraint (white line)

Estimates

(which is rigorous/optimal?)
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Results of  ML estimation

Estimates

Covariance matrix
(here of     )

blue and red segments
(flat/singular ellipses)

(sqrt) variance factors 
ratio of thin and thick
standard ellipses
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Exploring extreme cases

 Can changing the covariance matrix have zero effect?
 Can the mean of 0 and 1 be -1?
 Can for given observations and constraints the 

unknown parameters be arbitrary?

Cdy-app
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Result of exploration

 Changing the model may have no effect
 You can find a model for each result
We need to carefully specify (common sense!)

Questions:
 How to compare quality of methods?
 Can we do the same with approximate methods?

(eg. those using SVD or with complex algebraic derivation?
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Type of approximations



20

Approximations in estimation methods

Motivation for using approximations:
 Computational efficiency
 Lack of knowledge about uncertainty, systematic

errors, internals of a method, …
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Examples for approximations

 Using a non-statistical approach
e.g. minimizing residuals of constraints (algebraic minim.)

 Early stopping of iteration process
e.g. a single iteration, assuming good approximate values
 Fixed computing time

 Simplifying CovM of the observations
e.g. neglecting correlations, assuming constant stdv.

 Simplifying Jacobians J
e.g. evaluating at non-optimal point, fixing J after 1. iter.
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Minimal and closed form solutions

Examples
 5 point algorithm for essential matrix
 5 point algorithm for cylinder
 7 point algorithm for fundamental matrix
 Plane estimation from point clouds
 Motion estimation from point pairs
 Motion estimation from plane pairs
 Homography estimation from points
See http://aag.ciirc.cvut.cz/minimal/ (172 entries)
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Questions

 Can we provide uncertainty for approximate 
solutions?
 would allow to compare CovM of methods

Two paths
1. Perform simulations  potentially high effort
2. Derive algebraic expression  short cut

(may be only for class of approximations)
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3. Uncertainty of approximate estimates
a. from simulations

b. from algebra 
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a. Empirical covariance matrix

Method M (black box)

1. Specify experimental design: 
 ideal, consistent

 Assume uncertainty      of observations

2. Sample J observations

3. Derive empirical mean and CovM of   
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… Choice of Design

 Free choice of parameters and CovM
 Use results of real case (user friendly)

estimated parameters: 
Fitted observations:

 Parametrize experimental design
e.g. depending on 
# images (T), focal length (f), #points (I), overlap (o), … 

(algebraic derivation)
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CovM for minimal solutions
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2a. CovM for minimal solutions (1/2)

Determine    parameters    from    observations
Assumption for observed values

Constraints
between parameters and observations (G)
among parameters only (H)
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a1. CovM for minimal solutions (2/2)

Direct solution, may be complex, multiple parameters

But: covariance matrix of each pair

with
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Example: Fundamental matrix F

Matrix    from 7 point pairs            , 42 observations

Minimal solution with SVD, leads to up to 3 pairs

Jacobians wrt 9 parameters             and obserations

(cofactor matrix      )  
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Insight

 In spite of algebraically complex solution
comparably simple variance propagation

 Correct rank 7 of estimated covariance matrix 
since rank of     is 7

 Assumptions for general cases
 Only    constraints are used
 Minimal solution               is differentiable (no decisions)  



32

CovM for direct non-minimal solutions
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a2. CovM for direct non-minimal solutions

Determine    parameters    from    observations
Class of solutions:    constraints linear in parameters

Example: homography matrix form > 8 point pairs
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a2. CovM for direct non-minimal solutions

Residuals 

Minimize sum of squared residuals 

LS solution with one constraint
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Covariance matrix of estimate     ? 

Interprete solution as (quasi) Gauss-Markov model
Starting from mean/true value , thus

Linearize constraints

With

We obtain linearized model (GM-model)
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Solution of GM model

…after some steps (see text)

With rank constrained matrix

Covariance matrix

Thus finally 
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Insight

 Closed form solution using SVD
 Covariance matrix 
 exploits SVD of 
 Takes covariance matrix of residuals      

into account

 additional constraints enforce covariance matrix
(e.g. determinant constraint of matrix  F )

 Uncertainty measures for large class of methods
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Comparing the quality of methods
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The task of comparing covariance matrices

Given:
Covariance matrix C

reference from method, from specification
Covariance matrix 

to be evaluated, from data or from method
Question: 
Is method leading to    better than method with C

 Various measures
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Basic Idea

If both covariance matrices differ not too much
then quotient 

should be close to unit matrix
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Ratios of standard deviations

For diagonal covariance matrices
the ratios of the standard deviation for each

Report (pretty standard)
 All ratios
 The mean ratio
 The maximum ratio   
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Ratios of standard deviations

Take correlations into account 
Replace squared ratios by eigenvalues

= variances in direction of the eigenvectors
Report principle ratios
 All ratios
 The mean ratio
 The maximum ratio   
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Interpretation

All measures 
 Are unitless
 Can be interpreted as 
 Ratios of standard deviates
 Loss/gain of accuracy

 Generally: using the eigenvalues
 takes correlations into account
 Is independent on coordinate system
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Evaluating large vectors

Methods may provide large/very large vectors
(Bundle adjustment, SLAM, surfaces) 

With reference values     we may use F-statistics

Usually,           , therefore report accuracy loss

appr. relative bias induced by approximation 
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Examples: Accuracy loss During Point Cloud 
Registration



46

Example 1: Pose estimation of LIDAR sensor
Simplification of covariance matrix
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Example: Pose estimation of LiDAR sensor

Given: reference coordinates of 3D points
Observed:   3D points with LiDAR sensor
Sought: pose of sensor
Model: Similarity

Q: How much worse is
 estimation with global diagonal matrix, and
 estimation with local diagonal matrix
Compared to ML-solution?
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Configuration

Visualization

 Position

 Points with uncertainty ellipsoids



 inhomogeneous,
 highly anisotropic
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Configuration and models

Configuration 
 in box                          at distance  
 Leica sensor RTC360

Models
 Inhomogeneous anisotropic:
 Inhomogeneous isotropic:
 Homogeneous, isotropic:
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Loss in accuracy

Ratio of standard deviations

e.g. for 

Max ratios

Mean ratios (including correlations!)

loss may be relevant
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Example 2: Registration of LiDAR sensors
Simplification of covariance matrix
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Example: registration of two LiDAR sensors

… same setup as before
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Basis 200 m



54

Example for adding CovM

thicker                       nearly isotropic
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Basis 200 m: Loss in accuracy

Ratio of standard deviations of 7 parameters 

e.g.

Max ratios

 loss may be relevant
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Basis 1000 m
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Basis 1000 m: Loss in accuracy

Ratio of standard deviations

e.g.

Max ratios

 loss is smaller, still may be relevant
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Example 3: Registration of LiDAR sensors
Comparing approximate methods
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Task

Given: plane pairs
Model: 

Constraints, linear in

 Closed form solution by Khoshelham (2016)
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Data sets

Faro and Zeb-Sensor, segmented into planes
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Compare approximate methods with ML

Three approximate methods

ALG: Khoshelhams algebraic solution

ALGw:    ALG + weighted ALG (two-step)

ML+1: ALG + 1 iteration ML (two-step)
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Experimental setup

 Real data: Faro and Zeb-1 Sensor 
 Segmentation into planes

269 planes from 4.4 Mio., and 261 from 1.5 Mio. Points

 Accuracy: 1.2 mm and 25 mm
 Take estimated parameters/observations as true
 Contaminate according to accuracy
 Repeated sampling: J = 100
 57 plane matches
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Accuracy loss

Average loss    and maximum loss
Optimum value: no loss, bottom line ( ) 

 Both upgraded approximate method perform well
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Comparison with ICP

 ICP with point-to-point correspondences
 ICP with point-to-plane correspondences

 With ALG quite high accuracy loss
 ICP-pl factor 2 better than ICP-pt
 Upgraded approximations: average loss < 60 %
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Approximations in Bundle Adjustment



66

Approximations in Bundle Adjustment

 Using wrong Jacobians

 Neglecting correlations

 Omitting updates during iteration process
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Bundle adjustment with constraints only

Constraints for each point
Relating image coordinates      to pose parameters
Two epipolar constraints

One trifocal constraint
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Epipolar & Trifocal Constraints



69

Epipolar & Trifocal Constraints

1.Epipolar constraint
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1.Epipolar constraint
2.Epipolar constraint

Epipolar & Trifocal Constraints
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1.Epipolar constraint
2.Epipolar constraint
3.Trifocal constraint

Epipolar & Trifocal Constraints
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Normal equation system

Normal equations
With

Both matrices and      sparse, not diagonal


 Solve two equation systems

 Or, make approximations 
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Analysis of approximattions

A: evaluate Jacobians at    , instead at
(save estimating           )

B: Neglect correlation in

C: A and B
D: use        and fix it after 1st iteration  

(result  also depends on approximate values)       
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Data sets
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Accuracy loss

Accuracy loss       in % as a function of noise   
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Results: effect of observational noise

Input: Noise level moderate (0.2 to 6 pixels)

Accuracy losses:
 Effect of approximate Jacobian (A): 5 % to 25 %
 Effect of neglected correlations (B): 10 % to 35 %
 Combined effect: 10 % to 45 %
 Fixing approximate weight matrix: 10 % to 45 %
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Results: effect of approximate values (D)

Scatter of approximate values:
Relative pose errors

Accuracy loss:

 Stays below 30 %
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Relevance of analysis and results
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Relevance of analysis and results

The user’s perspective (consumer)

The author’s perspective (producer)
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The user’s perspective

 Approximate methods may be acceptable
 Choice
 Approximate method with precise instrument
 Rigorous method with less precise instrument

 Need for constant/predictable CPU-time?
robotics, interactive systems

 Does the user need uncertainty information?
Some approximations do not provide this
Cramer-Rao bound as criterium for optimal method
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The author’s perspective

Authors motivation to publish methods
 Establish a reference method for a unsolved problem
 Provide a more efficient solution
 Provide analysis of a method’s accuracy
 Provide approximate method with specified accuracy
 Consider potential user’s requirements 
Requirements for publication
 Improvement: stdv -20 %, CPU-time -30 % (Moore)
 Provide specification sheet for performance
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Closure
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Closure

 Notion of rigorous method needs to be specified
 ML estimation is golden standard
 Upgrade of approximate method
 Information on uncertainty of approximate parameters
 Add a single ML step  nearly optimal results

 Examples show large variety of accuracy losses
 Between 0 and infinity
 Mostly moderate, below factor 2

 The user, not the author, decide on usefulness
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Outlook

Are the ideas generalizable to deep learning methods?

Ideas are based on 
 Simple distributions
 Linearization
 Algebraic short cuts (general and linear algebra)
= closed world assumption


Transfer of ideas to deep learning remains a challenge



85

References
Arun, K. S., T. S. Huang, and S. B. Blostein (1987). Least-Squares Fitting of Two 3D Point Sets. IEEE T-PAMI 9 (5), 698–

700. 

Barath, D., M. Polic, W. Förstner, T. Sattler, T. Pajdla, and Z. Kukelova (2020). Making Affine Correspondences Work in 
Camera Geometry Computation Supplementary Material. In Proc. of ECCV. 

Boyd, S. and L. Vandenberghe (2004). Convex optimization. Cambridge University Press. 

Förstner, W. (2024). Selected Notes — Appendix to DGPF Tutorial on Approximate and Rigorous Estimation Methods. 

Förstner, W. and K. Khoshelham (2017). Efficient and Accurate Registration of Point Clouds with Plane to Plane 
Correspondences. In 3rd International Workshop on Recovering 6D Object Pose. 

Förstner, W. and B. P. Wrobel (2016). Photogrammetric Computer Vision – Statistics, Geometry, Orientation and 
Reconstruction. Springer. 

Khoshelham, K. (2016, April). Closed-form solutions for estimating a rigid motion from plane correspondences extracted 
from point clouds. ISPRS Journal of Photogrammetry and Remote Sensing 114, 78–91. 

Mangelson, J. G., M. Ghaffari, R. Vasudevan, and R. M. Eustice (2019). Characterizing the uncertainty of jointly 
distributed poses in the lie algebra. IEEE Transactions on Robotics 36, 1371–1388.

Rao, R. C. (1967). Least squares theory using an estimated dispersion matrix and its application to measurement of 
signals. In Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., Vol. 1, pp. 355–372. Univ. of Calif. Press. Lemma 5a.

Schneider, J., C. Stachniss, and W. Förstner (2017). On the quality and efficiency of approximate solutions to bundle 
adjustment with epipolar and trifocal constraints. In Proceedings of the ISPRS Conference on Unmanned Aerial Vehicles 
in Geomatics (UAV-g). 

Solà, J., J. Deray, and D. Atchuthan (2018). A micro Lie theory for state estimation in robotics. CoRR abs/1812.01537. 


