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Technical Notes on Statistics and

Estimation Theory
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1 Gauss�Helmert Model as Optimiza-

tion Problem

The Gauss�Helmert generalizes the well-known Gauss�Markov model by allowing
implicit relations between the observations and the unknown parameters. The
classical derivation of the estimation procedure refers to the statistical nature
of the Maximum-Likelihood optimization. The note separates the description of
the model and the optimization function from the generally iterative numerical
optimization procedure, in order to elucidate the non-statistical properties of the
intermediate steps before treating point of convergence as �nal estimate.

1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 The Gauss�Helmert model for estimating parameters . . . . . . . . . . . . . 7

1.3.1 The mathematical model . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 The task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 The solutions for linear models . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 The solution for the basic linear Gauss�Helmert model . . . . . . . . 9

1.4.2 The Gauss�Helmert model for general covariance matrix . . . . . . . 10

1.4.3 Gauss�Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.4 Model with constraints between the observations only . . . . . . . . 12

1.4.5 The quasi Gauss�Markov model . . . . . . . . . . . . . . . . . . . . 12

1.4.6 Results using pseudo inverses . . . . . . . . . . . . . . . . . . . . . . 13

1.5 The non-linear Gauss�Helmert model . . . . . . . . . . . . . . . . . . . . . . 15

1.5.1 The algorithm for estimating the parameters . . . . . . . . . . . . . 17

1.5.2 Derivation of the procedure . . . . . . . . . . . . . . . . . . . . . . . 18

Remark: While throughout the notes we use one of the classical statistical notation (obser-

vations y, and parameters θ) , in this note we adopt one of the notations used in Geodesy and

Photogrammetry which better �ts to the notation used by Boyd and Vandenberghe (2004), thus

we name the observations l and the unknown parameters x. �

1.1 Preface

This note (2021) describes the estimation within the Gauss�Helmert model as a speci�c
optimization problem, making explicit the numerical character of the numerical process
for determining the parameters, omitting the statistical interpretation of the intermediate
steps within the optimization procedure. This clari�es (1) the role of the stochastical
model at the beginning of statistical parameter estimation task and used for evaluating
the uncertainty of the result, and (2) the non-statistical role of the numerical method for
achieving the �nal parameters. It is common to derive the estimator for a parameter vector
within a statistical framework, and not distinguish the di�erent aspects of the whole task:
(a) the speci�cation of the model, (b) the speci�cation of the optimization function, (c)
the numerical process of optimization, and (d) the evaluation of the obtained parameters.
This note is intended to separate these steps.

6



1.2 Motivation

Parameter estimation consists in determining unknown parameters from given observa-
tions. Its mathematical model consists of the functional model, relating the mean values
of the observations to the unknown parameters, and the stochastical model which describes
the uncertainty of observation process. We often categorize functional models according
to their algebraic structure. The Gauss�Markov model is a functional model, where the Gauss�Markov

modelmean observations are an explicit function E(l) = f(x) of the parameters.
Here we discuss the mathematical model of an estimation task with a functional model,

where the mean observations and the parameters are related by an implicit function This is
called the Gauss�Helmert model. Given are N observations l together with the uncertainty Gauss�Helmert

modelof the observation process D(l), implicitly assuming the measuring deviations are normally
distributed. The mean values E(l) of the observations are functionally related to unknown
parameters x by G implicit equations

g(x,E(l)) = 0 . (1.1)

The task is to �nd optimal estimates x for the unknown parameters.

The derivation, presented here, is based on the following assumptions.

• We consider the cases where the representation of the parameters and observations
may be redundant, such as for normalized homogeneous coordinates or rotation
matrices. Instead of including constraints, such as a length or an orthogonality
constraint, we allow that the estimation refers to a minimal representation of the
corrections, close to the approximate values of the parameters or the observations,
namely in the tangent space de�ned by the individual constraints. As a consequence,
the observations and parameters may be lists of individual groups of possibly redun-
dantly represented entities, e.g., x := {R, t, λ) for the rotation, the translation, and
the scale of a spatial similarity, the corrections, however, are vectors of a locally
minimal representation, e.g., ∆x = [∆rT,∆tT,∆λ]T, where ∆r describes a small
rotation with three parameters.

• We treat the expectation of the observations y = E(l) as unknowns. This is a
consequence of the previous point and in contrast to classical setups, where the
optimization function has the residuals as unknown. In the linearized model the cor-
rections ∆y and ∆x to the expectation of the observations E(l) and the parameters
x are unknown, which allows us to update them in the original, non-linear model
taking their algebraic properties, e.g., length or orthogonality, into account.

1.3 The Gauss�Helmert model for estimating parame-

ters

We now describe the set-up of the estimation procedure with a Gauss�Helmert model as
functional model, derive the optimization task, provide a solution for the case where the
model is linear, �nally provide the solution to the non-linear model using a linearized
model within an iterative scheme.

1.3.1 The mathematical model

We start from N given observations, collected in the N -vector l. We assume, they are a
sample of a normal distribution, speci�ed by the unknown expectation vector and partially
known dispersion matrix. The stochastical model for the observation process therefore is
given by stochastical model

l ∼ N (E(l),D(l)) , (1.2)

The dispersion matrix of the observations variance factor σ2
0
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D(l) = σ2
0 Σll . (1.3)

is speci�ed by an approximate covariance matrix Σll which di�ers from the true covariance
matrix by an unknown variance factor σ2

0 . The functional model of the Gauss�Helmert as-
sumes the U unknown parameters x and the N unknown mean values E(l) are constrained
by the following G-dimensional implicit function12functional model

g
G×1

( x
U×1

,E(l)
N×1

) = 0 . (1.4)

Observe, that (1.2) can be interpreted as the likelihood function of the unknown parame-
ters xlikelihood function

L(x) := L(x, g) = p(l | x, g) = M (E(l | x, g),D(l | x, g)) , (1.5)

for given observations l and functions g, where the distribution M is characterized by its
�rst and second moment. In order to be able to determine the U parameters x we need
to require there are at least as many constraints as unknowns:

G ≥ U , (1.6)

or that the number of redundant constraints, i.e., the redundancyredundancy

R = G− U ≥ 0 . (1.7)

is non-negative. Similarly, in order to have a guarantee that the implicit function (1.4) of
[xT,E(lT)] ∈ IRU+N is not empty, the number G of constraints should not exceed U +N ,
hence

N ≥ G− U (1.8)

Therefore we have the following relation

N ≥ R ≥ 0 (1.9)

as a necessary condition for the model setup.

1.3.2 The task

The goal is to �nd the maximum-likelihood estimates px and py for the unknown parametersunknown

parameters x
and unknown mean

observations y

x and the unknown expectation of the observations, short, the mean observations y = E(l)
such that the weighted sum of the residuals3

pv = py − l , (1.10)

namely

Ω = vTΣ−1
ll v , (1.11)

becomes minimum and the estimates ful�l the constraints

g(px, py) = 0 . (1.12)

Observe,

• the optimization function (1.11) does not depend on the variance factor σ2
0 .

1The Gauss�Markov model E(l) = f(x) therefore can be interpreted as a special case of the Gauss�
Helmert model, setting g(x,E(l)) = −E(l) + f(x)

2The de�nition of the implicit function is di�erent from Förstner and Wrobel (2016, Eq. (4.426)),
where the two arguments of the implicit function g are exchanged

3We us the variable y for the mean observation, in order to avoid to de�ne approximate values for the
�tted observations y within the iteration loop, since the intermediate values in an iteration scheme have
no statistical meaning.
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• In order to simplify the notation, and avoid statistical terms within the optimization
procedure as far as possible, we will also write the optimization problem as follows:4

For given observations l, constraints g and weight matrix W ll = Σ−1
ll �nd values for

x and y that

minimize (y − l)TW ll(y − l) (1.13)

subject to g(x,y) = 0 , (1.14)

where y stands for the unknown mean observation E(l).

Remark: We may assume the observations appear in I statistically independent groups
{li,Σlili}, i = 1, ..., I, and if the dimension of these groups is the same, say d, we have N = dI.
Furthermore, we often face the situation, that the constraints only refer to one group of observa-
tions. Then the functional model (1.12) can be written as

gi(x,yi) = 0 , i = 1, ..., I . (1.15)

Hence, if the number of constraints per group is constant, say c, then the number of constraints

is G = cI. As an example, this situation holds for the model of a 3D similarity for two sets of

3D points, where we have groups of d = 6 observations, namely the 3D coordinates in the two

systems, and c = 3 constraints per group relating these coordinates via a similarity transformation

with their parameters x. �
We �rst provide a solution for the linear Gauss�Helmert model. We specialize it for

independent and identically distributed observations and derive the solution for the two
basic models, namely the Gauss�Markov model and the model with constraints between
observations only. We also show, that the Gauss�Helmert model can be solved by chosing
adequate substitute observations leading to a Gauss�Markov model. Since in case the
model is non-linear the coe�cient matrices need to be updated during the iteration process,
why this model is called a quasi Gauss�Markov model. In the next section we then handle
the non-linear case. Finally, we provide a derivation via an equivalent Gauss�Markov
model.

1.4 The solutions for linear models

1.4.1 The solution for the basic linear Gauss�Helmert model

We start with the linear Gauss�Helmert model with covariance matrix D(l) = Σll = I .
We handle it as an algebraic, not a statistical optimization problem.

The original optimization problem reads as: for given observations l ∈ IRN , a regular
N × N covariance matrix Σll = IN , full rank coe�cient matrices. X ∈ IRG×U and
Y ∈ IRG×N and a constant vector b ∈ IRG

GHM: minimize (y − l)T(y − l)
subject to Xx+ Y

Ty + b = 0 .
(1.16)

w.r.t. the unknown parameters x and the mean observations y.
Hence, here we chose the constraint function

g(x,y) = Xx+ Y
Ty + b (1.17)

which is linear in the unknown parameters. The coe�cient matrices often are called design
matrices, since they specify the design of the observation process. They are assumed to
be given and �xed.

Furthermore, for a compact representation of the solution we use the substituted ob-
servations n(l) together with their covariance matrix

n(l) = Y
Tl+ b and D(n) = Σnn = Y

T
Y . (1.18)

4This in the �avour of the problems discussed in Boyd and Vandenberghe (2004).
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We obtain the estimated parameters and the �tted observations from

px = −(XTΣ−1
nnX )−1 X

TΣ−1
nn n(l)py = l− YΣ−1

nn g(px, l) . (1.19)

Remark: Generally, the parameters are estimated based on the normal equations

(XTΣ−1
nnX )px+ X

TΣ−1
nn n(l) = 0 (1.20)

which can be solved in any numerical manner, especially if we want ot exploit the sparsity of X ,

Σll, or Σnn. �

Proof: Using Lagrangian multipliers we need to �nd the minimum of

Φ(x,y,λ) =
1

2
(y − l)T(y − l) + λT(Xx+ Y

Ty + b) . (1.21)

Necessary conditions are

0 =
∂Φ

∂xT
= X

Tλ (1.22)

0 =
∂Φ

∂yT
= y − l+ Yλ (1.23)

0 =
∂Φ

∂λT
= Xx+ Y

Ty + b . (1.24)

Multiplying (1.23) with Y T from the left leads to

y = l− Yλ . (1.25)

Substituting this expression for y in (1.24) yields

0 = Xx+ Y
T(l− Yλ) + b , (1.26)

which allows to solve for λ

λ = (Y T
Y )−1(Xx+ Y

Tl+ b) . (1.27)

From (1.22) and (1.27) we obtain the normal equations for the estimates of the unknown
parameters5 x

X (Y T
Y )−1X px = −X (Y T

Y )−1(Y Tl+ b) . (1.28)

From (1.25) and (1.27) we �nally obtain estimates py for the mean observations6 y,

py = l− Y (Y T
Y )−1(X px+ Y

Tl+ b) , (1.29)

as a function of the estimated parameters px and the observations l.

1.4.2 The Gauss�Helmert model for general covariance matrix

The Gauss�Helmert model with general covariance matrix reads as: for given observations
l, regular covariance matrix Σll = W

−1
ll , and coe�cient matrices X and Y

GHM(Σ): minimize (y − l)TΣ−1
ll (y − l)

subject to Xx+ Y
Ty + b = 0 .

(1.30)

5Observe, for given substitute observations n = Y
Tl + b, this is the solution for the Gauss�Markov

model minimizing (Xx+ n)Σ−1
nn(Xx+ n) w.r.t. the parameters x

6Observe, for �xed px, this is the solution of the problem with constraints for observations l only,
minimizing |X px+ Y

Tl+ b)|2 w.r.t. the observations l, leading to �tted observations pl = py.
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w.r.t. the unknown parameters x and the mean observations y. For a compact repre-
sentation of the solution we use the substituted observations with their � now di�erent �
covariance matrix

n = Y l+ b and D(n) = Σnn = Y
TΣllY . (1.31)

We obtain the estimated parameters and the �tted observations from

px = −(XTΣ−1
nnX )−1 X

TΣ−1
nn n(l)py = l− ΣllYΣ−1

nn g(px, l) . (1.32)

Proof: We transfer this model to an unweighted Gauss�Helmert model. Especially,
we eliminate the weights of the observations. For eliminating the weights, we use the
substitutions

Y g = Σ
1/2
ll Y , lg = Σ

−1/2
ll l , and yg = Σ

−1/2
ll y . (1.33)

Now, we need to solve the following unweighted Gauss�Helmert model: for given observa-
tions lg and coe�cient matrices X and Y g,

GHM(w): minimize (yg − lg)T(yg − lg)
subject to Xx+ Y

T
gyg = 0 ,

(1.34)

w.r.t. the unknown parameters x and the mean observations yg.
We thus obtain the normal equation system

X (Y T
gY g)

−1X px = −X (Y T
gY g)

−1(Y T
g lg + b) . (1.35)

or explicitly
X

T(Y TΣllY )−1X px = −XT(Y TΣllY )−1Y
Tl (1.36)

The �tted observations we obtain frompyg = lg − Y g(Y
T
gY g)

−1(X px+ Y
T
g lg + b)) . (1.37)

or �nally py = l− ΣllY (Y TΣllY )−1(X px+ Y
Tl+ b) . (1.38)

1.4.3 Gauss�Markov model

The Gauss�Markov results from specializing the design matrix Y in the Gauss�Helmert
model to

Y = −I , (1.39)

leading to the constraint function

g(x,y) = Xx− y + b (1.40)

and substitute observations and their covariance matrix

n(l) = −l+ b with D(n) = Σnn = Σll . (1.41)

The Gauss�Markov model with covariance matrix Σll = W
−1
ll leads to the following general

least squares optimization problem, for given observations l, weight matrix W ll = Σ−1
ll ,

and coe�cient matrix X

GMM(Σ): minimize (y − l)TW ll(y − l)
subject to y = Xx+ b .

(1.42)

w.r.t. the unknown parameters x and mean observations y. It yields the optimal param-
eters px = −(XT

W llX )−1X
T
W ll n(l)py = l− g(px, l) (1.43)

or explicitly in the classical formpx = (XT
W llX )−1X

T
W ll(l− b)py = X px+ b .

(1.44)
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1.4.4 Model with constraints between the observations only

The model with constraints between the observations only results from specializing the
design matrix X in the Gauss�Helmert model to:

X = 0 , (1.45)

leading to the constraint function

g(y) = Y
Ty + b , (1.46)

not depending on unknown parameters x, and substitute observations and their covariance
matrix

n(l) = Y
Tl+ b with D(n) = Σnn = Y

TΣllY
T . (1.47)

The model with constraints between the given observations l having covariance matrix Σll

leads to the following least squares problem

CONSTR(Σ): minimize (y − l)TΣ−1
ll (y − l)

subject to Y
Ty + b = 0 .

(1.48)

w.r.t. the mean observations y. It yields the optimal estimates for the �tted observations

py = l− ΣllY (Y TΣllY
T)−1 (Y Tl+ b) . (1.49)

1.4.5 The quasi Gauss�Markov model

As already indicated in the footnotes for (1.28) and (1.29) we can perform the estimation
in the Gauss�Helmert model in two steps:

1. First we perform a Gauss�Markov model using the substitute observations

n = Y
T + b (1.50)

hence
n = Xx with D(n) = Y

TΣllY , (1.51)

Using (1.43), this leads to the optimal estimates for the parameters x using the
normal equations px = (XT

W nnX )−1 X
T
W nn n . (1.52)

2. Now, as we have the optimal estimates px, we can treat them as �xed values. With
the constant vector

c(px) = X px+ b , (1.53)

thus
g(l) = Y

Tl+ c(px) , (1.54)

we can �nd the estimates for the �tted observations from the model for constraints
between the observations only

Y
Tl+ c(px) = 0 and D(l) = Σll . (1.55)

With (1.49), this leads to the estimates

py = l− ΣllY (Y TΣllY )−1 g(l) (1.56)

The Gauss�Markov model (1.51) is called the quasi Gauss�Markov model in the context
of solving the parameters in the Gauss�Helmert model. In case the constraints are non-
linear, the coe�cient matrices are not �xed but need to be updated during the iteration
process, which motivates the pre�x quasi.
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1.4.6 Results using pseudo inverses

The results can be written compactly using pseudo inverses. This is motivated from the
least-squares solution of the simple Gauss�Markov model relating the mean observations
to the unknown parameters via

y = Xx (1.57)

and minimizing |y − l|2. This leads to the classical solution px = (XT
X )−1X

T l, which
with the pseudo inverse

X
+ = (XT

X )−1X
T (1.58)

can be written as px = X
+l (1.59)

This is an intuitive description of the inversion of (1.57), keeping in mind, that the inversion
is not unique, since X is not regular, and regularization is enforced by the least squares
principle.

Similarly, in case we minimize a weighted sum of squares (y − l)TW (y − l) w.r.t. the
parameters x, with the weighted pseudo inverse

X
+
W

= (XT
WX )−1X

T
W (1.60)

we obtain the solution px = X
+
W
l . (1.61)

We �rst de�ne the properties of pseudo inverses and then provide the solutions of the
di�erent estimation problems.

1.4.6.1 Pseudo inverse and weighted pseudo inverse

For the regular M ×N matrix A, with M ≥ N and rk(A) = N we use the pseudo inverse
A

+:

A
+ := (AT

A)−1A
T (1.62)

It ful�ls further the four relations:

AA
+
A = A A

+
AA

+ = A
+ (AA+)T = AA

+
A

+
A = I . (1.63)

Similarly, with the symmetric weight matrix U we use the weighted pseudo inverse (see
Pepi¢ (2010))

A
+
U

:= (AT
UA)−1A

T
U (1.64)

which ful�ls the four relations

AA
+
U
A = A A

+
U
AA

+
U

= A
+
U

(UAA+
U

)T = UAA
+

A
+
U
A = I . (1.65)

1.4.6.2 Solutions with pseudo inverses

We explicitly use the following inverses:

X
+ = (XT

X )−1 X
T (1.66)

X
+
W ll

= (XT
W llX )−1 X

T
W ll (1.67)

X
+
Wnn

= (XT
W nnX )−1 X

T
W nn (1.68)

Y
+ = (Y T

Y )−1 Y
T (1.69)

Y
+
Σll

= (Y TΣllY )−1 Y
TΣll (1.70)

Then we obtain the following solutions:
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• Gauss�Markov model (Y = −I ). Starting from the model

y − b = X x (1.71)

we obtain

px = −X+
W ll

n(l) and py = l+ g(px, l) (1.72)

= X
+
W ll

(l− b) = X px+ b . (1.73)

• Model with constraints between the observations only (X = 0). Starting from the
model

Y
T(y − l) + g(l) = 0 (1.74)

we arrive at the solution py − l = −Y+T
Σll
g(l), or

py = l− Y+T
Σll
g(l) (1.75)

• Gauss�Helmert model. Starting from the model

Xx+ Y
Ty + blooomooon
n(y)

= Y
T(y − l) + g(x, l) = 0 (1.76)

when �rst using n(l) as observations and then �xing the estimate for x we arrive at

px = −X+
Wnn

n(l) and py = l− Y+T
Σll
g(px, l) (1.77)

taking the covariance matrix Σnn of n(l) into account.

The solutions are collected in the following Table, starting with the Gauss�Helmert model
with general covariance matrix and then showing the di�erent specializations.

Table 1.1: Statistically optimal solutions in the linear model (X ,Y ,D(l)) with its special-
izations: g(x,y) = Xx+Y Ty+b = 0 relating the mean y = E(l) of the observations l to the
unknown parameters x assuming a general covariance matrix and a unit matrix D(l) = Σll
and D(l) = I , respectively. We use the substitute observations n(l) = Y

Tl + b with their
covariance matrix Σnn.
Rows 1 and 2: Gauss�Helmert model.
Rows 3 and 4: Gauss�Markov: n(l) = −l+ b.
Rows 5 and 6: Model with constraints between the observations: g(y) = Y

Ty + b.

model(X ,Y ,D(l)) task solution

1 GHM(X ,Y ,Σll) min. (y − l)TΣ−1
ll (y − l) px = − X

+
Wnn

n(l)

s.t. Xx+ Y
Ty = c py = l− Y

+T
Σll

g(px, l)
2 GHM(X ,Y , I ) min. (y − l)T(y − l) px = − X

+
Wnn

n(l)

s.t. Xx+ Y
Ty = c py = l− Y

+T g(px, l)
3 GMM(X ,−I ,Σll) min. (y − l)TΣ−1

ll (y − l) px = − X
+
W ll

n(l)
s.t. Xx− y = c py = l− g(px, l) 1)

4 GMM(X ,−I , I ) min. (y − l)T(y − l) px = − X
+ n(l)

s.t. Xx− y = c py = l− g(px, l) 1)

5 CONSTR(0 ,Y ,Σll) min. (y − l)TΣ−1
ll (y − l)

s.t. Y
Ty = c py = l− Y

+T
Σll

g(l)

6 CONSTR(0 ,Y , I ) min. (y − l)T(y − l)
s.t. Y

Ty = c py = l− Y
+T g(l)

1) This is equivalent to py = X px+ b
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This closes the section on the estimation in the linear Gauss�Helmert model. We did
not construct the solutions, but just proved they are correct. The generalization to non-
linear constraints will also use the reduction to a Gauss�Markov model, but derive the
iterative solution explicitly. Moreover, coe�cient matrices X and Y then depend on the
current estimates of the parameters and the observations thus need to be updated in each
iteration.

1.5 The non-linear Gauss�Helmert model

The functional model generally is non-linear. We assume we have approximate values xa

and ya for the parameters x and the mean observations y and updates

x := ux(xa,∆x)) e.g., xa := xa + ∆x . (1.78)

and
y := uy(ya,∆y) e.g., ya := ya + ∆y . (1.79)

These relations hold for small corrections ∆x and ∆y. Given values for x and its approx-
imations xa we assume we can determine the corrections from

∆x = u−1
x (x,xa) e.g., ∆x = x− xa (1.80)

Similarly, we assume there exist inverse functions for the mean observations

∆y = u−1
y (y,ya) e.g., ∆y = y − ya (1.81)

Hence we have the update function with m ≥ n, for small ∆x, especially for m = n

ux : IRn 7→ IRm ∆x 7→ x = ux(∆x;xa) especially x = ∆x+ xa (1.82)

u−1
x : IRm 7→ IRn x 7→ ∆x = u−1

x (x;xa) especially ∆x = x− xa , (1.83)

and similarly, for uy.
Example: Non-linear update and its inversion for 3D rotations. Let the

unknown parameters be a 3× 3 rotation matrix R. We actually estimate a small 3-vector
∆r of small rotation angles. The approximate rotation matrix Ra the can be corrected
using

R = ux(Ra,∆r) = R(∆r)Ra . (1.84)

where R(∆r) is a rotation matrix depending on the 3-vector ∆r, e.g., using the exponential
or the Cayley form

R(∆r) = exp(S(∆r)) or R(∆r) = (I + S(∆r/2))(I − S(∆r/2))−1 (1.85)

with the skew symmetric matrix S(a) inducing the cross product a× b = S(a)b. In case
we have given R and some approximation Ra, we may determine the correction vector ∆r
from

S(∆r) = log(RT
R
a) ≈ RT

R
a − I , (1.86)

thus taking the o� diagonal terms of the product RT
R
a of the two rotation matrices as

the sought 3-vector. This can compactly be written as

∆r = u−1
x (R,Ra) = s(RT

R
a) . (1.87)

where the function

s(A) =
1

2

 A32 −A23

A13 −A31

A21 −A21

 (1.88)

extracts the skew vector of the 3× 3 rotation matrix A. �
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Similarly, we have the updates and their inversion starting from l, �rst for the approx-
imations of the mean observations

ya = uy(l,va) and va = u−1
y (ya, l) = −u−1

y (l,ya) . (1.89)

which for small residuals can be de�ned in either manner. Thus we have for the mean
observations

y = uy(l,v) and v = u−1
y (y, l) = −u−1

y (l,y) . (1.90)

For small values we have

v = va + ∆y , (1.91)

see Fig. 1.1. Since the observations l and the residuals v may have a di�erent structure,
e.g., if the observations are rotation matrices and the residuals are rotation vectors, the
covariance matrix Σll refers to the residuals of the observations

Covariance matrix for rotation matrices. In the case of an observed rotation
matrix R, we represent the uncertain rotation as

R = R(r) E(R) with D(r) = Σrr (1.92)

If R is observed, the we refer to the 3× 3 matrix Σrr as the covariance matrix Σll of the
observed rotation. �

We are now prepared to derive a linear substitute problem used for iteratively deter-
mining the unknowns y and x.

Figure 1.1: Update of the unknowns and the mean observations in the Gauss�Helmert
model. The corrections ∆x = u−1

x (x,xa) to the parameters and the corrections ∆y =
u−1
y (y,ya) = v − va to the mean observations and residuals are meant to converge to

zero. The �gure assumes the dimensions of the observations/parameters (l,y,ya) and the
dimensions of their residuals/corrections (v,va,ya) are the same

1. We de�ne the corrections to the parameters and the mean observationscorrections to mean

observations and

parameters ∆x = u−1
x (x,xa) = xa − x and ∆y = u−1

y (y,ya) = v − va , (1.93)

in order to iteratively improve the approximations xa and ya such that after con-
vergence ∆x = 0 and ∆y = 0. Observe, that the approximate residuals va = ya− l
also are to be corrected by ∆y.

2. The optimization function then reads as7

Ω = (va + ∆y)T Σ−1
ll (va + ∆y) . (1.94)

where the covariance matrix Σll refers to the corrections v of the observations.

Remark: Observe, the optimization function (1.94) of this non-linear model results from

the one (1.30) of the linear model using y − l = ya + ∆y − l = va + ∆y. �
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3. Linearization of the nonlinear implicit function (1.12) leads to the constraintslinearized

constraints

g(x,y) = g(ux(xa,∆x), uy(ya,∆y)) = g(xa,ya) + X∆x+ Y
T∆y = 0 (1.95)

with the Jacobians

X
G×U

=
∂g

∂∆x

∣∣∣∣
x=xa,y=ya

and Y
T

G×N
=

∂g

∂∆y

∣∣∣∣
x=xa,y=ya

, (1.96)

to be evaluated at the approximations of the mean observations and of the parame-
ters.

Remark: Also the structure of the constraints of the linear Gauss�Helmert model is pre-

served, when replacing the unknowns x and y by their corrections ∆x and ∆y and the

constant b by g(xa,ya). �

Therefore the linear substitute problem for determining the corrections ∆x and ∆y is: linear substitute

problem

minimize (va + ∆y)T Σ−1
ll (va + ∆y) (1.97)

subject to g(xa,ya) + X∆x+ Y
T∆y = 0 , (1.98)

for given approximate values ya and thus va = u−1
y (ya, l), function g, Jacobians X and

Y , and covariance matrix Σll.

We �rst will provide the algorithm and then its derivation.

1.5.1 The algorithm for estimating the parameters

We start from the observations {l,Σll}, the implicit functions g(x,y) = 0, and the approx-
imate values xa for the unknowns and ya for the mean observations, which are initiated
with ya := l. We obtain the following algorithm for an iterative solution:

1. Iterate until convergence

(a) Determine the Jacobians X and Y (1.96) at the current approximate values
(xa,ya). Jacobians at

current

approximations
(b) Determine the contradictions cg of the negative constraints at the appproximate

values xa of the unknown parameters together with their weight matrix 8 9

contradictions of

constraints given

the parameters

cg = −g(xa, l) and W gg = (Y TΣllY )−1 . (1.99)

(c) Solve the normal equation system for the corrections ∆x of the parameters
normal equation

systemN∆x = m with N = X
T
W ggX and m = X

T
W gg cg . (1.100)

(d) Update the approximate parameters

xa := ux(xa,∆x) e.g., xa := xa + ∆x . (1.101)

hence
− g(xa, l) := cg − X∆x (1.102)

(e) Determine the corrections for the mean observations

∆y = ΣllYW gg(cg − X∆x)− va . (1.103)

(f) Update the approximate mean observations update of

approximate mean

observationsya := uy(ya,∆y) e.g., ya := ya + ∆y . (1.104)
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2. Set the �nal estimates of the unknown parameters and of the mean observations, �nal estimates

sometimes called the �tted observation pl := py
px := xa and py = ya . (1.105)

3. Determine the covariance matrix of the estimated parameterscovariance matrix

of the estimated

parameters Σpxpx = N
−1 . (1.106)

4. If we only know an approximate covariance matrix Σa
ll and we assume the covariance

matrix Σll di�ers from the approximation by an unknown variance factor σ2
0

Σll = σ2
0Σa

ll with W ll = Σll , (1.107)

then we can perform the estimation with Σa
ll, instead of using Σll, which has no

e�ect onto the estimates. But then we can �nd an estimate

pσ2
0 =

cT
l W

a
ll cl

G− U
or pσ2

0 =
cT
gW

a
cgcgcg

G− U
. (1.108)

for the estimated variance factor. Then we obtain an estimate for the covarianceestimated variance

factor matrix of the estimated parameters

pΣpxpx = pσ2
0Σa

pxpx with Σa
pxpx = (XT(Y TΣa

llY )−1X )−1 . (1.109)

the attribute estimated only referring to use of the estimated variance factor.

Remark: If the observational noise is small and an approximate solution is acceptable, the steps

1.(e�f) can be omitted. Then the Jacobians X and Y are to be determined at (xa, l) instead of

at (xa,ya). �

The complete procedure is given in the algorithm below. The green parts refer to the
case, where the degrees of freedom of the parameters and observations is less than the
number of elements of their representation.

1.5.2 Derivation of the procedure

We now derive the procedure.

1.5.2.1 Estimating the parameters with a quasi Gauss�Markov model

We start from the constraint (1.95) rewritten as

− g(xa,ya)− Y T∆y = X∆x . (1.110)

In order to eliminate the dependeny of ∆y, we introduce the contradiction of the con-
straints, i.e., the value

cg = −g(xa, l) (1.111)

choosing the negative sign for making the following equations more intuitive. With
g(xa,ya) = g(xa, l) + Y

Tva and v = va + ∆y we have, up to �rst order, g(xa,ya) +
Y

T∆y = g(xa, l) + Y
Tv and therefore we can rewrite (1.110) as

cg − Y Tv = X∆x . (1.112)

7Observe, we do not have the estimated residuals v in the optimization function, but their corrections
v − va = ∆y (1.93), in order to be able to handle observations, such as directions or rotations, where a
non-linear update of the observations is more appropriate, replacing (1.93), see (7.19).

8Again we do not indicate, that cg depends on approximate values thus omit a superscript a.
9If we have the special linear Gauss�Markov model g(x,y) = Xx− y = 0, thus Y = −I , and use the

approximate values xa = 0, then we have cg = −g(xa, l) = l.
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Algorithm 1: Estimation in the Gauss�Helmert model.
[px,Σpxpx, pσ2

0 , R] = GaussHelmertModell_D(l,Σll, cg, ux, uy ,x
a,σapx, Tθ, maxiter)

Input: observed values {l,Σll}, number N ,
constraint function [cg,X ,Y ] = cg(l,y

a,xa), number G,

update functions ux and uy for the parameters and mean observations.

approximate values xa, possibly σapθu ,
parameters Tθ, maxiter for controlling convergence.
Output: estimated parameters {px,Σpxpx}, variance factor pσ2

0 , redundancy R.

1 Redundancy R = G− U ;
2 if R < 0 then stop, not enough constraints;
3 Initiate: iteration ν = 0, approximate values ya := l, stopping variable: s = 0;
4 repeat

5 Constraints and Jacobians : [cg,X ,Y ] = cg(l,y
a,xa), see (7.14), (1.96);

6 Weight matrix of constraints: W gg = (Y TΣllY )−1;
7 Build normal equation system: [N,m], see (7.16);
8 if N is singular then stop: normal equation matrix is singular;

9 Updates of parameter vector: ∆x, see (1.78), xa := ux(xa,∆x) ;

10 Corrections for �tted observations: ∆y, see (7.18);

11 Update �tted observations: ya = uy(ya,∆y) , see (7.19);

12 Set iteration: ν := ν + 1;

13 if maxu(|x∆xu|/σapxu) < Tx or ν = maxiter then s = 2;

14 until s ≡ 2;
15 Estimated parameters px := pxa and covariance matrix: Σpxpx, see (7.22);
16 if R > 0 then variance factor pσ2

0 = cT
gW gg cg/R;

17 else pσ2
0 = 1;

Now, we de�ne the substitution
vg = −Y Tv . (1.113)

This is that part of the residuals v of the observations l, which is relevant for the con-
straints. Its uncertainty results from (1.112), since ∆x is assumed to be �xed in this
step,

D(cg) = D(−g(xa, l)) = Σgg = Y
TΣllY . (1.114)

We thus arrive at a representation of the functional model which has the algebraic structure
of a Gauss-Markov model with cg as observations and ∆x as unknowns quasi

Gauss-Markov

model representing

the Gauss�Helmert

model

cg + vg = X∆x with D(cg) = Σgg . (1.115)

Starting from here we solve the optimization problem for determining the corrections ∆x

minimize vg Σ−1
cgcg vg (1.116)

subject to − (cg + vg) + X∆x = 0 , (1.117)

for given the contradictions cg of the constraints, the Jacobian X , and the covariance
matrix Σcgcg . As we know from the estimation with the Gauss�Markov model, we obtain
the normal equation system

N∆x = m with N = X
T(Y TΣllY )−1X and m = X

T(Y TΣllY )−1 cg . (1.118)

Hence the updated parameters are

xa := ux(xa,∆x) . (1.119)
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We, however, need to be aware of the following: both, the coe�cient matrix X and �
via the Jacobian Y � the covariance matrix Σgg in (1.114) generally depend on the current
values xa and ya, since the Jacobians have to be determined at these values, see (1.96).
So, we need to determine updates ∆y for the mean observations y within the iterative
scheme.

Since its Jacobian and covariance matrix depend on the unknown parameters we call
thus functional the quasi Gauss�Markov model replacing the implicit constraints in the
Gauss�Helmert model.10

1.5.2.2 Update of approximate �tted observations

From (1.115) and (1.113) we have the residuals vg at some point within the iteration
scheme

vg = −cg + X∆x = −Y Tv , (1.120)

which result after �nding the locally best corrections ∆x. If we could determine the
residuals v of the original observations from the residuals vg, i.e., invert the relation

vg = −Y Tv, we could derive the corrections

∆y = −va + v . (1.121)

We could use them to determine updates for the mean observations y. We obviously
cannot determine the residuals v of the original observations by inversion of (1.113), since
the matrix Y in generally does not have full rank.

Therefore we determine those residuals v which ful�l the constraint (1.120) and mini-
mize Ω = vTΣ−1

ll v. With the Lagrangian parameter vector λ we thus need to

CONSTR(Σ): minimize vTΣ−1
ll v

subject to Y
Tv + vg = 0 .

(1.122)

w.r.t. the residuals v. Setting the partials of

Φ(v,λ) =
1

2
vTΣ−1

ll v + λT(Y Tv + vg) (1.123)

to 0 yields the two necessary equations for v

∂Φ

∂vT
= Σ−1

ll v + Yλ = 0 and
∂Φ

∂λT
= Y

Tv + vg = 0 . (1.124)

From the �rst equation we obtain

v = −ΣllYλ (1.125)

which from the second equation leads to

pvg − Y TΣllYλ = 0 (1.126)

Therefore we have
λ = (Y TΣllY )−1vg , (1.127)

which �nally yields pv = −ΣllY (Y TΣllY )−1pvg (1.128)

inverting the substitution in (1.113) in an intuitive manner. Hence, from (1.121) and
(1.90) we obtain the corrections

∆y = −u−1
y (ya, l)− ΣllY (Y TΣllY )−1 g(xa, l) . (1.129)

10In the German geodetic literature on adjustment theory (equivalent to the estimation theory) the
functional model (1.115) is called 'quasi vermittelnde Ausgleichung', derived from the German 'vermit-

telnde Ausgleichung' representing the Gauss�Markov model. This motivates the English naming of this
functional model, which only occurs as substitute for the linearized Gauss�Helmert model
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If the residuals/corrections and the parameters/observations have the same dimension,
e.g., for classical point coordinates, this simpli�es to

∆y = −ya + l− ΣllY (Y TΣllY )−1 g(xa, l)) . (1.130)

The update for the estimates of the mean observations then read as

ya := uy(ya,∆y) especially pya := pya + ∆y . (1.131)

If the observations and the constraints, l and g are grouped as l = [li] and g = [gi],
such that each group gi only refers to the corresponding group li and the observational
groups are mutually independent, i.e., for i /= j we have Cov(li, lj) = 0, then with vai the
updates can be done group wise: correction of

estimated

observations∆yi = u−1
y (li,y

a
i )− ΣliliY i(Y

T
i ΣliliY i)

−1 g(px, li) , (1.132)

with the individual updates pyai := uy(pyai ,∆yi) . (1.133)

If the observational noise is small, the Jacobian Y can be determined at the observa-
tions l instead of at the current value y of the mean observations. Hence the update step
in (7.19) then would be omitted. The evaluation still can be based on the estimated vari-
ance factor, which can be based on cg alone, and the covariance matrix of the estimated
parameters.

1.5.2.3 Final estimates and evaluation

The �nal estimates are derived from the approximate values in the last iteration, assuming
convergence is achieved. Hence we have the �nal estimates

px := xa , py := ya , and pv = va . (1.134)

The estimated variance factor uses the value of the optimization function at the estimates
and can be written in di�erent ways estimated variance

factorpσ2
0 =

Ω(px, py)

G− U
=
pvT
W llpv

G− U
=
cT
gW ggcg

G− U
(1.135)

The last relation can be derived at the point of convergence where ∆x = 0, ∆y = 0,
and g(x,y) = 0, using cg = Y

Tv. Hence, the optimization can be based on the weighted
sums of the squares of the estimated residuals v or the contradiction cg of the constraints.

Finally, the theoretical covariance matrix of the estimated parameters can be derived Cramer-Rao bound,

covariance matrix

of estimated

parameters

from (1.118) by variance propagation, leading to the Cramer-Rao bound for the uncertainty

Σpxpx = (XT(Y TΣllY )−1X )−1 . (1.136)

21



2 Pre-calibration and in-situ Self-calibration

with Correlated Observations

Deformation analysis based on point clouds taken at di�erent times may require
to take into account both preclalibration and in situ self-calibration of the used
instruments. We analyse the mutual e�ect of pre-calibration and in-situ self-
calibration w.r.t. (1) the necessity to exploit the full covariance structure of the
point cloud induced by the pre-calibration and (2) the possibility of increasing
the computational e�ciency during the self-calibration.
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mate and covariance matrix of parameters . . . . . . . . . . . . . . . . . . . 34
2.7.1 Example: The mean of two values yi, i = 1, 2 . . . . . . . . . . . . . 34

2.1 Preface

The note (2023) addresses the question how a priori pre-calibration result may in�uence
a possible in-situ self-calibration, both concerning the achievable accuracy as well as the
numerical e�ort. The result uses a lemma by Rao (1967, Lemma 5a) which states under
which conditions the result of an estimation is invariant to a change in the assumed
structure of the covariance matrix of the observations.

2.2 Summary

We analyse the computational and statistical e�ciency of self-calibration when recon-
structing a surface from point cloud taken with a laser scanner where we know the cali-
bration result. We discuss fusing the prior calibration information with the one from the
in-situ measurements and the e�ect of the uncertainty of the prior calibration (ca,Σcaca)
onto the covariance matrix D(θ) of the unknown parameters θ.

We address four cases, A to D, di�ering by their stochastical and their functional
models:
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• The a priori calibration result is not available (or used, cases (A,C)) or is integrated
into the self-calibration with a priori information in a Bayesian manner (cases (B,D)
). Hence, we have the two (linearized) functional models for estimating the parame-
ters y of the object's form and the calibration parameters c

(A,C) : E
(
y
)

= [B ,C ]

[
y
c

]
, or (B,D) : E

([
y

ca

])
=

[
B C

0 I

] [
y
c

]
. (2.1)

• The covariance matrix of the observations is assumed to be (a) block diagonal,
assuming the points are mutually uncorrelated or to be (b) fully populated due to
the joint e�ect of the uncertainty Σcaca of the a priori calibration parameters ca
onto the observations Caca. So we either use

(A) : D(y) = Σll,p =: Σ0 , or (C) : D(y) = Σ0 + CaΣcacaC
T
a =: Σ . (2.2)

(B) : D

([
y

ca

])
=

[
Σ0 0

0 Σcaca

]
or (D) : D

([
y

ca

])
=

[
Σ0 0

0 0

]
+

[
Ca

I

]
Σcaca [CT

a , I ] .

The four cases are analysed w.r.t. their estimates and covariance matrices, see Tab. 2.1.

D(y) = Σ0 D(y) = Σ

SC pθ | A ≡ pθ | C
D(pθ | A) = D(pθ | C) =[

B
T
W 0B B

T
W 0C

C
T
W 0B C

T
W 0C

]−1

D(pθ | A) +

[
0

IC

]
Σcaca [0 , IC ]

BSC D(pθ | B) = D(pθ | D) =[
B

T
W 0B B

T
W 0C

C
T
W 0B C

T
W 0C +W caca

]−1

D:

[
(BT

W 0B)−1 0

0 Σcaca

]
Table 2.1: Estimates and covariance matrices of the estimated parameters when using the
four models for self-calibration and assuming C = Ca. SC: self-calibration without prior,
BSC: Bayesian self-calibration

The main result of this note is the following: If the matrix C ≡ Ca is common to the
stochastical model in (2.2) and the functional models in (2.1), then, following Rao (1967,
Lemma 5a), the estimates of model A and C coincide, allowing to use model A for an
e�cient estimation of the parameters and their covariance matrix. Moreover, using Rao's
lemma decorrelates and simpli�es the solution for model D.

Especially, we have the following relations between the estimates in the model A and
in the models B and C

D(pθ | B) ≤ D(pθ | A) ≤ D(pθ | C) , (2.3)

D(py | D) ≤ D(py | B) ≤ D(py | A) = D(py | C) . (2.4)

An individual sensitivity analysis allows to determine the expected loss in quality, accuracy
and reliability in Baarda's sense, without requiring actual observations.
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2.3 Introduction

2.3.1 Motivation

Taking point clouds as observations for the estimation of object forms, for deformation
analysis, or for calibration needs to take the stochastical properties of the coordinates of
the points into account as far as necessary. The quality of the assumed stochastical model
needs to be acceptable, not necessarily optimal, for the envisaged application.

Especially for deformation analysis, where the deformations are in the order of the
measuring precision, a realistic stochastical model, taking all known dependencies into
account, may be required.

Unfortunately, the points in a point cloud may be correlated due to the uncertainty
of the instrumental calibration. This generally leads to a large fully populated covariance
matrix Σyy of the N observations, collected in the vector y. As a consequence any estima-
tion minimizing the weighed squares of the residuals is confronted with using the inverse
W yy = Σyy, which often is called information matrix or precision matrix.

This note shows under which conditions it is possible to work with uncorrelated points,
thus with a block matrix containing the 3×3 covariance matrices Σyiyi of the I individual
points, instead of a fully populated covariance matrix, without losing accuracy.

2.3.2 Rao's lemma

The idea is to exploit the Lemma 5a in Rao (1967) which states under which conditions the
estimation with a covariance matrix containing certain additive variance components does
not change the parameters. Especially, it starts from the given the linear Gauss-Markov
model,

y + v = Xθ with Σ0 = D(y) , (2.5)

and the estimated parameters

pθ0 = (XTΣ−1
0 X )−1X

TΣ−1
0 y , (2.6)

Then, when using the modi�ed covariance matrix

Σ = XΓXT + Σ0ZΘZTΣ0 + Σ0 with Z
T
X = 0 , (2.7)

with arbitrary matrices Γ and Θ (which we will not need in the following) the estimatepθ0 from (2.6) is identical to the estimate,

pθ = (XTΣ−1X )−1X
TΣ−1y , (2.8)

when using the full covariance matrix.
Fig. 2.1 shows the principle of least squares estimation with a unit matrix and an

arbitrary covariance matrix for the observations in the simple model y ∼ N (xθ,Σ). Fig.
2.2 visualizes the idea of Rao's lemma.

As can be seen by variance propagation its covariance matrix is

Σpθpθ = (XTΣ−1X )−1 , (2.9)

hence, not (XTΣ−1
0 X )−1, thus in principal needs to take the full covariance matrix Σ into

account.1

Observe, the two �rst components in the covariance matrix (2.7) have the structure of
a weighted block dyadic product XSXT, similar to the 1D case sxxT.

1The result has as special case the mean of N values yn in case the observations have the same variance
σ2 and are mutually correlated with the same correlation coe�cient ρ ∈ [−1/(N−1),+1]. Then the normal
arithmetic mean pµ =

°
n ln/N is the optimal estimator, but its variance is σ2

pµ = (1+r(N−1)) ·σ2/N , but

not σ2/N . This can be shown using A = 1N , thus a vector of N ones, and Σ = σ2[(1− ρ)IN + ρ1N1T
N ].
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Figure 2.1: Least squares estimation. Model y ∼ N (xθ,Σ). If Σ = I 2, indicated by the

blue circular standard ellipse, the optimal point lies on the footpoint py | I 2 = xpθ | I 2 of y
onto the line E(y) = xθ. If the covariance matrix Σ is a general matrix, represented by the

red standard ellipse, then the optimal point py | Σ = xpθ | Σ is the intersection of the (blue)
line E(y) = aθ passing through O and the (red) line, de�ned by the direction from y to that
point of the ellipse, where the tangent (yellow) is parallel to x

Figure 2.2: Visualization of Rao's lemma: Least squares estimation with modi�ed covari-
ance matrix. Model y ∼ N (xθ,Σ). If Σ = σ2

I + γxxT or if Σ = σ2
I + θzzT, with z ⊥ x,

hence generally, if Σ = σ2
I + γxxT + θzzT, the semi-axes of the standard ellipse are parallel

or orthogonal to x. Then, the least squares estimate for the generalized covariance matrix
is the same as for Σ = I 2. However, the covariance matrix of the estimate depends on the
modi�cation, namely the factors σ2 and γ.
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Remark: It is well known2, that changing the covariance matrix of the observations leads to

an e�ect onto the estimated parameter, which is in the range of their standard deviations, unless

the change of the covariance matrix or the weight matrix is very large. It mainly in�uences their

covariance matrix. The result of Rao's Lemma addresses the extreme case, where the e�ect onto

the parameters is zero, which requires that the change of the covariance matrix has a special

structure. The e�ect of model errors has been discussed in the context of self-calibration in

Förstner (1982). �

2.3.3 Goal and result

The idea is to choose the matrices X , Σ0, Γ, and Θ in (2.7), such, that the estimation of
the parameters for the object and the calibration

1. can be performed within self-calibration with a block diagonal matrix for the ob-
served points, which increases computational e�ciency

2. can use the parameters of a priori calibration for an in-situ self-calibration possibly
improving these parameters, and

3. e�ciently derive the uncertainty of the estimated parameters.

Computational e�ciency also can be achieved, in case only a part of the calibration param-
eters is included in the self-calibration. The increase in e�ciency refers to the estimation
of the parameters, as well as to determination of their covariance matrix.

2.4 The setup

We now discuss the used stochastical model of the observations and then four mathematical
models for the self-calibration

2.4.1 The covariance matrix of the observations

We assume two sources of measurement deviations, (1) caused by the object properties,
yielding Σyy,p, and (2) caused by the prior calibration, yielding Σyy,c. Hence, we assume
the complete uncertainty is described by

Σyy = Σyy,p + Σyy,c . (2.10)

1. The covariance matrix Σyy,p is assumed to be block diagonal

Σyy,p = Diag({Σyiyi,p}) . (2.11)

and has full rank. The individual 3 × 3 covariance matrices Σyiyi,p are assumed to
re�ect those parts of the directional and distance uncertainties, which are indepen-
dent for each point, including those parts which depend on the surface point, e.g.,
its material and the impact angle.

2. The covariance matrix Σyy,c is assumed to contain all uncertainties of the a priori
calibration which e�ect all points of a scan simultaneously. We do not assume
other types of correlations, e.g., caused by the atmosphere. Using the primary error
concept the e�ect of the C calibration parameters3 c onto the observations is assumed
to be describable by

yc = Caca . (2.12)

2See Koch (1999), where eq. (3.108) shows the e�ect of using a slightly changed weight matrixW+∆W

instead ofW , and with (3.32) reads as pθ | (W +∆W ) ≈ pθ |W − (XT
WX )−1X

T∆W pe, with the estimated

residuals pe = y − X pθ.
3We assume a perfectly constructed instrument would lead to c = 0.
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Assuming a linear model appears to be reasonable as the e�ects are small. The
estimated parameters ca := pca of the a priori calibration will be uncertain4

ca ∼ N (µca ,Σcaca) . (2.13)

This leads to the uncertain e�ects of the calibration onto the observations

y
c
∼ N (µyc ,Σyy,ca) with µyc = Caµca and Σyy,ca = CaΣcacaC

T
a . (2.14)

The covariance matrix has a low rank C = rk(Ca), but generally is fully populated.

Hence, also the covariance matrix Σyy will be fully populated since it has the structure

Σyy = Σyy,p + CaΣcacaC
T
a , (2.15)

where the �rst part is sparse, namely block-diagonal, and the second part has the structure
of a block dyadic product.

On notation: In the following we denote the inverses of covariance matrices as weight/precision/-
or information matrices:

W = Σ−1 , W 0 = Σ−1
0 , W yy,p = Σ−1

yy,p , and W c0c0 = Σ−1
c0c0 . (2.16)

We now discuss four cases for the self-calibration, which simultaneously determines the
parameters of the object and calibration parameters. We assume two alternatives for the
functional model of the self-calibration and two alternatives for the stochastical model for
the observations. Hence, we arrive at the following models

A. Uncorrelated points for self-calibration

B. Uncorrelated points for self-calibration with fusion of the prior calibration

C. Correlated points for self-calibration

D. Correlated points for self-calibration with fusion of the prior calibration

1. The a priori calibration result (A,C) is not available or used or (B,D) is fusing the self-
calibration with a priori information. Hence, we have the two (linearized) functional
models for estimating the parameters y of the object's form and the calibration
parameters c

(A,C) : E
(
y
)

= [B ,C ]

[
y
c

]
, or (B,D) : E

([
y
ca

])
=

[
B C

0 I

] [
y
c

]
.

(2.17)
We call models (A,C) self-calibration and models (B,D) self-calibration with fusion
in the following.

Depending on the context, the self-calibration may refer to only a subset of param-
eters used in the prior calibration, e.g., only those which are to be expected to be
determinable within the self-calibration. Similarly, self-calibration with fusion (2)
may only refer to those parameters which are expected to change over time. Hence,
the models may have the same coe�cient matrix B but di�erent coe�cient matrices
C .

2. The covariance matrix of the observations is assumed to be block diagonal, assuming
the points are mutually uncorrelated or to be fully populated due to the joint e�ect of
the uncertainty Σcaca of the a priori calibration parameters ca onto the observations
Caca.

4Random variables are underscored.
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Since the observation vectors in models (A,C) are di�erent from thos in models (B,D)
we need to consider them separately.

In case of models (A,C) we either use

D(y | A) = Σyy,p =: Σ0 , (2.18)

or
D(y | C) = Σyy,p + Σyy,c = Σyy,p + CaΣcacaC

T
a =: Σ . (2.19)

Stochastical model (A) is a special case of model (C), so, when used, leads to sub-
optimal estimates, if the observations actually are correlated.

In case of models B the a priori information (ca,Σcaca used in the self-calibration
with fusion we reasonably may assume the prior information is independent of the
observed points, hence we have

D

([
y
ca

]
| B
)

=

[
Σyy,p 0

0 Σcaca

]
. (2.20)

In case D we assume the observed coordinates are mutually correlated due to the
common calibration uncertainty. But, then also the calibration parameters ca will
be correlated with the observed points, since we have[

y
ca

]
=

[
y
g

+ Caca
ca

]
=

[
I Ca
0 I

] [
θ
c

]
. (2.21)

Hence we obtain the joint covariance matrix

D

([
y
ca

]
| D
)

=

[
I C

0 I

] [
Σyy,p

Σcaca

] [
I 0

C
T

I

]
(2.22)

=

[
Σyy,p + CaΣcacaC

T
a CaΣcaca

ΣcacaC
T
a Σcaca

]
(2.23)

=

[
Σyy,p 0

0 0

]
+

[
Ca
I

]
Σcaca [CT

a , I ] (2.24)

There is a profound di�erence when fusing the uncorrelated and the correlated ob-
servations in models B and D.

We �rst look at the models A and C. As can be seen from (2.18) and (2.19), the
uncertainty does not decrease when taking the correlations into account:

D(y | C)−D(y | A) = Σ− Σ0 = CaΣcacaC
T
a ≥ 0 (2.25)

Hence, the uncertainty in model C generally is higher than in model A. Hence, we
can expect, the results using model B are worse (not better) than those with model
A. Since the two groups of observations is not independent the model does represent
a Bayesian estimation of the parameters.

This contrasts to the relation between the uncertainties in models B and D. Here we
have

D(y | D)−D(y | B) =

[
Σyy,p + CaΣcacaC

T
a CaΣcaca

ΣcacaC
T
a Σcaca

]
−
[

Σyy,p 0

0 Σcaca

]
=

[
CaΣcacaC

T
a CaΣcaca

ΣcacaC
T
a 0

]
Q 0 . (2.26)

Hence, the accuracy di�erence is inde�nite. This indicates, that model D will not
generally lead to better results than model B. Also, since the two groups of observa-
tions is not independent the model does not represent a Bayesian estimation of the
parameters.

We now discuss the four di�erent models in more detail.
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2.4.2 A: Self-calibration with independent points

The most simple model, case A, is in-situ self-calibration without having access (or using)
to the result of a prior calibration. It reads as

E(y | A) = Xθ D(y | A) = Σ0 with X = [B,C ] , θ =

[
y
c

]
(2.27)

where

• the Y parameters y are used to describe the object, e.g., using splines, and

• the C parameters c are calibration parameters within the self-calibrating estimation.
They generally need not be the same as in a pre-calibration.

• Since we do not use or have access to a prior calibration, we need to assume the
covariance matrix of the observations is block diagonal.

The uncertainty of the estimated parameters results from the normal equations

N0
pθ = n0 (2.28)

with

N0 =

[
N11,0 N12,0

N21,0 N22,0

]
=

[
B

T
W 0B B

T
W 0C

C
T
W 0B C

T
W 0C

]
(2.29)

and

n0 =

[
n1,0

n2,0

]
=

[
B

T
W 0y

C
T
W 0y

]
. (2.30)

The index 0 stands using the block-diagonal matrix Σ0. In case model A holds we have
the covariance matrix

D(pθ | A) = N
−1
0 . (2.31)

This model is useful, since the normal equation system can be setup point by point,
and it will generally be sparse, since each point only in�uences the coordinates of the
neighbouring knots/control points of a spline surface. The sparsity of N0 has two positive
numerical e�ects:

(i) The solution of the normal equation system can exploit the sparsity, and therefore
can be performed numerically e�cient.

(ii) Though the covariance matrix Σpθpθ,0 = N
−1
0 will be generally full, one may e�ciently

determine those elements of the covariance matrix, where the normal equation ma-
trix is non-zero, without needing to determine the other elements of the covariance
matrix, see Takahashi et al. (1973, cf Matlab-code sparseinv.m) and Vanhatalo
and Vehtari (2008).

This model certainly is too simpli�ed, since neither possible correlations between the
observations nor some, possibly available, a priori information is taken into account.

2.4.3 B: Self-calibration with fusion using independent points

In model B, we now want to fuse some a priori results (ca,Σcaca) within the self-calibration
from (2.27). As we discussed above, this corresponds to a Bayesian estimation of the pa-
rameter vector, with prior on the calibration parameters. This then just leads to additional
observations ca ∼M (ca,Σcaca) and thus the model

E

([
y
ca

]
| B
)

=

[
B C

0 I c

] [
y
c

]
(2.32)
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with the extended covariance matrix of the joint observation vector (yp, ca)

D

([
y
ca

]
| B
)

=

[
Σ0 0

0 Σcaca

]
. (2.33)

The normal equation system reads as

M0
pθ = m0 (2.34)

with

M0 = N0 +

[
0

IC

]
W caca [0 , IC ] =

[
B

T
W 0B B

T
W 0C

C
T
W 0B C

T
W 0C +W caca

]
(2.35)

and similarly

m0 = n0 +

[
0

W cacaca

]
. (2.36)

Also here, the normal equation matrix will be sparse, allowing to increase numerical ef-
�ciency, both during the solution as well as for determining the covariance matrix of the
parameters. This is the main motivation for using this model.

Remark: 1. Though this model formally is correct, in the context of in-situ self-calibration

it contains a contradiction: The prior calibration result (cs,Σcaca is used explicitely, but the

observed points are assumed to be uncorrelated, though they are assume to be measured by the

same instrument, thus should be treated as mutually dependent. �

Remark: 2. In case parameters c are partitioned, namely ca2 of ca, e.g., if

ca =

[
ca1
ca2

]
and yc = [C1 ,C2]

[
ca1
ca2

]
= C1ca1 + C2ca2 (2.37)

where the parameters ca1 are just �xed values, used for correcting the observations, then we can
rewrite the model as

(y
p

+ C1ca1 + C2ca2) + v = By + Cc , (2.38)

Now, since the e�ect of the parameters ca2 onto the observations is the same as those of c, the
coe�cient matrices C and C2 coincide, why we obtain the model

(y
p

+ C1ca1) + v = By + C(c− ca2) , (2.39)

Hence if we only are able to estimate the di�erence ∆c = c−ca2, i.e., for given ca2 the corrections
∆c. �

Though this model takes into account the result of a prior calibration it still assumes a
too simplistic covariance matrix Σ0 for the observations, thus is statistically suboptimal,
in case correlations between the points exist.

2.4.4 C: Self-calibration exploiting a priori calibration

2.4.4.1 The model

In model C, we instead of fusing the result of the a priori calibration with the current
measurements, we correct take into account that the observations due to the uncertainty
of the a priori calibration are correlated. Hence, we have the same functional model as in
case A,

E(y | C) = E(y
p

+ Caca | C) = Xθ with X = [B,C ] , θ =

[
y
c

]
, (2.40)

but now assume the covariance matrix of the observations is

D(y | C) = Σyy,p + CaΣcacaC
T
a =: Σ . (2.41)
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Observe, we generally do not enforce, the self-calibration determines/corrects the same
parameters as the a priori calibration, which is reasonable, in case we only want to improve
the results of some calibration parameters.

Though the design matrix B is sparse, the resulting normal equation system will not be
sparse. Thus � without further constraints � no numerically e�cient solution is possible.

2.4.4.2 Exploiting Rao's result

This changes, if we assume the two matrices C and Ca coincide. Then Rao's lemma can
be applied.

If we refer to (2.7), then, when assuming

C ≡ Ca , Σ0 = Σyy,p , Γ =

[
0 0

0 Σcaca

]
and Θ = 0 , (2.42)

we obtain Σ := Σyy of (2.15), and therefore can conclude: under the mentioned conditions,
using the block-diagonal matrix Σyy,p during estimation leads to the same estimates as
when using the full covariance matrix Σyy.

Explicitly, the estimated parameters following from the model

y + v = [B,C ]

[
y
c

]
, and Σ := Σyy,p + CΣcacaC

T . (2.43)

are identical to those following from model A

y + v = [B,C ]

[
y
c

]
, and Σ0 := Σyy,p . (2.44)

independent on whether we correct the observations for their calibration errors Cca, as
discussed above, thus pθ | C = pθ | A (2.45)

The covariance matrix of the estimates now results frompθ = (XT
W 0X )−1X

T
W 0 y (2.46)

We obtain the uncertainty of the parameters by variance propagation as

D(pθ | C) = (XT
W 0X )−1X

T
W 0(Σ0 + CΣcacaC

T)W 0X (XT
W 0X )−1 (2.47)

= (XT
W 0X )−1 + (XT

W 0X )−1X
T
W 0CΣcacaC

T
W 0X (XT

W 0X )−1(2.48)

But since

(XT
W 0X )−1[XT

W 0B , X
T
W 0C ] =

[[
IY
0

] [
0

IC

]]
(2.49)

we arrive at

D(pθ | C) = (XT
W 0X )−1 +

[
0

IC

]
Σcaca [0 , IC ] (2.50)

or

D(pθ | C) = D(pθ | A) +

[
0

IC

]
Σcaca [0 , IC ] (2.51)

or explicitely

D(pθ | C) =

[
Σpypy,0 Σpypc,0
Σpcpy,0 Σpcpc,0 + Σcaca

]
(2.52)

Hence, using model C allows arrive at computational e�cient estimation of the parameters,
as well determination of their covariance matrix.

This observation gives some insight into the ability of this model to compensate for
information of some prior calibration, which allows to exploit Rao's result to increase
computational e�ciency for determining the parameters.

However, this observation also indicates that the prior information is not fully inte-
grated.
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2.4.5 D: Self-calibration with fusion using correlated points

Model D now integrates the prior calibration and the in-situ measurements in a Bayesian
self-calibration. The model now is

E

([
y
ca

]
| D
)

=

[
B C

0 I

]
looooomooooon

X

[
y
c

]
(2.53)

We now have to take into account that the observations y and the prior values ca are
correlated and use the joint covariance matrix from (2.22):

D

([
y
ca

]
| D
)

=

[
Σyy,p + CaΣcacaC

T
a CaΣcaca

ΣcacaC
T
a Σcaca

]
(2.54)

=

[
Σyy,p 0

0 0

]
+

[
Ca
I

]
Σcaca [CT

a , I ] . (2.55)

This model appears to enables the invocation of to Rao's Lemma if C = Ca, since the
second column of X is common to the functional and the stochastical model.

The model then leads to the same estimated parameters as when using the covariance
matrix

D

([
y
ca

])
=

[
Σyy,p 0

0 0

]
, (2.56)

However, this implies, that the parameters ca from the prior calibration have variance
zero, thus are taken as �xed values, just correcting the observations y−Cca in a non-self-
calibrating model

y − Cca = By with D(y) = Σ0 . (2.57)

Again, using the actual (fully populated) covariance matrix of the joint observation vector
into consideration, we obtain the covariance matrix of the estimates by variance propaga-
tion from[ pypc

]
=

[
(BT

W 0B)−1B
T
W 0 0

0 IC

] [
y − Cca
ca

]
(2.58)

=

[
(BT

W 0B)−1B
T
W 0 −(BT

W 0B)−1B
T
W 0C

0 IC

] [
y
ca

]
. (2.59)

Using
N11 = B

T
W 0B and N12 = B

T
W 0C (2.60)

neglecting the index zero, this reads as[ pypc
]

=

[
N
−1
11 B

T
W 0 −N−1

11 N12

0 IC

] [
y
ca

]
(2.61)

and we obtain

D(pθ | D) =

[
N
−1
11 B

T
W 0 −N−1

11 N12

0 IC

] [
Σ0 0

0 0

] [
W 0BN

−1
11 0

−N21N
−1
11 IC

]
(2.62)

+

[
N
−1
11 B

T
W 0 −N−1

11 N12

0 IC

] [
C

I

]
Σcaca [CT , I ]

[
W 0BN

−1
11 0

−N21N
−1
11 IC

]
=

[
(BT

W 0B)−1 0

0 0

]
+

[
0

IC

]
Σcaca [0 , IC ] (2.63)

=

[
(BT

W 0B)−1 0

0 Σcaca

]
. (2.64)

This is a stunning result: The fusion of the prior information (ca,Σcaca) from the cali-
bration does neither improve the calibration parameters, the correlations assumed for the
joint observation vector (y, ce) (1) have no e�ect onto the calibration parameters, (2) are
not needed to determine the object parameters y, and (3) decorrelate the estimation of
the parameter for object and calibration.
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2.5 Synopsis

The following Table 2.2 collects the results, especially the covariance matrices

D(pθ | k) , k = A,B,C,D . (2.65)

for the four cases.

D(y) = Σ0 D(y) = Σ

SC pθ | A ≡ pθ | C
D(pθ | A) = D(pθ | C) =[

B
T
W 0B B

T
W 0C

C
T
W 0B C

T
W 0C

]−1

D(pθ | A) +

[
0

IC

]
Σcaca [0 , IC ]

(2.29) (2.35)

BSC D(pθ | B) = D(pθ | D) =[
B

T
W 0B B

T
W 0C

C
T
W 0B C

T
W 0C +W caca

]−1

D:

[
(BT

W 0B)−1 0

0 Σcaca

]
(2.51) (2.64)

Table 2.2: The covariance matrices of the estimated parameters when using the four models
for self-calibration, SC: self-calibration without prior, BSC: Bayesian self-calibration

First, the estimated parameters for model A and C are the same, see (2.45):

pθ | C = pθ | A . (2.66)

Second, we compare the accuracy achievable in the di�erent models:

1. the in�uence of changing the covariance matrix onto the accuracy can be determined
for models A and C. Since the uncertainty of the observations in model A are assumed
to be not larger than that in model C, hence because Σ−Σ0 ≥ 0 the uncertainty of
the parameters in model C generally is larger than that of models A:

D(pθ | C) ≥ D(pθ | A) . (2.67)

However, the accuracy of the object parameters for models A and C is the same:

D(py | C) = D(py | A) . (2.68)

2. the in�uence of the fusion of prior and in-situ self-calibration can be determined for
models A and B. Since the model B includes additional, independent information
compared to model A, the uncertainty generally increased by the fusion process:

D(pθ | A) ≥ D(pθ | B) . (2.69)

Observe, this holds for both, the parameters y of the object as well as the calibration
parameters c, which easily can be seen using the Schur complements of the two
diagonal block matrices of the covariance matrices.

3. the accuracy of the estimated parameters in model D cannot be compared to the
others in general, since it is not a generalization of one of them. However, the
accuracy of the estimated object parameters can be compared. We especially have

D(py | D) ≤ D(py | B) ≤ D(py | A) = D(py | C) , (2.70)

again using the Schur complements of the corresponding covariance matrices.
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2.6 Concluding remarks

Generally, these result only are valid, if Rao's lemma can be applied, i.e., if the calibration
parameters c determined in the self-calibration are the same which cause the correlations
between the points, formally if the coe�cient matrix C in the functional model is the same
as the one Ca used in the stochastical model, hence if Ca = C . This may, be enforced by
assuming the calibration parameters not corrected in the self-calibration have zero e�ect
onto the observed points, e.g., of one assumes the these parameters, which are determined
in the prior calibration, have small enough variance, to assume it to be zero.

2.7 Appendix: Covariance matrix for given design ma-

trix, observations, estimate and covariance matrix

of parameters

On can show, that there is a set of covariance matrices Σyy if the following is given:

1. the linear model E(y) = Xθ,

2. the value of the estimate and its covariance matrix {(pθ,Σpθpθ) = (θ,V )} of the pa-
rameters, and

3. a vector y of observations,

such that the estimated parameters and their covariance matrix follow from a weighted
least squares estimation.

2.7.1 Example: The mean of two values yi, i = 1, 2

Given are two observations y = [yi] and an estimate θ = pθ for the mean with variance
v = σ2

pθ . The covariance matrix of the observations is to be chosen adequately.

2.7.1.1 A special solution

We have the following model

E(y) = Xθ with X =

[
1
1

]
= 12 (2.71)

and need to choose, say in the form, containing the correlation coe�cient ρ ∈ [−1,+1]

D(y) = σ2

[
1 ρk
ρk k2

]
with σy1 = σ and σy2 = kσ , (2.72)

such that the two constraints

θ = pθ = (XTΣ−1
yy X )−1 X

TΣ−1
yy y , (2.73)

v = σ2
pθ = (XTΣ−1

yy X )−1 . (2.74)

This are two constraints for the three not yet speci�ed parameters σ, k, and ρ.
Explicitely, we obtain

W yy =
1

k2σ2(1− ρ2)

[
k2 −ρk
−ρk 1

]
(2.75)

and

pθ =
l2 + k2 l1 − k l1 ρ− k l2ρ

k2 − 2ρk + 1
=
k(k − ρ)l1 − (kρ− 1)l2

k2 − 2ρk + 1
(2.76)

pσ2
pθ =

k2(1− ρ2)

k2 − 2ρk + 1
σ2 (2.77)
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From the two constraints pθ = θ and pσ2
pθ = v (2.78)

we obtain the two parameters σ2 and ρ as a function of k and the given observations:

σ2 =
v (l1 − l2) (l1 + l2 − 2x)

k2 l1
2 − 2 k2 l1 x+ k2 x2 − l22 + 2 l2 x− x2

(2.79)

=
v (l1 − l2) (l1 + l2 − 2x)

((l2 − x) + kl1 − kx)(−(l2 − x) + kl1 − kx)
(2.80)

ρ =
l2 − x+ k2 l1 − k2 x

k (l1 + l2 − 2x)
(2.81)

=
(l2 − k2l1) + (1− k2)x

k (l1 + l2 − 2x)
(2.82)

For the special case
l1 = 1 , l2 = 0 , x = −1 (2.83)

we obtain

σ2 =
3

4k2 − 1
v and ρ =

2k2 + 1

3k
for k ∈ (0.5, 1) (2.84)

2.7.1.2 A generalizable solution

We use the following Fig. 2.3, assuming x = X = 12, and we observe the following:

Figure 2.3: The generalized mean

1. The observed point y is slantly projected to xpθ|Σ on the line xθ.

2. The length of radius of the standard ellipse parallel to the line leads to the standard
interval of the estimated point xpθ, in the �gure half of length of the yellow tangent
segment.

3. The length of the conjugate diameter is irrelevant for both, the position and the
standard deviation of the estimate.

Hence we can specify the set of covariance matrices by mapping the reference covariance
matrix Σ0 = I 2 to Σ by applying the mapping the two unit vectors ei, i = 1, 2 to the tow
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conjugate diameters di, i = 1, 2 of the standard ellipse of Σ. The two conjugate diameters
are

d1 =
x

|x|
σ and d2(f) =

xθ − y
|xθ − y|

f for some arbitrary standard deviationf > 0 .

(2.85)
Hence we obtain the set of covariance matrices, parametrized by f from

Σ(f) = [d1 d2(f)]

[
dT

1

dT
2 (f)

]
= d1d

T
1 + d2(f)dT

2 (f) (2.86)

=
xxT

xTx
σ2 +

(xθ − y)(xθ − y)T

(xθ − y)T(xθ − y)
f2 (2.87)

=
xxT

xTx
σ2 +

rrT

rTr
f2 with r = xθ − y (2.88)
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3 The Mean of Correlated Observations

For uncorrelated observations the accuracy of the mean increases with the num-
ber of observations. In case they are correlated, there is an upper limit for
the accuracy. The note analyses the situation for constant correlation and for
exponentially decaying correlation, autoregressive noise.

3.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Random constant bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 The solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Alternative derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Covariance of arithmetic mean with correlated observations . . . . . 40
3.3.5 Using a more general covariance matrix . . . . . . . . . . . . . . . . 40

3.4 Random autoregressive noise . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 The solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Preface

The arithmetic mean in many cases can be used as a proxy for a more general estimation
problem. Here, we analyse the e�ect of correlations onto the accuracy of the estimated
mean. The Note 4 generalizes the results.

3.2 Goal

We derive the precision of the correlated mean, by generatively model the observed values
as a mean value which additively is distorted by a random e�ect with zero mean. We
discuss two cases:

1. The noise in the measurements y
i
consists of a uncorrelated part di and a correlated

part b, where the correlated part b is describable as a noisy bias. Namely, we have:

y
i

= µ+ b+ di , i = 1, ..., N with di ∼M (0, σ2
d) and b ∼M (0, σ2

b ) (3.1)

We obtain the following result:

(a) The estimated mean is independent of the bias

pµ =
1

N

¸
n

yn . (3.2)

(b) The variance of the estimated mean cannot become smaller than the variance
of the bias

σ2
pµ =

σ2
d

N
+ σ2

b . (3.3)
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2. The noise is an autoregressive process of �rst order AR(1), namely

y
i

= µ+ bi , n = 1, ..., N (3.4)

and the AR(1)-process with parameter a

bi = abi−1 + ei with n > 1 (3.5)

starting with

ei ∼M (0, σ2
e) and e1 = M

(
0,

σ2
e

1− a2

)
(3.6)

The variance of the estimated mean is

σ2
pµ =

1 + a

1 + (1− 2/N)a

σ2
e

N
with |a| < 1 . (3.7)

3.3 Random constant bias

3.3.1 The model

We can write the generative model as

y = 1µ+ 1b+ n (3.8)

leading to the covariance matrix

Σyy = σ2
dIN + 11Tσ2

b . (3.9)

Thus, the observed values have the variance and covariance

σ2
yi = σ2

d + σ2
b and σyiyj = σ2

b for i /= j (3.10)

hence have correlation coe�cient

ρij =
σ2
b

δijσ2
d + σ2

b

> 0 for i /= j . (3.11)

Therefore, with the common correlation coe�cient

ρ =
σ2
b

σ2
d + σ2

b

for i /= j , (3.12)

the covariance matrix explicitly reads

Σyy = (σ2
d + σ2

b )



1 . . . ρ . . . ρ
...

. . .
...

. . .
...

ρ . . . 1 . . . ρ
...

. . .
...

. . .
...

ρ . . . ρ . . . 1

 . (3.13)

3.3.2 The solution

The Gauss-Markov model reads

y + v = 1µ with Σll = σ2
dIN + σ2

b11T (3.14)

The weight matrix of the observations has the structure

W ll = aIN + b11T . (3.15)
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Therefore, we can determine a and b from

(σ2
dI + σ2

b11T)(aI + b11T) = aσ2
dloomoon

=1

I + (aσ2
b + bσ2

d + bNσ2
b )loooooooooooomoooooooooooon

!=0

11T . (3.16)

We obtain

a =
1

σ2
d

and b = − aσ2
b

σ2
d +Nσ2

b

= − σ2
b

σ2
d(σ2

d +Nσ2
b )

(3.17)

Therefore the weight matrix is

W yy =
1

σ2
d

IN −
σ2
b

σ2
d(σ2

d +Nσ2
b )

11T =
1

σ2
d

(
I − σ2

b

σ2
d +Nσ2

b

11T

)
(3.18)

The normal equation system is
Npθ = n (3.19)

with

N = 1TW ll1 =
N

σ2
d

− N2σ2
b

σ2
d(σ2

d +Nσ2)
=
N

σ2
d

(
1− Nσ2

b

σ2
d +Nσ2

b

)
(3.20)

and

n = 1TW ll y =
1

σ2
d

(
1T − Nσ2

b

σ2
d +Nσ2

b

1T

)
y =

1

σ2
d

(
1− Nσ2

b

σ2
d +Nσ2

)¸
n

yn . (3.21)

The solution for the mean is pµ =
1

N

¸
n

yn . (3.22)

Hence we have the result: The correlated arithmetic mean is independent on the

correlation coe�cient.

The variance of the estimated mean is

σ2
pµ =

σ2
d

N

σ2
d +Nσ2

b

σ2
d

=
σ2
d

N
+ σ2

b (3.23)

Hence we have the result: The variance of the estimated mean of correlated obser-
vations diminishes with increasing N but cannot be smaller than the variance

of the bias. Hence, in case the variance of the bias is much larger than the variance of
the noise, the variance of the mean is close to the variance of the bias.

3.3.3 Alternative derivation

We assume the model[
y
b0

]
+

[
v
vb0

]
=

[
1 1
0 1

] [
µ
b

]
with D

([
y
b0

])
=

[
σ2
dI 0

0T σ2
b

]
(3.24)

with b0 = 0, since we assumed b ∼M (0, σ2
b ). The normal equation matrix

N =

[
1T 0
1T 1

] [
wdI 0
0T wb

] [
1 1
0 1

]
=

[
wdN wdN
wdN wdN + wb

]
(3.25)

with its inverse

N
−1 =

1

Nwdwb

[
wdN + wb −wdN
−wdN wdN

]
(3.26)

Hence the variances of the estimate pµ is

σ2
pµ =

σ2
d

N
+ σ2 , (3.27)
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as above.
We also can directly determine the variance of pµ using the Schur-complement of N in

(3.25):

σ2
pµ =

(
wdN −

w2
dN

2

wdN + wb

)−1

(3.28)

=

(
w2
dN

2 + wdwbN − w2
dN

2

wdN + wb

)−1

=
σ2
d

N
+ σ2

b . (3.29)

3.3.4 Covariance of arithmetic mean with correlated observations

The simple arithmetic mean assumes Σ0 := σ2
dI . Then the estimate is

pµ =
1T

N
y , (3.30)

with covariance matrix, assuming Σ0 holds

σ2
pµ0

=
σ2
d

N
. (3.31)

If this arithmetic mean is taken, but the actual covariance matrix is σ2
dIN + σ2

b11T

variance propagation of (3.30) yields

σ2
pµ =

1T

N
(σ2
dIN + σ2

b11T)
1

N
(3.32)

This can be simpli�ed to

σ2
pµ =

σ2
d

N
+ σ2

b , (3.33)

which coinsides with (3.23).

3.3.5 Using a more general covariance matrix

The observations up to now have been assumed to be positively correlated, see (3.12)

ρ =
σ2
b

σ2
d + σ2

b

or
σ2
b

σ2
d

=
ρ

1− ρ
. (3.34)

However, they also may have negative correlation. Of course, this then cannot be explained
by a stochastic bias term anymore.

Therefore we assume

Σyy = σ2
l



1 . . . ρ . . . ρ
...

. . .
...

. . .
...

ρ . . . 1 . . . ρ
...

. . .
...

. . .
...

ρ . . . ρ . . . 1

 = σ2
l (1− ρ)IN + σ2

l ρ11T . (3.35)

If ρ < 0 this is implicitly assuming σ2
b < 0. Therefore, we use the derivation above, which

is valid also for σ2
b < 0. We now realize, that the correlation cannot have an arbitrary

negative value ≥ −1, since the variance (3.23) of the mean needs to be positive. This leads
to the following constraint, �rst formally

σ2
d

N
≥ σ2

b or
1

N
≥ σ2

b

σ2
d

(3.36)
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then using (3.34)
1

N
≥ ρ

1− ρ
or

ρ

ρ− 1
≥ −1

N
, (3.37)

which �nally leads to a constraint on the correlation coe�cient

ρ ≥ −1

N − 1
. (3.38)

For example: for two observations N = 2 the correlation coe�cient may be arbitrary in
the range [−1,+1], but for three observations N = 3 the correlation coe�cient needs to
be larger than −50%.

3.4 Random autoregressive noise

3.4.1 The model

The N observations result from
y = 1µ+ b (3.39)

with the following covariance matrices

D(b) = Σbb = [Σbibj ] =
σ2
e

1− a2

[
a|i−j|

]
with |a| < 1 . (3.40)

Hence the covariance matrix of the noise is

Σyy = Σbb (3.41)

We have the inverse of the covariance matrix of the bias, which is a tridiagonal matrix:

W yy = Σ−1
bb =

1

σ2
e

Tri[1, 1 + a2, ..., 1 + a2, 1][−a, ...,−a] (3.42)

3.4.2 The solution

The Gauss�Markov model reads as

py + v = 1µ with Σyy = Σbb = W
−1
bb . (3.43)

The normal equation system now is
Npθ = n (3.44)

with (canceling the common factor σ2
e/(1− a))

N = 1TW yy1
σ2
e

1− a
=

2 + (N − 2)(1 + a2)− 2(N − 1)a

1− a
= (N − (N − 2)a) (3.45)

and

n = 1TW yyx
σ2
e

1− a
=

Ņ

n=1

xi − a
N−1̧

i=2

xi . (3.46)

The variance of the estimated mean is

σ2
pµ =

1

(1− a)(N − (N − 2)a)
σ2
e (3.47)

which can be rewritten as

σ2
pµ =

1

(1− a)(1− (1− 2/N)a)

σ2
e

N
. (3.48)

We have the following limits.
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• For large N we achieve

lim
N→∞

σ2
pµ =

1

1− a2

σ2
e

N
, (3.49)

thus the variance is larger by a factor 1/(1−a2) compared to the uncorrelated mean.

• For a = 0 we obtain the result of the uncorrelated mean.

• For a = 1, the noise process is semi-stationary, and we obtain

lim
a→1

σ2
pµ =∞ (3.50)

independent on the number of observations.

3.5 The general case

The situation of the mean with constant correlation is a special case discussed in Rao
(1967) in Lemma 5a. The estimated parameters of the model (y = Xθ,Σ) are the same
if instead of Σ the covariance matrix Σ + XΓXT is used. In our case we used Γ = σ2.
The e�ciency of the estimate, thought being the same, is reduced due to the correlations
induced by b.

Generalizing (3.24), we use the model, assuming Γ = Σbb,[
y
b0

]
+

[
v
vb

]
=

[
X X

0T I

] [
µ
b

]
with D

([
y
b0

])
=

[
Σyy 0
0T Σbb

]
(3.51)

again assuming b0 = 0. The normal equation matrix is

N =

[
M M

M M +W bb

]
(3.52)

=

[
X

T 0

X
T

I

] [
W yy 0
0T W bb

] [
X X

0 I

]
(3.53)

=

[
X

T
W yyX X

T
W yyX

X
T
W yyX X

T
W yyX +W bb

]
(3.54)

with its inverse

Σpppp = N
−1 =

[
Σpµpµ Σpµpb
Σpbpµ Σpbpb

]
. (3.55)

Now we use the inverse of Schur-complement,

Σpµpµ = (M −M(M +W bb)
−1M)−1 , (3.56)

and the Woodbury identity,

(A+ CBC
T)−1 = A

−1 − A−1
C (B−1 + C

T
A
−1
C )−1C

T
A
−1 , (3.57)

with A = M
−1, B = Σbb and C = I , and obtain

Σpµpµ = M
−1 + Σbb (3.58)

hence,
Σpµpµ = (XTΣ−1

yy X )−1 + Σbb . (3.59)

The prior, in�uencing all parameters the same way, leads to an increase of the covariance
matrix.

Again, the result, using Γ = Σbb, also holds if Γ < 0, but only if

(XTΣ−1
yy X )−1 ≥ Σbb (3.60)

42



4 Accuracy of the Mean when using a

Wrong Covariance Matrix

Suboptimal, i.e., approximate solutions often are used or needed when estimating
parameters. One of such simpli�cations refers to the stochastical model, espe-
cially the covariance matrix of the observations, which often is assume to be a
multiple of a unit matrix, implicitly assuming all observations have the same
weight and are mutually uncorrelated. This note provides the general relation
between the accuracy of the estimated parameters when using an approximate
covariance matrix and exempli�es this using the mean of repeated observations.

4.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 The accuracy of the approximate solution . . . . . . . . . . . . . . . . . . . 44

4.5 The weighted arithmetic mean . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5.1 The e�ect of using equal weights . . . . . . . . . . . . . . . . . . . . 45

4.5.2 Modeling the weights using the Gamma-distribution . . . . . . . . . 45

4.6 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Preface

The arithmetic mean in many cases can be used as a proxy for a more general estimation
problem. Here, we analyse the loss in accuracy of the estimated mean when using a wrong
covariance matrix. The note generalizes the results from Note ??.

4.2 Summary

The note shows the e�ect of using a wrong covariance matrix when estimating parameters.
Especially we obtain the following results for estimating the mean from N values ln:

1. If the mean is estimated assuming, that all values have the same weight w = 1/σ2,

thus pθ =
°
n ln/N , but the values really have individual weights

wn =
1

σ̃2
n

(4.1)

then the variance of the approximately determined mean is larger by a factor

λ = σ̃2
n · 1/σ̃2

n =
µ

(a)
σ̃2

µ
(h)
σ̃2

(4.2)

thus the ratio of the arithmetic mean and the harmonic mean of the variances. The
factor λ only is 1, in case the variances are identical for all values ln.
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2. In the special case, that the weights are assumed to be randomly taken from a
Gamma distribution and their relative variation is

c =
σw
µw

< 1 , (4.3)

then the factor is given by

λ =
1

1− c2
. (4.4)

If c ≥ 1 the factor is not limited.

4.3 Problem

If the estimation is performed in a Gauss-Markov model E(y) = Xθ with Σyy = Σ but

the true covariance matrix of the observations is �Σyy = rΣ, then the covariance matrix of
the estimated parameters is

Σpθpθ = (XTΣ−1X )−1X
TΣ−1 rΣ Σ−1X (XTΣ−1X )−1 , (4.5)

which follows from pθ = (XTΣ−1X )−1X
TΣ−1(y−x). Observe, only if Σ = rΣ do we obtain

the classical result

Σ̃pθpθ = (XTrΣ−1X )−1 . (4.6)

4.4 The accuracy of the approximate solution

The relation between both covariance matrices can be derived from the eigenvalues of the
quotient

λ(ΣpθpθΣ̃−1
pθpθ ) = λ

(
(XTΣ−1X )−1X

TΣ−1 rΣ Σ−1X (XTΣ−1X )−1 X
TrΣ−1X

)
. (4.7)

Equations (4.5) and (4.7) can be used to investigate the e�ect of choosing a simpli�ed

stochastical model, e.g., when using Σyy = σ2IN instead of rΣ.
For Σ = σ2I we would obtain

λ(ΣpθpθΣ̃−1
pθpθ ) = λ

(
(XT

X )−1X
T rΣ X (XT

X )−1 X
TrΣ−1X

)
, (4.8)

obviously, independent on the scaling of the covariance matrices.
With the hat matrix

H = X (XT
X )−1 X

T (4.9)

this is equivalent to analysing

λ(ΣpθpθΣ̃−1
pθpθ ) = λ(HrΣHrΣ−1) ≥ 1 , (4.10)

which is a unitless quantity. Due to the Gauss�Markov theorem his quantity always is
not smaller than 1, i.e., � as to be expected � the approximate solution generally is less
accurate than the optimal.

4.5 The weighted arithmetic mean

We want to investigate the e�ect of using a wrong covariance matrix in case of diagonal
covariance matrices, rΣ = Diag([�σ2

i ]) and Σ = I , (4.11)
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4.5.1 The e�ect of using equal weights

We start with a simple example, the weighted arithmetic mean of N observations. The
design matrix for the arithmetic mean is

X = 1 . (4.12)

Then with XT
X = 1T1 = N Eq. (4.10) reduces to

λ(ΣpθpθΣ̃−1
pθpθ ) =

σ2
pθ
σ̃2
pθ

(4.13)

=
1

N2
λ
(
11TrΣ11TrΣ−1

)
(4.14)

=
1

N2
λ
(
1TrΣ1 · 1TrΣ−11

)
(4.15)

=
1

N2
trrΣ · trrΣ−1 (4.16)

=

°N
n=1 σ̃

2
n

N
·
°N
n=1 wn
N

(4.17)

= σ̃2
n · wn (4.18)

=
µ

(a)
σ̃2

µ
(h)
σ̃2

≥ 1 . (4.19)

or the ratio of the arithmetic mean µ
(a)
σ̃2 = σ̃2

n and the harmonic mean µ
(h)
σ̃2 =

(
1/σ̃2

n

)−1

of the variances or of the weights. This ratio always is larger than 1 except all variances
are identical.

4.5.2 Modeling the weights using the Gamma-distribution

The Gamma-distribution is a useful model for the weights, since it is the conjugate prior
for the precision w = 1/σ2 of the Gaussian distribution with known mean.

Let the weights be Gamma distributed

wn ∼ Gamma(α, β) = Gamma(k, θ) (4.20)

where the two parametrizations are related by

k = α and θ =
1

β
. (4.21)

The mean and the variance are given by

E(wn) =
α

β
= kθ and V(wn) =

α

β2
= kθ2 . (4.22)

So, given a mean weight µw and a variance of the weights σ2
w we may choose the parameters

α =
µ2
w

σ2
w

and β =
σ2
w

µw
. (4.23)

The inverse weights, thus the variances follow an inverse Gamma distribution

σ2
n ∼ invGamma(a, b) (4.24)

with the same parameters. Their mean is

E(σ2
n) =

β

α− 1
for α > 1 and V(σ2

n) =
β2

(α− 1)2(α− 2)
. (4.25)
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For values α ≤ 1 the inverse Gamma distribution has no �nite mean, similar to the variance
of the Cauchy distribution. This is plausible, since then the likelihood of small weights
thus large variances is very high.

Hence the product of the means of the variances and the weights is given by

λ =
α

β
· β

α− 1
=

α

α− 1
≥ 1 (4.26)

So, in case the weights on an average are µw and have a standard deviation of σw =
c · µw, thus

c =
σw
µw

, (4.27)

we obtain

λ =
σ2
pθ
σ̃2
pθ

=

µ2
w

σ2
w

µ2
w

σ2
w
− 1

=
1

1− c2
. (4.28)

For values c ≥ 1 the ratio of the variances is unlimited.

4.6 An example

We take as an example the mean of two points in the plane, and compare the arithmetic
mean with the statistically optimal mean.

The Fig. 4.1 4.1 shows the arithmetic mean and the weighted mean (centroids) of two

Figure 4.1: Simple mean xaC and weighted mean xwC of two points x1 and x2 with strongly
anisotropic uncertainty (red standard ellipses). The centroid determined as weighted mean
clearly lies outside the line joining the two points.

points. They are assumed to be mutually independent. Their uncertainty is di�erent and
anisotropic (red standard ellipses). The centroids result from the two models[

x1

x1

]
∼ N

([
I 2
I 2

]
xaC , σ

2I 4

)
(4.29)

and [
x1

x1

]
∼ N

([
I 2
I 2

]
xwC ,Diag({Σ11,Σ22})

)
. (4.30)

The variance σ2 in model (4.29) was assumed to be the mean of the two variances in model
(4.30), s. the two blue circles.

Explicitly, the centroids are

pxaC =
1

2
(x1 + x2) und pxwC = (Σ−1

11 + Σ−1
22 )−1(Σ−1

11 x1 + Σ−1
22 x2) . (4.31)

The simple arithmetic mean lies in the middle of the two points x1 und x2 on the con-
necting line. The weighted mean, however, lies signi�cantly o� the connecting line. The
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uncertainty of the two given points allows, that the centroid may be more easily shifted
in the direction of the major axes of the standard ellipses.

The standard ellipses around represent centroids are

• the covariance matrix (blue circle) of the arithmetic mean, assuming the same
isotropic accuracy (blue dashed circles) of the two points. It clearly overestimates
its accuracy, compared to

• the covariance matrix (black ellipse) of the arithmetic mean, assuming the anisotropic
accuracy (red circles around the points), and

• the covariance matrix (red ellipse) of the weighted mean, which is smaller than the
accuracy of the arithmetic mean, when assuming the known uncertainty of the point
during estimation.
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5 Motions and their Uncertainty

We addresses the ambiguity of representing uncertain motions. We analyse the
relation between an exponential representation with a homogeneous 4x4 matrix
and the representation with a rotation matrix, also represented exponentially,
and a translation vector. The rotation parts turns out to be identical, while
the translation parts di�er, why a transparent documentation of the motion
representation is necessary. As a sideline, the note addresses the inversion, the
concatenation, and the di�erence of uncertain rotations and uncertain motions.
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5.1 Preface

The note initially (2009) was motivated by the need to concatenate uncertain motions.
Later, in 2017 an extension was motivated by the search for an error in a program for
estimating the motion between two point clouds based on corresponding planar regions.
The error turned out to be a conceptual one: the generation of the test data and the
check of the estimated motions was inconsistent, since one used the exponential form of a
motion, while the other used the exponential form of a rotation and the translation. For
a detailed discussion see Solà et al. (2018).

5.2 Motivation

This note is motivated by a problem when handling uncertain 3D motions or poses: The
two classical representations, the one what we call the exponential representation and the
other what we call partially exponential representation, may both be used for estimating
motions or poses, but lead to di�erent covariance matrices of the translation component.
The note aims at clarifying the mutual relations between the di�erent representations.

The exponential representation of an uncertain motion with mean rotation R and mean
translation Z, exploits the Lie group structure of the noise component of the motion using
what is called a twist vector s, which contains the noise components r and t for rotation
and translation,1 in the form

sM = exp(A(s)) M , (5.1)

with

M =

[
R Z
0T 1

]
, s =

[
r
t

]
, A(s) =

[
S(r) t
0T 0

]
, (5.2)

and

S(r) =

 0 −r3 r2

r3 0 −r1

−r2 r1 0

 . (5.3)

The matrix A(s) is close to zero, such that the motion matrix exp(A(s)) is close to I 4.
The partially exponential representation directly integrates the noise components ρ and

τ for a small rotation and translation

ζM =

[
exp(S(ρ))R Z + τ

0T 1

]
, (5.4)

into M thus only applies the exponential map to the noise component of the rotation.
Again, since ρ is small, the rotation matrix exp(S(ρ)) is close to I 3.

The following example shows the e�ect of the di�erent representations. Given are 100
random samples of an uncertain motion together with the true motion. From this sample
we may obtain two covariance matrices Σ1 and Σ2 with the following vectors of standard
deviations for the rotational and the translational component:

σ1 =


0.5109
0.4803
0.2760
0.4696
0.3324
0.3591

 and σ2 =


0.5109
0.4803
0.2760
0.6125
0.6189
0.7433

 . (5.5)

The rotation parameters have the same standard deviations, while the standard devia-
tions of the translational component signi�cantly di�er. Without further information we
cannot judge, which covariance matrix is the correct one. We would prefer the �rst one,

1Random variables are underscored.
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since it shows smaller standard deviations for the translation component, and thus is more
likely to be the Cramér-Rao lower bound for the uncertainty of the parameters. Actu-
ally, the motion matrices were simulated using the partially exponential representation
and the covariance matrices Σ1 and Σ2 were derived from the sample assuming the par-
tially exponential representation and the exponential representation, respectively. This
demonstrates, the meaning of the two vectors (r, t) and (ρ, τ ) are di�erent.

Both representations are useful, as the following examples demonstrate:

1. On one hand, concatenating uncertain motions appears to be easier with the expo-
nential representation, where the (di�erential of the) twist vector s of the concate-
nated motion M = M2M1 is given by

ds = Ad(M2) ds1 + ds2 with Ad(M2) =

[
R2 0

S(Z2)R2 R2

]
, (5.6)

or

dr = R2 dr1 + dr2 and dt = R2 dt1 + dt2 + S(Z2)R2dr2 . (5.7)

Observe, the matrix Ad(M2) only depends on one of the two motions. In contrast,
the partially exponential representation yields the joined rotation and translation
components

dρ = R2 dρ1 + dρ2 and dτ = R2 dτ 1 + dτ 2 − S(RT
2Z1)dρ2 , (5.8)

which looks very similar. But the relation cannot be written using a matrix only de-
pending on one of the two motions, which is a clear disadvantage when concatenating
multiple motions.

2. On the other hand the epipolar constraint for two calibrated images using partially
exponential representation directly refers to the uncertain rotation and translation
component

x′
T
S(Z + τ ) R(ρ)R x′′ = 0 (5.9)

whereas with the exponential representation it is given by

x′
T

[I 3 | 0 ] Ad(M)
−T

[
0

I 3

]
x′′ = 0 , (5.10)

with the adjoint motion matrix Ad(M) (5.73) or more explicitly by

x′
T
S(R(r)Z + t) R(r)R x′′ = 0 (5.11)

which is more cumbersome to handle, see (5.60).

When estimating a motion matrix from observed points, lines or planes using a maxi-
mum likelihood approach we basically obtain three types of numbers, which can be checked,
i.e., statistically tested, using simulated data, which should lead to the following state-
ments: (a) there are no reasons to believe the parameters are biased, (b) there are no
reasons to believe the variance factor2 deviates from 1, and (c) there are no reasons to
believe the theoretical covariance matrix di�ers from the empirical covariance matrix, see
(Förstner and Wrobel, 2016, Sect. 4.6.8). The test on the parameters and the covariance
matrix may be performed for rotations and translations separately. Depending on how
the representation for the motion is chosen and how the empirical tests are realized, the
parameters usually show no bias, the variance factor does not show a deviation from 1,
the covariance matrix of the rotation parameters coincide but there may be discrepancies
in the covariance matrix of the translation parameters.

2The variance factor measures the distance of the assumed model and the given data. It is Fisher
distributed, if the model holds.
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The dependency on the representation of motions or poses has a direct e�ect on (1)
checking their covariance matrices empirically, either using real or synthetic data,3 on (2)
reporting covariance matrices for motions or poses, and on (3) using them in subsequent
analysis steps.

This note especially we will show:

• The Lie group property of matrix groups can, with some slight modi�cations be
applied to the de�nition and use of uncertain motions represented with the partially
exponential representation.

• We will discuss the variance propagation for inverse, concatenated and relative mo-
tions.

• We derive the relations for rotations as most simple case, and for motions in the
mentioned two representations.

• We give two examples: (1) for estimating motions from corresponding points, and (2)
deriving relative motions from bundle adjustment taking the full covariance matrix
of the resulting pose parameters into account.

Basic material on Lie groups for representing uncertain transformations has been col-
lected by Eade (2014), however, the note does not provide proofs. The most recent paper
on handling uncertain motions which are correlated is by ?, which appears not to always
give the most intuitive expressions. Both papers do not address the second representation
with the pair (R,Z), only.

The note is organized as follows. We �rst give a summary of the relations, assuming
the reader is acquainted with the basic concepts. Then we will provide the relations
in more detail, �rst for rotations � as special motions �, and then for the two types of
motion representations. We will compare the two motion representations and, �nally, give
examples for estimating motions and analysing the relative pose derived from a bundle
adjustment. The proofs will be found in an appendix.

On notation. Matrices are written in capital sans-serif letters, homogeneous 4×4 matri-
ces in upright letters, 3×3 matrices in slanted letters, such as M, A and R, S . Vectors are
written in boldface times, 3-vectors representing 3D points in upright, such as Z vectors
representing (numerically), numerically small entities are written in small vectors, such
as r or m. Stochastic entities are underscored, such as a stochastic 3×3 matrix R or a
stochastic 3-vector r. Names of entities are written in calligraphic letters, in order to be
able to express di�erent representations, e.g., M (M) and M (R,Z). If the entity is as-
sumed to be uncertain we underscore its name, e.g., the uncertain motion may be de�ned
as M (M). For clarity, we sometimes use the multiplication dot between matrices, e.g., in
the expression Ad(M) · s, which is not the multiplication dot for the scalar multiplication
in a.b.

5.3 Overview

We assume the following notation for Lie groups, which in our context refer to groups of
regular matrices:

• A Lie group G has elements g, h ∈ G , an operation f = g ◦ h ∈ G and an inverse
element such that g−1 ◦ g = g ◦ g−1 = e, with the unit element e. The dimension
n of the Lie group is the number of degrees of freedom for representing an element.
An element of G also is called an action (rotation, motion), as it is meant to operate
on a vector.

3The author, not being aware of the di�erence in the two representations, spent one month �nding an
error in his software on estimating a motion from corresponding planes, see (Förstner and Khoshelham,
2017)
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In our case we discuss rotations R ∈ SO(3) and motionsM ∈ SE(3), having dimension
n = 3 and n = 6 respectively.

• The corresponding Lie algebra g spans the tangent space at the unit element, its
elements are n-vectors x ∈ IRn or � equivalently � matrices X = x∧ (read: �wedge�)4

linearly depending on x, y and having the same size as the elements of the Lie group.
The inverse relation is x = X∨ used for deriving the n-vector from the corresponding
matrix.

In our case the elements are 3-vectors r ∈ g = IR3, also called rotation vectors,

and the � not necessarily small � 6-vectors m ∈ g = IR6 also called twist vectors,
concatenating the rotation and the translation components of the motion. As an
example for the matrix X, we have the element S(r) = r∧ , being the skew matrix
of the rotation vector r ∈ g = IR3.

• The basic relation between the Lie algebra and the Lie group is the exponential map

g 7→ G : g = exp(x∧ ) (5.12)

which describes the elements g of G around the unit element e.

As an example, we have the exponential R(r) = exp(S(r)), being the rotation matrix
as element of G = SO(3). The unit element e ∈ G of the rotation group G = SO(3)
here is the unit matrix I 3 = exp(S(0)) and corresponds to the 3-vector 0, i.e.,
x = 0 ∈ g in the Lie algebra g = so(3).

If we write exp(x), where x is an element of the Lie algebra, we actually mean
exp(x∧ ):

exp(x) := exp(x∧ ) . (5.13)

The two tables 5.1 and 5.2 collect the main algebraic relations for rotations, and motions
in exponential and partially exponential representation. They are derived and discussed
more in detail in the next section. The collected relations are useful in the following
situations:

• Representing rotations R (R) and motions M (M) (row 1).

• Generating uncertain rotations R (R) and uncertain motions M (M) (rows 6, with
2 and 3), assuming the small elements have mean 0 and some covariance matrix.
Here the di�erence between the exponential representation M (sM) and the partially
exponential representation M (ζM) become visible.

• Deriving the small left rotation or motion from a small right rotation or motion
leading to the same uncertain rotation or motion (rows 4 and 5), e.g., in the form
M(Ad(M) ·s) M = M(sad) ·M = M ·M(s), derived from the adjoint action exp(xad) =
g exp(x)g−1. Observe, the adjoint matrix is not used in other relations of the
partially exponential representation.

• Deriving small deviations between estimated and true rotations and motions (row
7) using V (r) ≈ I 3 and R(dr) ≈ I 3 + S(dr).

• Switching between the two motion representations (row 8, columns 3 and 4).

• Deriving the mean and covariance matrix of the inverse (rows 10 and 11).

• Deriving mean and the covariance matrix of the concatenation (rows 12 and 13), of
two possibly correlated rotations or motions.

• Deriving mean and the covariance matrix of the relative rotation or motion (rows
14 and 15), of two possibly correlated rotations or motions.

Comparing the relations for the two motion representations in columns 3 and 4, we observe
great similarities, partially identical relations. Speci�cally, the two di�erential motions ds

4The notation results from the outer product of two vectors, which in the special case of 3-vectors
reduces to the cross product. Thus we have x ∧ y = x∧ y equivalent to x× y = [x]×y = S(x)y
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of the exponential representation and dζ of the partially exponential representation are
related by a linear transformation. This can be interpreted as a change of the basis of the
three axes in the tangent space of the Lie group which refer to the translation component.
On the other hand, is it obvious, that the relations for the exponential representation are
simpler and more mutually connected. As mentioned above, e.g., the concatenation of
two di�erential motions (row 12, column 3) only uses the adjoint matrix Ad(M2) of the
second motion, whereas the term −S(R2Z1) with the skew matrix in the expression for
the translation component (row 4) depends on both motions.

1 2 3 4
↓ object \ G → SO(3) SE(3), s SE(3), ζ

1 action, group element

g ∈ G R M =

[
R Z

0T 1

]
M =

[
R Z

0T 1

]
2 small algebra element

x ∈ g r s =

[
r
t

]
ζ =

[
ρ
τ

]
3 log of small action

X = x∧ S(r) A(s) =

[
S(r) t

0T 0

]
(log of row 7, column 4)

(5.3) (5.2)

4 adjoint action at e ∈ G
exp(xad) = g exp(x)g−1

R(rad) = RR(r)RT
M(sad) = M M(s) M−1

M(ζad) = M M(ζ) M−1

(5.29) (5.70) (5.91)
5 adjoint matrix for dx

Xad, dxad = Xad dx Rad = R Ad(M) =

[
R 0

S(Z)R R

]
Ad(M) =

[
R 0

S(Z)R R

]
(5.34) (5.73) (5.94)

6 uncertain group element

g = exp(x) g ∈ G , x small R = R(r)R s
M = exp(A(s)) M ζ

M =

[
R(ρ)R Z + τ

0T 1

]
(5.21) (5.52) (5.54)

7 multiplicative noise element

exp(x) = g g−1 ∈ G R(r) exp(A(s)) =

[
R(r) V (r)t

0T 1

] [
R(ρ) (I3 − R(ρ))Z + τ

0T 1

]
(5.56) (5.56) (5.90)

8 di�erential noise element

dx−1 ∈ g dr ds =

[
I3 0

S(Z) I3

]
dζ dζ =

[
I3 0

−S(Z) I3

]
ds

(5.67) (5.67) (5.67)

Table 5.1: Lie group elements (1/2): actions, adjoints, noisy elements, inverses, concate-
nations and relative actions

5.4 Uncertain Rotations

5.4.1 General setup

In all cases we represent the uncertain linear transformation X by the mean transformation
matrix of size m×m

X : {X ,Σ∆x∆x} (5.14)

and a stochastic n-vector ∆x, which captures the noise of the transformation, and has
zero mean and a covariance matrix as second moments

∆x ∼ N (0,Σ∆x∆x) . (5.15)

I.e. we assume the distribution is uni-modal and can be represented su�ciently well by the
�rst two moments. We do not assume the distribution to be a normal distribution, unless
we want to perform statistical testing. Then, we assume higher order of the nonlinear
relations e�ects are small enough to be acceptable for the application.

The dimension n of the vector ∆x is identical to the degrees of freedom of the trans-
formation, in order to have regular covariance matrix in general. Hence, the two matrices
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1 2 3 4
↓ object \ G → SO(3) SE(3), s SE(3), ζ

9 uncertain inverse

g(−1) ∈ G R
−1 = R

T
(
r(−1)

)
R

T s
M
−1 = M

−1
(
s(−1)

)
M
−1 ζ

M
−1

=

[
R(ρ(−1))RT −RTZ + τ (−1)

0
T 1

]
(5.36) (5.77) (5.95)

10 di�erential inverse

dx(−1), dx(−1) ∈ g dr(−1) = −RTdr ds(−1) = −M−1

ad
ds

[
dρ(−1)

dτ (−1)

]
= −

[
R

T
0

R
T
S(Z) R

T

] [
dρ
dτ

]
(5.38) (5.78) (5.97)

11 concatenation
g = g2 ◦ g1 ∈ G R = R2R1 M = M2M1 M = M2M1

12 di�erential
concatenation dr = R2,ad dr1 + dr2 ds = Ad(M2) ds1 + ds2 dρ = dρ2 + R2dρ1

dx = d(x2 ◦ x1) dτ = dτ2 + R2dτ1 − S(R2Z1)dρ2
(5.42) (5.238) (5.244)

13 relative action

g = g−1
1 ◦ g2 ∈ G R = R

T
1R2 M = M

−1
1 M2 M = M

−1
1 M2

14 di�erential

relative action dr = R
T
1(dr2 − dr1) ds12 = M

−1

1,ad
(ds2 − ds1) dρ = R

T
1(dρ2 − dρ1)

dx = d(x−1
1 ◦ x2) dτ = R

T
1S(Z2 − Z1)dρ1 + R

T
1d(τ2 − τ1)

(5.49) (5.87) (5.107), (5.108)

Table 5.2: Lie group elements (2/2): actions, adjoints, noisy elements, inverses, concate-
nations and relative actions

X and Σ∆x∆x have di�erent dimension in general. The matrix X may be the mean mo-
tion X := E(X), or an estimated motion X := pX , depending on the context. If we use
a minimal representation, it also may be the vector x specifying the motion. The way
how X is related to ∆x needs to be speci�ed, and even may vary for the same type of
transformation. In all cases we might exploit the fact that transformations build a Lie
group, i.e., a continuous group, and can be written as matrix exponential. We warm up
with rotations as special motions.

5.4.2 Representing rotations

There are many ways to represent rotations. We only address three of them.

1. We start with the classical de�nition of rotations using Euler angles, say α =
(α1, α2, α3). We generally have the uncertain rotation

R : {α,Σ∆α∆α} . (5.16)

e.g., speci�ed by

R = R2(α3)R2(α2)R1(α1) with α = α+ ∆α , (5.17)

where the indices of the rotation matrices indicate the rotation axes. In whatever
sequenced the angles are applied, and what ever axis sequence is chosen, the repre-
sentation for some angles will have a singularity, what is called the gimbal lock.

2. Therefore the Rodriguez form, depending on a rotation vector ϑ, often is preferred.
Here we have the uncertain rotation

R : {ϑ,Σ∆ϑ∆ϑ} . (5.18)

It is given by the exponential map of the skew matrix Sϑ of the rotation vector ϑ:

R = exp(S(ϑ)) = I 3 +
sin ‖ϑ‖
‖ϑ‖

Sϑ +
1− cos ‖ϑ‖
‖ϑ‖2

S
2
ϑ with ϑ = ϑ+ ∆ϑ , (5.19)
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3. Finally, we also can adopt the multiplicative de�nition of an uncertain rotation. Here
the uncertain rotation is given by

R : {R,Σrr} , (5.20)

speci�ed by
R = exp(S(r)) R = R(r) R . (5.21)

5.4.3 Relations between the representations

When comparing the three de�nitions of the uncertain rotations, we need to have explicit
expressions for the derivatives of R w.r.t. the elements of the noise component, either ∆α,
∆θ, or r.

Unfortunately, the expressions for the derivatives of the exponential exp(S(ϑ)) w.r.t. ϑ
at some arbitrary � not necessarily small � vector, e.g., at ϑ = E(ϑ) are quite cumbersome.
Therefore in the following we will not use the de�nition of an uncertain transformation
using the exponential of some matrix depending on arbitrary parameters. This excludes
choice 2 for de�ning uncertain rotations.

However, we can derive the Jacobian of the angles r in the multiplicative exponential
representation w.r.t. Euler angles α. We speci�cally have

Jrα =
∂r

∂α
= [R2(α3)R2(α2)e1 | R2(α3)e2 | e3] , (5.22)

see Appendix 5.8.2. Since |Jrα| = cosα2 we have

Jαr = J
−1
rα if cosα2 /= 0 . (5.23)

This not only makes the Gimbal lock of the representation with Euler angles explicit, but
shows, that we can choose either representation if we avoid the Gimbal lock.

Since all minimal representations for rotations show singularities for speci�c rotations
or are not unique, we only discuss the option 3, with the multiplicative way to represent
an uncertain rotation.

5.4.4 The rotation in exponential representation

We now discuss the adjoint rotation, the inverse, the concatenated, and the relative rota-
tion.

5.4.4.1 The adjoint rotation

Let us for a moment de�ne an uncertain rotation by �rst applying a small random rotation
R(q) and then a �xed large rotation, e.g., R := E(R):

R = R R(q) D(q) = Σqq . (5.24)

Applying it to a vector x we obtain a stochastic vector

y = R x = R R(q) x . (5.25)

Now, let us choose another small rotation via what is called the adjoint rotation vector
qad

5

R(qad) = R R(q) R−1 = R R(q) RT . (5.26)

If we apply this small rotation with qad to y = Rx we obtain

R(q
ad

) R x = R R(q) x . (5.27)

5the use of the name q for a rotation vector, should not be confused with the common naming of
quaternions, which do not play a role in this note.
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Hence, if we �rst perturb x by a small rotation q and then rotate the perturbed vector
R(q) x we obtain the same uncertain vector as when �rst rotating x and then perturbing
the rotated vector y = Rx with the adjoint rotation vector q

ad
. We could also have

written the relation � neutrally w.r.t. order � as

R(q
L

) R x = R R(q
R

) x , (5.28)

the indices standing for left and right hand rotation. Hence the adjoint rotation q
ad

=: q
L

leads to the same result if applied to the left of a rotation as the original rotation q applied
to the right of a rotation.6

Thus we have for any rotation vector r the adjoint rotation

R(rad) = R R(r) R−1 (5.29)

or the relation
R(rad) R = R R(r) . (5.30)

Now, we express the di�erential adjoint rotation vector drad directly as a function of the
di�erential vector dr. We have

dR(rad) R = R dR(r) (5.31)

or
S(drad) R = R S(dr) = S(Rdr) R (5.32)

hence
drad = R dr . (5.33)

We observe: the di�erential rotation vector r and its di�erential adjoint rotation vector
drad are linearly related by the rotation matrix R. Since, due to R(r) = I 3 +S(r)+O(r2

i ),
the vector r spans the tangent space of a rotation at the unit rotation. But rad also de�nes
a basis, just a di�erent one in this 3-dimensional tangent space.

Later we will see that the rotation matrix in (5.33) actually is the adjoint rotation
matrix, which in this case simpli�es to

Rad = R , (5.34)

see (5.73).

5.4.4.2 The uncertain inverse rotation

Let now the uncertain rotation be given by

R = R(r) R . (5.35)

The inverse rotation is represented the same way

R
−1 = R(r(−1)) R−1 . (5.36)

The mean of the uncertain inverse is the inverse of the mean rotation:

E(R−1) = (E(R))
−1

. (5.37)

The di�erential rotation vector dr(−1) of the inverse rotation can be shown to be

dr(−1) = −RTdr , (5.38)

see Appendix 5.8.5.

6Following this interpretation of the adjoint rotation it would have been straight forward to de-
�ne an uncertain rotation by R = R exp(S(r)). However, most authors use the original de�nition
of an uncertain rotation, where the noise component of the rotation is applied after the mean rota-
tion. Unfortunately the de�niton of a similarity transformation or conjugation of matrices B = X

−1
AX

(https://mathworld.wolfram.com/SimilarMatrices.html) is just using the inverse operation sequence as
the adjoint action exp(xad) = g exp(x) g−1 in a Lie group; however, see https://mathworld.wolfram.

com/SimilarityTransformation.html.
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5.4.4.3 The uncertain concatenated rotation

Let a possibly correlated rotation pair be given by

{
R

1
,R

2

}
:

{
[R1,R2],D

([
r1

r2

])}
. (5.39)

The concatenated rotation is

R = R
2
R

1
: R = R2R1 = R(r)R . (5.40)

The mean of the concatenated rotations is

E(R) = E(R2) E(R1) . (5.41)

The di�erential of the rotation vector r of the concatenated rotations is given by

dr = R2dr1 + dr2 . (5.42)

This is a special case of the concatenated motions, see Appendix 5.8.8.

Observe, Eq. (5.42) allows to derive the uncertainty of a correlated rotation pair{
R

1
,R

2

}
Σrr = J Σpp J

T , (5.43)

with

J = [R2 | I 3] and Σpp = D

([
r1

r2

])
=

[
Σr1r1 Σr1r2

Σr2r1 Σr2r2

]
. (5.44)

5.4.4.4 The uncertain relative rotation

We want to determine the relative rotation

R12 = R
−1
1 R2 (5.45)

in case all rotations are uncertain and possibly correlated. Let the uncertain rotations be
given by

R1 = R(r1) R1 and R2 = R(r2) R2 . (5.46)

Then the uncertain relative rotation is

R(r12) R12 = (R(r1) R1)−1R(r2) R2 . (5.47)

The mean of the relative rotations is

E(R) = E(R1)−1 E(R2) . (5.48)

The di�erential dr12 of the rotation vector of the relative rotation is

dr12 = R
T
1 (dr2 − dr1) . (5.49)

The result is a special case of the relative motion, see Appendix 5.8.10

The result in (5.49) can be derived using the relation (5.36) for the inverse and the
relation (5.42) for the concatenation.
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5.5 Uncertain Motions

5.5.1 Representations

The uncertainty of a motion is captured in the uncertain twist vector m(∆m)

∆m ∼ N (0,Σ∆m∆m) . (5.50)

We address the following two representations

1. The exponential representation with the twist vector

m : s =

[
r
t

]
. (5.51)

is given by

sM : sM = exp(A(s)) M with A(s) =

[
S(r) t
0T 0

]
. (5.52)

2. The partially exponential representation with the twist vector

m : ζ =

[
ρ
τ

]
. (5.53)

is given by

ζM : ζM =

[
ζR ζZ
0T 1

]
(5.54)

with
ζR = exp(S(ρ)) R and ζZ = Z + τ (5.55)

It appears obvious, that both representations are useful. However, they di�er in the
meaning of the twist vector, as we will see.

Observe, we have

R(r) = exp(S(r)) and M(s) = exp(A(s)) =

[
R(r) V (r)t
0T 1

]
(5.56)

with

R(r) = I 3 +
∞̧

n=1

S
n(r)

n!
= I 3 +

sin ‖r‖
‖r‖

Sr +
1− cos ‖r‖
‖r‖2

S
2
r (5.57)

and

V (r) = I 3 +
∞̧

n=1

S
n(r)

(n+ 1)!
= I 3 +

1− cos ‖r‖
‖r‖2

Sr +
1− sin ‖r‖
‖r‖3

S
2
r . (5.58)

see Leonardos et al. (2015, eq. (19)). Thus for small values of ‖r‖ we may use the �rst
order approximation

V (r) ≈ I 3 . (5.59)

Therefore we have for an uncertain motion in exponential representation with small s

sM ≈
[
R(r) t
0T 1

] [
R Z
0T 1

]
=

[
R(r)R R(r)Z + t

0T 1

]
. (5.60)

The corresponding expression for the partially exponential representation is lengthy.
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5.5.2 Comparing the two representations

We now compare the two representations with the two twist vectors

s =

[
r
t

]
and ζ =

[
ρ
τ

]
(5.61)

for de�ning the uncertain motions as

sM = exp(A(s)) M and ζM =

[
exp(S(ζ)) R Z + τ

0T 1

]
. (5.62)

Assuming the two uncertain motions are statistically equivalent, we can relate the di�er-
entials of the twist vectors. We obtain the total di�erential for the two motions from:

• for the exponential representation

sdM =

[
S(dr) dt

0T 0

] [
R Z
0T 1

]
=

[
S(dr)R S(dr)Z + dt

0T 1

]
(5.63)

and

• for the partially exponential model

ζdM =

[
S(dρ) dτ

0T 0

] [
R Z
0T 1

]
=

[
S(dρ)R dτ

0T 1

]
(5.64)

If the uncertain motions are the same, the two di�erentials must be identical, and we
obtain the relations

dr = dρ or dρ = dr (5.65)

dt = dτ + S(Z)dρ or dτ = dt− S(Z)dr (5.66)[
dr
dt

]
=

[
I 3 0

S(Z) I 3

] [
dρ
dτ

]
or

[
dρ
dτ

]
=

[
I 3 0

−S(Z) I 3

] [
dr
dt

]
between the twist vectors s and ζ. Hence, we have the relations

ds = Jsζdζ and dζ = Jζsds (5.67)

with

Jsζ =

[
I 3 0

S(Z) I 3

]
and Jζs = J

−1
sζ =

[
I 3 0

−S(Z) I 3

]
. (5.68)

This allows us to transfer the covariance matrices of the twist vectors

Σsξ = JsζΣζζJ
T
sζ and Σζζ = JsζΣssJ

T
sζ . (5.69)

between both representations.

As a result, we �nd: the uncertain rotation components dr and dρ of both representa-
tions are identical but the uncertain translation components dt and dτ di�er by the e�ect
of the uncertain rotation applied to the full translation Z.

5.5.3 The motion in exponential representation

We now discuss the adjoint, the inverse, the concatenated, and the relative motion in
exponential representation.
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5.5.3.1 The adjoint motion for the exponential representation

The adjoint motion M(sad) is de�ned with, what is called the adjoint motion vector sad,

M(sad) = M M(s) M−1 . (5.70)

For proofs we often use it in the di�erential form

A(sad) M = M A(s) , (5.71)

allowing to exchange the di�erential of the perturbing noise matrix A and the motion
matrix M. Also here we obtain a simple linear relation between the di�erentials of the
twist vectors

dsad = Ad(M) ds , (5.72)

with the adjoint motion matrix relating the two 6-vectors

Ad(M) =

[
R 0

S(Z)R R

]
, (5.73)

and its inverse

M−1
ad =

[
R

T
0

R
T
S

T(Z) R
T

]
. (5.74)

Eq. (5.73) can also be written as

A (Ad(M) · ds) M = M A(ds) . (5.75)

The proof is given in Appendix 5.8.3. We observe: the di�erential rotation vector s
and its di�erential adjoint motion vector dsad are linearly related by the adjoint motion
matrix Ad(M). The relation between the small motion vectors only holds for di�erential
motions. This is su�cient for all practical cases, where the relative precision of the motion
parameters is high enough. Observe, when restricting to rotations we have

Rad = R , (5.76)

The simplicity of this relation does not reveil the strength of the concept for more general
transformations.

5.5.3.2 The inverse motion in exponential representation

Similarly as for rotations, we can derive the relation between the di�erential twist vector
of the inverse motion to the one of the original motion.

We have the basic relation

M−1 = M
(
s(−1)

)
·M−1 = (M(s) ·M)−1 = M−1 ·M−1(s) . (5.77)

Using the adjoint motion we can derive the following relation between the di�erential twist
vectors:

ds(−1) = −Ad(M)
−1

ds , (5.78)

see the proof in the Appendix 5.8.6

5.5.3.3 The concatenated motion in exponential representation

Let a possibly correlated motion pair be given by

{
sM 1,

sM 2

}
:

{
[M1,M2],D

([
s1

s2

])}
. (5.79)
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The concatenated motion is

sM = sM 2
sM 1 : sM = sM2

sM1 = M(s)M . (5.80)

The mean of the concatenated motion is

E(sM) = E(sM2) E(sM1) . (5.81)

The di�erential of the rotation vector s of the concatenated rotation is given by

ds = M2ds1 + ds2 . (5.82)

see Appendix 5.8.8.

5.5.3.4 The relative motion in exponential representation

We want to determine the relative motion

M12 = M−1
1 M2 (5.83)

in case all motions are uncertain. Let the uncertain motions be given by

sM1 = M(s1) M1 and sM2 = M(s2) M2 . (5.84)

Then the uncertain relative motion is

M(s12) M12 = (M(s1) M1)−1M(s2) M2 ., (5.85)

The mean of the relative rotations is

E(sM) = E(sM1)−1 E(sM2) . (5.86)

The di�erential ds12 of the rotation vector of the relative rotation is

ds12 = MT
1 (ds2 − ds1) . (5.87)

see Appendix 5.8.10

5.5.4 The motion in partially exponential representation

The uncertain motion is de�ned as

ζM =

[
R(ρ)R Z + τ

0T 1

]
, D(ζ) = Σζζ , (5.88)

We also can write this as a multiplication of a motion with a small random motion

ζM = M(ζ) M with (5.89)

with the small motion

M(ζ) =

[
R(ρ) (I 3 − R(ρ))Z + τ
0T 1

]
and M =

[
R Z
0T 1

]
(5.90)
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5.5.4.1 The adjoint motion for the partially exponential representation

Since the adjoint motion transfers small motions, we also can de�ne an adjoint motion in
case of the partially exponential representation. It is de�ned as the motion depending on
the adjoint twist vector ζad

M(ζad) = M M(ζ) M−1 . (5.91)

Thus we have the form which can be used in proofs

M(ζ
ad

) M = M M(ζ) . (5.92)

Interestingly, also here we have a linear relationship between the di�erential adjoint
twistvector dζad and the di�erential original twist vector dζ:

dζad = ζMad dζ (5.93)

with the adjoint motion matrix

ζMad =

[
R 0

S(Z) R R

]
, (5.94)

Observe, that the two adjoint matrices sMad in (5.73) and ζMad in (5.94) are identical.
This results from the fact, that the adjoint motion for a di�erential twist has translation
component zero, hence the two adjoint twist vectors do not di�er if the original twist
vectors are the same: The Jacobians in (5.68) then are unit matrices. This is the reason,
why we did not indicate the di�erence in the naming of the adjoint matrices in Table 5.1
in row 5, columns 3 and 4.

5.5.4.2 The inverse motion in partially exponential representation

The uncertain inverse in partially exponential representation is de�ned as

ζM
−1

=

[
R(ρ(−1))RT −RTZ + τ (−1)

0 1

]
, (5.95)

and depends on the stochastic twist vector

ζ(−1) =

[
ρ(−1)

τ (−1)

]
. (5.96)

As we saw in the last section, the di�erential adjunct twists are related to their twists via
the adjoint motion matrix, which is identical for both cases. Therefore also the di�erential
of the inverse twist vector in the partially exponential representation is given by

[
dρ(−1)

dτ (−1)

]
= −

[
R

T
0

−RT
S

T(Z) R
T

] [
dρ
dτ

]
, (5.97)

see Appendix 5.8.7. Observe, this is not the negative inverse of the adjunct motion matrix,
since we have

Ad(M) Ad(M)
−1

=

[
R 0

S(Z) R R

] [
R

T
0

−RT
S(Z) R

T

]
=

[
I 3 0

0 I 3

]
, (5.98)

and the second factor di�ers in the sign of the (2,1)-submatrix.
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5.5.4.3 The concatenated motion in partially exponential representation

Let a possibly correlated motion pair be given by

{
ζM 1,

ζM 2

}
:

{
[M1,M2],D

([
ζ

1
ζ

2

])}
. (5.99)

The concatenated motion is

ζM = ζM 2
ζM 1 : ζM = ζM2

ζM1 . (5.100)

We �nd the mean values of the concatenated motion is

E(ζM) = E
(
ζM2

)
E
(
ζM1

)
. (5.101)

The di�erentials of the twist vectors also are linearly related by

dρ = dρ2 + R2dρ1 and dτ = dτ 2 + R2dτ 1 − S(R2Z1)dρ2 (5.102)

Observe, the rotation component transforms as for the exponential represenation and
the translation component has a di�erent term with the skew matrix. Moreover, and much
more important: this matrix depends on both motions via Z1 and R2, which complicates
multiple concatenations.

5.5.4.4 The relative motion in partially exponential representation

Let a possibly correlated motion pair be given by

{
ζM 1,

ζM 2

}
:

{
[M1,M2],D

([
ζ

1
ζ

2

])}
. (5.103)

Then the relative pose can be determined by

ζM12 = ζM
−1

1
ζM2 =

[
ζR12

ζZ12

0T 1

]
=

[
R(ρ

12
)R12 Z12 + τ 12

0T 1

]
. (5.104)

or from
ζR12 = ζR

T

1
ζR2 and ζZ12 = ζR

T

1 (ζZ2 − ζZ1) . (5.105)

We obtain the mean relative motion as

E(ζM12) = E(ζM1)−1E(ζM2) (5.106)

Using the result from the uncertain relative rotation the di�erentials of the rotation and
the translation vector are related by

dρ12 = R
T
1 (dρ2 − dρ1) (5.107)

and by variance propagation from (5.105)

dτ 12 = R
T
1S(Z2 −Z1)dρ1 + R

T
1d(τ 2 − τ 1) . (5.108)

5.5.5 Evaluating the covariance matrix of estimated motions

We now discuss how to evaluate whether a theoretical covariance matrix is consistent with
an empirical one.

Evaluating whether the theoretical covariance matrix Σpθpθ of estimated parameters θ

is trustworthy, it can be compared with the empirical covariance matrix pΣpθpθ derived from
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a sample of {pθk, k = 1, ...,K}, when knowing the true value θ̃, e.g., when using simulated
data pΣpθpθ =

1

K

Ķ

k=1

(pθk − θ̃)(pθk − θ̃)T . (5.109)

In our context we, instead of the di�erences pθk−θ̃ of the estimated and the true parameters
we use the estimated twist vectors xmk, since their means are zero.

When evaluating the covariance matrix of estimated motions from a sample pMk, k =
1, ...,K and a given true motion M we need to distinguish how we determine the empirical
covariance matrix of the twist vector.

• In the case of the exponential representation we use the small matrices

Lk = pMkM
−1 (5.110)

=

[ pRk pZk
0T 1

] [
R

T −RTT
0T 1

]
(5.111)

=

[ pRkRT pZk − pRkRTZ
0T 1

]
(5.112)

≈ I 4 +

[
S(prk) ptk

0T 1

]
. (5.113)

and derive the small twist vectors psk = (prk,ptk) from

prk =

 Lk23

Lk12

Lk31

 =

 (pRkRT)23

(pRkRT)12

(pRkRT)31

 and ptk =

 Lk14

Lk24

Lk34

 = pZk − pRkRTZ (5.114)

This also could be written compactly as

psk = log
(pMkM

−1
)∨

, (5.115)

the operator ∨ (read: �vee�) being the inverse of the operator ∧, thus, if X = x∧ we
have x = X∨.

Then the empirical covariance matrix of ps is

pΣpsps =
1

K

¸
k

sks
T
k . (5.116)

• In the case of the partially multiplicative model we use

Gk = pRkRT ≈ I 3 + S(ρk) and hk = pZk −Z = τ k (5.117)

This leads to the elements of the small twist vector ζk = (ρk, τ k)

ρk =

 Gk23

Gk12

Gk31

 =

 (pRkRT)23

(pRkRT)12

(pRkRT)31

 and τ k = hk = pZk −Z . (5.118)

Then the empirical covariance matrix of ps is

pΣpζ pζ =
1

I

¸
k

ζkζ
T
k . (5.119)

As a result, linearizing the given model and deriving the empirical deviations of the esti-
mated motions from the true motion need to be consistent.

In both cases we use a statistical test to check whether the expectation of the covariance
matrix from the sample is identical to the theoretical covariance matrix, see (Förstner and
Wrobel, 2016, Sect. 4.6.8.2).

65



5.6 Examples

We discuss two applications:

• Estimating motion parameters,

• Comparing absolute and relative poses.

5.6.1 Estimating motion parameters

Let us assume we have given I corresponding 3D points {X,Y }i, i = 1, ..., I, where the
coordinates Xi are �xed given values, and the coordinates Y i are noisy observations
of the corresponding moved points Xi, having covariance matrices Σii. We assume the
correspondences are mutually independent, hence Σii′ = 0 . Then, with the homogeneous
coordinates

Xi =

[
Xi

1

]
and Yi =

[
Y i

1

]
(5.120)

we have the non-linear Gauss-Markov model (stochastical variables are underscored)

E(Yi) = M Xi and D(Yi) =

[
Σii 0
0T 0

]
with i = 1, ..., I . (5.121)

or, with the residuals (corrections),

Yi + vi = M Xi . (5.122)

We assume we have an approximate motion matrix Ma. The model needs to be linearized,
which depends on the type of representation.

5.6.1.1 Linearization with the exponential representation

With the exponential representation we have

Yi + vi = M(s) Ma Xi = M(s) Xa
i (5.123)

with the approximately moved coordinates

sXa
i = Ma Xi . (5.124)

The goal is to estimate the twist vector s form the I correspondences. Linearization leads
to

Yi + vi = (I 4 + A(s)) sXa
i (5.125)

where vi are the residuals of (corrections to) the coordinates Yi. With the linearized
observations

s∆y = Yi − sXa
i (5.126)

this can be rewritten as

s∆yi + vi = A(s)) sXa
i (5.127)

s∆yi + vi =

[
S(r) t
0T 0

] [
sXa

i

1

]
(5.128)

s∆yi + vi = S(r)sXa
i + t (5.129)

(5.130)

thus �nally

s∆yi + vi = [−S(sXa
i ) | I 3]

[
s
t

]
(5.131)
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or the linear substitute model
∆yi + vi = sX i ∆θ (5.132)

with the design matrix for each point and the unknown parameters

sX i = [−S(sXa
i ) | I 3] and ∆θ = s . (5.133)

The update of the parameters within the ν-th iteration is

sM(ν+1) =

[
exp(S(pr(ν))) pt(ν)

0T 1

]
M(ν) . (5.134)

5.6.1.2 Linearization with the partially exponential representation

With the exponential representation we have

Yi + vi = ζM Xi =

[
R(ρ) R Z + τ

0T 1

] [
Xi

1

]
(5.135)

Linerization leads to

Yi + vi =

[
(I 3 + S(ρ)) Ra Za + τ

0T 1

] [
Xi

1

]
(5.136)

Yi + vi =

[
R
a Xi + S(ρ) Ra Xi +Za + τ

1

]
(5.137)

With the approximately rotated coordinates

ζX
a

i = R
a Xi (5.138)

and the linearized observations

ζ∆y = Y i − (Ra Xi +Za) (5.139)

we have the linearized model

ζ∆y + ζvi = S(ρ)ζX
a

i + τ (5.140)

or �nally
ζ∆y + ζvi = ζX i ∆θ (5.141)

with
ζX i = [−S(ζX

a

i ) | I 3] and ∆θ = ζ . (5.142)

The update of the parameters within the ν-th iteration is

ζM
(ν+1)

=

[
R(pρ(ν)) R(ν) Z(ν) + pτ (ν)

0T 1

]
. (5.143)

5.6.1.3 Comparison

The design matrices di�er in the argument of the skew matrix. For the exponential model
we have explicitly

sX i = [−S(RaXi +Za) | I 3] (5.144)

while for the partially exponential model we have

ζX i = [−S(RaXi) | I 3] (5.145)

Hence, the normal equation matrices

sN =
¸
i

sX
T
i Σ−1

ii
sX i and ζN =

¸
i

ζX
T

i Σ−1
ii

ζX i (5.146)
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are di�ering in the rotation component and therefore also the inverse normal equation
matrices, i.e., the covariance matrices of the estimated parameters.

Observe, in an extended Kalman �lter for the motion parametrized by x with inno-
vation of measurement residual yk = zk − h(pxk|k−1) the Jacobian H = ∂h/∂x depends
on the representation of the motion in the function h, which may use one of the repre-
sentations discussed in this note. The resulting covariance matrices will of course di�er,
depending on the choice of the representation.

5.6.2 Example for comparing absolute and relative poses in multi-

view analysis

Let aus assume a free bundle block adjustment with two cameras at Zt, t = 1, 2 and 6
scene points Xi, i = 1..6, as shown in Fig 5.1. The basis points towards the scene points,
mimicking a docking situation. We are interested in precision of the relative motion.

X

21

i

ZZ

D

Z

X

Y

Figure 5.1: Relative motion from free bundle adjustment. The basis is 1 m. The distance
D to the scene points is 2 m. The distance di�erence of the scene points is 0.3 m. The
uncertainty of the image rays is 0.1 mrad

The free bundle adjustment with the software package BACS7 (Schneider and Förstner,
2013) yields the covariance matrix of all pose parameters �xing the gauge in the centroid
of the given scene points. The covariance matrix of the 12 parameters of the two twists is
given by

Σpppp = D

([
ζ

1
ζ

2

])
= SRS (5.147)

where the diagonal matrix S = Diag([σpu ]) contains the standard deviations, and the
matrix R = [ρu′u′′ ] the correlations between the parameters. As an example we obtain the
standard deviations for the rotations in [rad] and for the translations in [m] σρ11 στ11 σρ21 στ21

σρ12 στ12 σρ22 στ22
σρ13 στ13 σρ23 στ23

 =

 0.0141 0.0425 0.0137 0.0278
0.0141 0.0425 0.0137 0.0278
0.0004 0.0121 0.0003 0.0078

 (5.148)

The correlation matrix R is given by

1

1000



1000 0 0 0 −1000 0 995 0 0 0 −995 0
0 1000 0 1000 0 0 0 995 0 995 0 0
0 0 1000 0 0 0 0 0 7 0 0 0
0 1000 0 1000 0 0 0 995 0 995 0 0

−1000 0 0 0 1000 0 −995 0 0 0 995 0
0 0 0 0 0 1000 0 0 0 0 0 992

995 0 0 0 −995 0 1000 0 0 0 −1000 0
0 995 0 995 0 0 0 1000 0 1000 0 0
0 0 7 0 0 0 0 0 1000 0 0 0
0 995 0 995 0 0 0 1000 0 1000 0 0
−995 0 0 0 995 0 −1000 0 0 0 1000 0

0 0 0 0 0 992 0 0 0 0 0 1000



For symmetry reasons the rotations around and the translations along the X- and the
Y -axes have the same standard deviation. Observe the position of the cameras w.r.t. scene
is only 3 to 4 cm. Also, the rotation angles around the Y -and the Y -axis are 0.014 [rad] or
appr. 0.8◦. Also there are very high correlations between the two sets of pose parameters,
some numerically nearly 1.

7bundle adjustment for cameras systems
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If we now determine the relative pose M := M12 = M−1
1 M2 we obtain the following set

of standard deviations of the twist vector of the relative pose using (5.107) and (5.108) σρ1 στ1
σρ2 στ2
σρ3 στ3

 =

 0.0014 0.0028
0.0014 0.0028
0.0005 0.0045

 (5.149)

The precision of the rotations around and the translations along the X- and Y -axes are
approximately 10-times more precise, which is cause by the high correlations of the corre-
sponding pose parameters of the two cameras. The correlation matrix of the relative pose
parameters is 

1.0000 0 0 0 −0.4963 0
0 1.0000 0 0.4963 0 0
0 0 1.0000 0 0 0
0 0.4963 0 1.0000 0 0

−0.4963 0 0 0 1.0000 0
0 0 0 0 0 1.0000

 (5.150)

showing no correlations above 50 %.

5.7 Matlab Software

The main routines are available as Matlab-functions.

1 calc_A_from_s.m A =

[
S(r) t

0T 0

]
2 calc_concatenated_M_s.m M(s) = M(s2) ·M(s1)

4 calc_concatenated_M_z.m M(ζ) = M(ζ
2
) ·M(ζ

1
)

5 calc_concatenated_R.m R(r) = R2(r2) · R(r1)

6 calc_inverse_M_s.m M(s(−1)) = M(s)

7 calc_inverse_M_z.m M(ζ(−1)) = M(ζ)

8 calc_inverse_R.m R(r(−1)) = R(r)

9 calc_relative_M_s.m M(s) = M−1(s1) ·M(s2)

10 calc_relative_M_z.m M(ζ) = M−1(ζ
1
) ·M(ζ

2
)

11 calc_relative_R.m M(r) = R
T(r1) · R(r2)

12 calc_s_from_A.m A =

[
S(r) t

0T 0

]
→ s =

[
r

t

]
13 calc_z_from_M_M0.m M = M(ζ) ·M0 → ζ

Table 5.3: Matlab routines for rotations and motions in exponential and partially expo-
nential representation

The variables for rotations and motions are structs:

{R.R, R.C} {M.Ms, M.Cs} {M.Mz, M.Cz} . (5.151)

with the covariance matrices *.C* having the sizes 3×3, 6×6, and 6×6. For the input of
the concatenated and relative rotations and motions we have structs for the transformation
pairs:

{Rp.Rp, Rp.Cp} {Mp.Msp, Mp.Csp} {Mp.Mzp, Mp.Czp} . (5.152)
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Here the transformations are concatenated leading to

Rp.Rp = [R1.R,R2.R] (5.153)

Msp.Msp = [M1s.Ms,M2s.Ms] (5.154)

Mzp.Mzp = [M1z.Mz,M2z.Mz] . (5.155)

The covariance matrices of the pairs allow for correlated transformation parameters, i.e.,

Rp.Cp :=

[
Σr1r1 Σr1r2

Σr2r1 Σr2r2

]
(5.156)

Msp.Csp :=

[
Σs1s1 Σs1s2

Σs2s1 Σs2s2

]
(5.157)

Mzp.Czp :=

[
Σζ1ζ1 Σζ1ζ2

Σζ2ζ1 Σζ2ζ2

]
. (5.158)

In addition we have two routines for each representation to check the implementation:

• check_basics_rotations.m and check_simulated_rotation.m,

• check_basics_motion_s.m and check_simulated_motion_s.m, and

• check_basics_motion_z.m and check_simulated_motion_z.m.

One checks the basic relations:

• vector of adjoint transformtion,

• vector of inverse transformtion,

• function for inverse transformtion,

• vector of concatenated transformtion,

• vector of relative transformtion,

• di�erence transformation T12 as concatenation of T −1
1 and T2, hence T12 = T −1

1 ◦T2.

The output are di�erences between entities derived in two di�erent manners, which there-
fore should be numerically small. If no relation fails the numerical test, the transformation
is classi�ed as ok.

The other checks the whether the mean parameters and their covariance matrix de-
rived from a sample is identical to the given (theoretical) mean and covariance matrix.
The output provides the test statistics for the covariance matrix and the mean and the
corresponding critical region. E.g. for the exponentially represented motion we obtain:

Checks for motions s

Number U of unknown parameters = 6

Redundancy R = 6

Number K of samples = 100

-------------------------------------------------

covariance matrix C_xx ok: lambda = 23.9562 in [5.8957,49.0108]

mean of parameters x ok: mean(dx) = 6.2880 in [0.2994,24.1028]

If the prespeci�ed noise standard deviation sigma_n is small, generally no test fails. If
it is set to sigma_n= 0., it is likely that the tests fail due to neglected second order e�ects.
Also, if the number K of samples is large, the statistical test becomes more sensitive, such
that test statistics may lie outside the critical region.

Finally, the covariance matrices derived with the partially exponential and the expo-
nential representations are compared assuming the motions have been generated with the
partially exponential representation. The comparison shows, that the rotations together
with their covariance matrix do not signi�cantly di�er, but the mean values do:
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Checks for rotations s|z

Number U of unknown parameters = 3

Redundancy R = 3

Number K of samples = 100

-------------------------------------------------

covariance matrix C_xx ok: lambda = 11.8448 in [0.2994,24.1028]

mean of parameters x ok: mean(dx) = 1.6323 in [0.0153,17.7300]

++++++++++++++++++++++++++++++++++++++++++++++++

Checks for translations s|z

Number U of unknown parameters = 3

Redundancy R = 3

Number K of samples = 100

-------------------------------------------------

covariance matrix C_xx not ok: lambda = 108.5578 not in [0.2994,24.1028] *****

mean of parameters x ok: mean(dx) = 0.5210 in [0.0153,17.7300]

5.8 Appendix

5.8.1 Epipolar constraint using motion matrices

If the two images can be modelled as (see Förstner and Wrobel (2016, Eq. (12.34)), PCV)

x′ = [K1 | 0]M−1
1 X and x′′ = [K2 | 0]M−1

2 X

the projection rays are (see PCV (12.76))

lx′ = Q1 L and lx′′ = Q2 L

with the projection matrices for lines

Q1 = [0 | KO
1] M−1

L,1 and Q2 = [0 | KO
2] M−1

L,2

The motion matrix for lines and its inverse are given by (see PCV (12.75))

ML =

[
R 0

S(Z)R R

]
and M−1

L =

[
R

T
0

R
T
S

T(Z) R
T

]
and identical to the adjoint motion matrix, see Table row 5:

ML ≡ Ad(M) (5.159)

Hence we have the line projection matrices

Q1 = [0 | KO
1] M−1

ad,1 and Q2 = [0 | KO
2] M−1

ad,2

Two lines Li, i = 1, 2 intersect if LT
1DL2 = 0 (see PCV (7.100)), which is the basis for the

de�nition of the fundamental matrix (see PCV (13.70))

F = Q1DQ
T
2 = [0 | KO] M−1

ad,1

[
0 I

I 0

]
M−T

ad,2

[
0

KOT

]
which specializes to the essential matrix assuming the coordinate system in the left image
and the motion M from the left to the right camera

E = [I 3 | 0 ]M−T
ad,2

[
0

I 3

]
= S(Z)R . (5.160)
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5.8.2 Di�erential relation between Euler angles and the exponen-

tial representation

A rotation can be represented by Euler angles with the vector

α =

 α1

α2

α3

 (5.161)

e.g., as
R(α) = R3(α3)R2(α2)R1(α1) (5.162)

and by a multiplicative representation with a small vector

r =

 r1

r2

r3

 (5.163)

as
R(r,Ra) := R(r)Ra . (5.164)

The task is to derive the Jacobian

Jrα =
∂r

∂α
. (5.165)

We start from the identity of the total derivative

dR = dR(α) = dR(r,Ra) . (5.166)

and aim at �nding a relation between dα and dr under the assumption R = R
a, i.e.,

di�erential vectors dα and dr. We �rst obtain

dR(α) = d (R3(α3)R2(α2)R1(α1)) (5.167)

= dR3(α3) (R2(α2)R1(α1)) + R3(α3) dR2(α2) R1(α1) + (R3(α3)R2(α2)) dR1(α1)

Now we observe, e.g., for α1

dR1(α1) = d

 1 0 0
0 cosα1 − sinα1

0 sinα1 cosα1

 (5.168)

=

 0 0 0
0 − sinα1 − cosα1

0 cosα1 − sinα1

dα1 (5.169)

=

 0 0 0
0 0 −1
0 +1 0

 1 0 0
0 cosα1 − sinα1

0 sinα1 cosα1

dα1 (5.170)

= S(e1)R1(α1)dα1 , (5.171)

or generally
dRi(α) = S(ei)Ri(α)dαi . (5.172)

Similarly we thus have

dR2(α2) = S(e2)R2(α2) dα2 and dR3(α3) = S(e3)R3(α3) dα3 (5.173)

This leads to

dR(α) = S(e3) R3(α3) R2(α2) R1(α1) dα3 + (5.174)

R3(α3) S(e2) R2(α2) R1(α1) dα2 + (5.175)

R3(α3) R2(α2) S(e1) R1(α1) dα1 (5.176)
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We now use the relation R(a× b) = Ra× Rb which is valid for all b in the form

RS(a) = S(Ra)R or RS(a)RT = S(Ra) . (5.177)

Then we obtain

dR(α) = S(e3)R dα3 + (5.178)

S(R3(α3)e2)R dα2 + (5.179)

S(R3(α3)R2(α2)e1)R dα1 (5.180)

or the skew symmetric matrix

dR(α)RT = S(e3dα3) + (5.181)

S(R3(α3)e2dα2) + (5.182)

S(R3(α3)R2(α2)e1dα1) (5.183)

Now the total di�erential of R(r;Ra) is given by

dR(r,Ra) = S(dr)Ra (5.184)

Hence we have
dR(r,Ra)RaT = S(dr) (5.185)

Since the approximate rotation matrix is the point of linearization, we have the constraint

dR(α)RT = dR(r,Ra)RT (5.186)

Therefore the two skew symmetric matrices (5.181) and (5.185) need to be identical. From
this we follow

e3dα3 + R3(α3)e2dα2 + R3(α3)R2(α2)e1dα1 = dr (5.187)

or
dr = Jrα dα (5.188)

with the Jacobian
Jrα = [R3(α3)R2(α2)e1 | R3(α3)e2 | e3] (5.189)

The determinant of the Jacobian is

|Jrα| = cosα2 . (5.190)

This is why for cosα2 = 0 or for α2 = ±90◦ there is no unique relation between dr and
dα, which is known as the Gimbal lock.

5.8.3 Adjoint motion matrix in exponential representation

We prove (5.73):

Ad(M) =

[
R 0

S(Z)R R

]
. (5.191)

For this, we express the di�erential dsad of the small motion vector saddirectly as a function
of the di�erential ds. We start from (5.71)

dM(sad) M = M dM(s) (5.192)

with its di�erential
A(dsad) M = MA(ds) (5.193)

With the vector

dsad =

[
drad
dtad

]
(5.194)
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this explicitly yields[
S(drad) dtad

T 0

] [
R Z
0T 1

]
=

[
R Z
0T 1

] [
S(dr) dt

0T 0

]
(5.195)[

S(drad) R S(drad) Z + dtad
0T 0

]
=

[
R S(dr) Rdt

0T 0

]
(5.196)[

S(drad) R S(drad) Z + dtad
0T 0

]
=

[
S(Rdr) R Rdt

0T 0

]
(5.197)

hence by comparing the upper left submatrices

drad = R dr , (5.198)

and therefore
dtad = R dt+ S(Z)drad . (5.199)

Compound this reads as

dsad = Ad(M) ds with Ad(M) =

[
R 0

S(Z)R R

]
. (5.200)

with the adjoint motion matrix Ad(M).

5.8.4 Adjoint motion in partially exponential representation

We prove (5.94)

dζad = ζMad dζ with ζMad =

[
R 0

S(Z) R R

]
(5.201)

with the vector

dζad =

[
dρad
dτ ad

]
. (5.202)

We have start from
M(dζad) = M M(dζ) M−1 (5.203)

The di�erential reads[
S(dρad) dτ ad

0T 0

]
=

[
R Z
0T 1

] [
S(dρ) dτ

0T 0

] [
R

T −RTZ
0T 1

]
=

[
R S(dr) Rdτ

0T 0

] [
R

T −RTZ
0T 1

]
(5.204)

=

[
RS(dρ)RT −RS(dρ)RTZ + Rdτ

0T 0

]
(5.205)

=

[
S(Rdρ) −S(Rdρ)Z + Rdτ

0T 0

]
(5.206)

=

[
S(Rdρ) S(Z)Rdρ+ Rdτ

0T 0

]
(5.207)

From the upper left sub-matrix we conclude

dρad = R dρ . (5.208)

With this relation we obtain from the upper right part

dτ ad = R dτ + S(Z)R dρ . (5.209)
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Joined this can be written as

dζad = ζMad dζ with ζMad =

[
R 0

S(Z) R R

]
. (5.210)

with the adjoint motion matrix ζMad, which is the same as for the exponential represen-
tation.

5.8.5 Uncertain inverse rotation

We prove (5.36). We have the relation

R(r(−1)) R−1 = (R(r) R)−1 = R
T
R

T(r) . (5.211)

Taking the total di�erential we obtain

S(dr(−1)) R−1 = R
T
S

T(dr) . (5.212)

This yields
S(dr(−1)) = R

T
S

T(dr)R = S(−RTdr) . (5.213)

Thus we obtain the Jacobian

Jr(−1)r =
∂r(−1)

∂r
= −RT . (5.214)

Remark: If we would have de�ned the uncertain rotation with a noisy rotation from the right
R = RR(r), we would have obtained:

R
−1

R(r(−1)) = (R R(r))−1 = R
T(r) RT , (5.215)

thus the di�erential
S(dr(−1)) = R S

T(dr) RT = S
T(Rdr) , (5.216)

thus
dr(−1) = −Rad dr = −R dr . (5.217)

This relation is slightly more intuitive than (5.214). �

5.8.6 Uncertain inverse motion in exponential representation

We prove (5.78)

ds(−1) = −Ad(M)
−1

ds . (5.218)

We have the basic relation

exp(A(s(−1))) ·M−1 = (exp(A(s)) ·M)−1 = M−1(exp(A(s))−1 . (5.219)

Taking the total di�erential, and using the �rst order approximation of (exp(X ))−1 =
I − X + 1/2X 2 − ... we obtain by taking the total di�erential

A
(
ds(−1)

)
M−1 = −M−1 A(ds) . (5.220)

This yields

A
(
ds(−1)

)
= −M−1 A(ds)M , (5.221)

or
MA

(
ds(−1)

)
M−1 = −A(ds) (5.222)

thus using (5.75)

A
(
Ad(M)ds(−1)

)
= −A(ds) (5.223)

Therefore, we obtain the Jacobian

Js(−1)s =
∂s(−1)

∂s
= −M−1

ad , (5.224)

which yields

ds(−1) = −Ad(M)
−1

ds . (5.225)
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5.8.7 Uncertain inverse motion in partially exponential represen-

tation

We prove (5.97) [
dρ(−1)

dτ (−1)

]
= −

[
R

T
0

−RT
S

T(Z) R
T

] [
dρ
dτ

]
. (5.226)

It should hold[
R(ρ)R Z + τ
0 1

] [
R(ρ(−1))RT −RTZ + τ (−1)

0 1

]
= I 4 , (5.227)

or [
R(ρ)RR(ρ(−1))RT

R(ρ)R(−RTZ + τ (−1)) +Z + τ

0T 1

]
= I 4 . (5.228)

The di�erential of the upper left submatrix is

S(dρ) + RR(dρ(−1))RT = S(dρ) + R(Rdρ(−1)) = 0 . (5.229)

Therefore we obtain

dρ(−1) = −RT dρ . (5.230)

The di�erential of the upper right matrix is

− S(dρ)Z + Rdτ (−1) + dτ = 0 (5.231)

This yields

dτ (−1) = R
T
S(dρ)Z − RTdτ = −RT

S(Z)dρ− RTdτ . (5.232)

This can be written as [
dρ(−1)

dτ (−1)

]
= −

[
R

T
0

R
T
S(Z) R

T

] [
dρ
dτ

]
(5.233)

5.8.8 Uncertain concatenated motions in exponential representa-

tion

We prove (5.82)

ds = M2ds1 + ds2 . (5.234)

We start from the total di�erential of M = M2M1:

A(s)M = A(s2)M + M2A(s1)M1 (5.235)

or multiplying with M−1 = M−1
1 M−1

2 from the right

A(s) = M2A(s1)M−1
2 + A(s2) . (5.236)

With (5.75) we thus obtain

A(s) = A(M2ad s1) + A(s2) . (5.237)

This allows to express the di�erential motion parameters as

ds = M2adds1 + ds2 . (5.238)
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5.8.9 Uncertain concatenated motions in partially exponential rep-

resentation

We prove (5.244)

dρ = dρ2 + dR2ρ1 and dτ = dτ 2 + R2dτ 1 − S(R2Z1)dρ2 . (5.239)

We explicitly have

M =

[
R(ρ)R Z + τ

0T 1

]
=

[
R(ρ) (I 3 − R(ρ))Z

0T 1

] [
R Z
0T 1

]
(5.240)

and similarly

Mi =

[
R(ρ

i
)Ri Zi + τ i

0T 1

]
Therefore

M =

[
R(ρ

2
)R2 Z2 + τ 2

0T 1

] [
R(ρ

1
)R1 Z1 + τ 1

0T 1

]
(5.241)

=

[
R(ρ

2
)R2R(ρ

1
)R1 R(ρ

2
)R2(Z1 + τ 1) +Z2 + τ 2

0T 1

]
(5.242)

We now linearize, multiplicatively for R, additively for Z:[ (
S(dρ2) + R2S(dρ1)RT

2

)
R (R2Z1 +Z2) + S(dρ2)R2Z1 + R2dτ 1 + dτ 2

0T 1

]

=

[
(S(dρ2 + R2dρ1)) R Z + S(dρ2)R2Z1 + R2dτ 1 + dτ 2

0T 1

]
(5.243)

By comparison with (5.240) we �nd

dρ = dρ2 + dR2ρ1 and dτ = dτ 2 + R2dτ 1 − S(R2Z1)dρ2 (5.244)

Relation to the concatenated motion with exponential representation. We can
write (5.244) as

dζ = Mcon1 dζ1 + Mcon2dζ2 , (5.245)

with

Mcon1 =

[
R2 0

0 R2

]
and Mcon2 =

[
I 3 0

−S(R2Z1) I 3

]
. (5.246)

Using the Jacobians Jsζ for switching between the representations, see (5.67) we can show,
that this leads to the form

ds = M2ad ds1 + dζ2 with M2ad =

[
R2 0

S(Z2)R2 R2

]
. (5.247)

In detail we have

dζ = Mcon1 dζ1 + Mcon2dζ2 (5.248)

Jζsds = Mcon1 J1,ζsds1 + Mcon2J2,ζsds2 (5.249)

ds = J
−1
ζs Mcon1 J1,ζsds1 + J

−1
ζs Mcon2J2,ζsds2 (5.250)

Now we use

Jζs =

[
I 3 0

−S(R2Z1 +Z2) I 3

]
and Ji,ζs =

[
I 3 0

−S(Zi) I 3

]
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and �rst obtain

J
−1
ζs Mcon1 J1,ζs =

[
R2 0

S(R2Z1 +Z2)R2 R2

]
J1,ζs (5.251)

=

[
R2 0

S(R2Z1 +Z2)R2 − R2S(Z1) R2

]
(5.252)

=

 R2 0

S(Z2)R2 + S(R2Z1)R2 − R2S(Z1)loooooooooooooomoooooooooooooon
=0

R2

 (5.253)

=

[
R2 0

S(Z2)R2 R2

]
. (5.254)

Similarly we have

J
−1
ζs Mcon2J2,ζs =

[
I 3 0

S(R2Z1 +Z2)− S(R2Z1) I 3

]
J2,ζs =

[
I 3 0

0 I 3

]
,

which yields
ds = M2ad ds1 + ds2 . (5.255)

5.8.10 Uncertain relative motion in exponential representation

We prove (5.87)
ds12 = M−1

1,ad (ds2 − ds1) . (5.256)

The uncertain relative motion is

M(s12) M12 = (M(s1) M1)−1M(s2) M2 ., (5.257)

or
M(ds12) M12 = M−1

1 M−1(ds1)M(ds2) M2 . (5.258)

Taking the total di�erential, we obtain

A(ds12) M12 = M−1
1 A(−ds1) M2 + M−1

1 A(ds2) M2 . (5.259)

or
A(ds12) = M−1

1 A(ds2 − ds1) M1 (5.260)

or
M1A(ds12)M−1

1 = A(ds2 − ds1) (5.261)

Hence, with
M1A(ds12)M−1

1 = A(Ad(M1) ds12) (5.262)

Therefore we �nally have the relation

ds12 = M−1
1,ad (ds2 − ds1) . (5.263)

Check using the inverse and the concatenation We start from the concatenation

M = M2M1 , (5.264)

use (5.78) and (5.238)

ds(−1) = −M−1
ad ds and ds = Ad(M2) ds1 + ds2 , (5.265)

and apply this to
M12 = M−1

1 M2 . (5.266)

This yields
ds12 = M−1

1,ad ds2 −M−1
1,ad ds1 = M−1

1,ad (ds2 − ds1) . (5.267)
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5.8.11 Uncertain relative motion in partially exponential repre-

sentation

We prove (5.107) and (5.108)

dρ12 = R
T
1d(ρ2 − ρ1) and dτ 12 = R

T
1S(Z2 −Z1)dρ1 + R

T
1d(τ 2 − τ 1) . (5.268)

We start from

Mi :=

[
R(ρ

i
)Ri Z i + τ i

0T 1

]
(5.269)

and obtain

M12 = M−1
1 M2 (5.270)

=

[
R(ρ

1
)R1 Z 1 + τ 1

0T 1

]−1 [
R(ρ

2
)R2 Z 2 + τ 2

0T 1

]
(5.271)

=

[
R

T
1R

T(ρ
1
) −(RT

1R
T(ρ

1
))(Z 1 + τ 1)

0T 1

] [
R(ρ

2
)R2 Z 2 + τ 2

0T 1

]
=

[
R

T
1R

T(ρ
1
)R(ρ

2
)R2 R

T
1R

T(ρ
1
)(Z 2 + τ 2)− (RT

1R
T(ρ

1
))(Z 1 + τ 1)

0T 1

]
Linearizing the rotation multiplicatively and the translation additively we have

M12 ≈
[
R

T
1 (ST(dρ1) + S(dρ2))R2 R

T
1S

T(dρ1)Z2 + R
T
1dτ 2)− RT

1S
T(dρ1))Z1 − RT

1dτ 1)
0T 1

]
=

[
R

T
1S(dρ2 − dρ2) R

T
1S(Z2 −Z1)dρ1(Z 2 + dτ 2) + R

T
1 (dτ 2 − dτ 1)

0T 1

]
(5.272)

Check using the inverse and the concatenation We start from the concatenation

M = MlMr , (5.273)

use (5.97) and (5.244)

dζ(−1) =

[
dρ(−1)

dτ (−1)

]
=

[
−RT

0

−RT
S(Z) −RT

] [
dρ
dτ

]
(5.274)

and [
dρ
dτ

]
=

[
R ldρr + dρl

R ldτ r + dτ l − S(R lZr)dρl

]
. (5.275)

and apply this to

Mlr := M−1
1loomoon
Ml

M2loomoon
Mr

=

[
R

T
1 −RT

1Z1

0T 1

] [
R2 Z2

0T 1

]
=

 R
T
1R2loomoon
R12

R
T
1 (Z2 −Z1)looooooomooooooon
Z12

0T 1

 .
(5.276)

We obtain

Mlr :=

[
R(ρ

12
)R12 Z 12 + τ 12

0T 1

]
(5.277)

We use [
dρr
dτ r

]
:=

[
dρ2

dτ 2

]
(5.278)

and[
dρl
dτ l

]
:=

[
−RT

1 0

−RT
1S(Z1) −RT

1

] [
dρ1

dτ 1

]
=

[
−RT

1dρ1

−RT
1S(Z1)dρ1 − R

T
1dτ 1

]
(5.279)
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Now, we have[
dρlr
dτ lr

]
=

[
dρ

(−1)
12

dτ
(−1)
12

]
(5.280)

=

[
R

T
1dρ2 − R

T
1dρ1

R
T
1dτ 2 − RT

1dτ 1 − RT
1S(Z1)dρ1 − S(RT

1Z2)(−RT
1dρ1)

]
=

[
R

T
1 (dρ2 − dρ1)

R
T
1 (dτ 2 − dτ 1) + R

T
1S(−Z1 +Z2)dρ1

]
(5.281)
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6 Centroid Form of an Uncertain Plane

A plane can be represented in various manners. We especially discuss the centroid
form of an uncertain plane, which naturally results from estimating a plane from a
given point set. We discuss the representation, its recursive estimation assuming
isotropic point uncertainty and optimal estimation.

6.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Centroid Representation of a Plane . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.1 The Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.2 Covariance Matrix of the Plane Parameters . . . . . . . . . . . . . . 83

6.3 Uncertain Plane from 3D Points . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.1 Fitting a plane through 3D points with isotropic uncertainty . . . . 84
6.3.2 Fitting a plane through a set of 3D points with arbitrary covariance

matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.3 Checking a Set of Points for Planarity . . . . . . . . . . . . . . . . . 90

6.4 Estimating a Mean Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4.1 Estimating the mean plane using moments . . . . . . . . . . . . . . 91
6.4.2 Approximate estimating the mean plane using plane parameters . . 92
6.4.3 An optimal solution based on the centroid representation . . . . . . 93

6.5 Motion from Plane to Plane correspondences . . . . . . . . . . . . . . . . . 95
6.5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5.2 Minimal Solution for the Motion from Three Plane Correspondences 96
6.5.3 An Iterative Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5.4 Theoretical Accuracy of the Motion . . . . . . . . . . . . . . . . . . 97

6.1 Problem

This note (2020) collects methods for representing and estimating uncertain planes. It
focusses on the geometrically intuitive centroid representation, naturally resulting from
�tting a plane through a point cloud. We collect methods for estimating a plane from
scene points, for averaging uncertain planes and for estimating a motion for plane corre-
spondences.

The statistically rigorous estimation, discussed here in Sect. 6.3.2, has the advantage
of giving insight into the uncertainty structure, whereas the solution based on spherically
normalized homogeneous plane coordinates in Note 7 is technically more elegant, and
easily generalizes to the estimation of multiple planes.

A natural representation of an uncertain plane is its centroid form

A : {X0,Q;σq, σφ, σψ} , (6.1)

see Fig. 6.1. This representation can directly be derived from a set of 3D points Xi, i =
1, ..., I with isotropic uncertainty ΣXiXi = σ2

i I 3.
This note addresses three problems, namely

1. the estimation of a plane from uncertain points,

2. the estimation of a spatial motion from plane-to-point correspondences, and

3. the estimation of a spatial motion from plane-to-plane correspondences.
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6.2 Centroid Representation of a Plane

6.2.1 The Representation

The centroid representation of a plane is given by (see Fig. 6.1)

A : {X0,Q;σq, σφ, σψ} . (6.2)

X’

Y’
q

q

N

A

2L
1L

2

1

X0

Figure 6.1: Uncertain plane A . Its center is X0; the center is that point of the plane where
the uncertainty across the (perpendicular to the) plane is smallest; it is uncertain along the
normal by σq. Its normal is N ; its rotational uncertainty is composed of two independent
uncertain rotations around L1 and L2 which are mutually perpendicular. The standard
deviations σφ and σψ are the uncertainties of the X ′- and Y ′-components of the normal N .
The three directions form an orthonormal tripod Q = [q1, q2,N ]

Here we have:

• the coordinates of the centroid Z;

• the rotation matrix

Q = [q1, q2, q3] (6.3)

with its normal

N = q3 = Qe3 (6.4)

and the local coordinate system [q1, q2] in the plane, where q1 is the major axis,
and q2 is the minor axis of the moment matrix point cloud, when projected into the
plane.

• the variance σ2
q across the plane;

• the variances σ2
φ of the normal around q2 and σ2

ψ around q1.

The point Z0(Z0) closest to the origin is given by

Z0 = DN . (6.5)

We will represent the coordinates X0 of the centroid X0 as the sum of two orthogonal
vectors Z0 and M

X0 = Z0 +M = Q(DN ′′ +M ′′) . (6.6)

see Fig. 6.2, and � represented in the rotated coordinate system (see Fig. 6.2 right) �

N ′′ = N ′ =

 0
0
1

 = e3 M ′′ =

 M ′′X
M ′′Y

0

 . (6.7)
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Z
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XX

.
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.
M

Figure 6.2: Representation of uncertain plane. Left: Relation between global frame
(XY Z) and the local frame (X ′Y ′Z′). Right: Relation between the global system rotated
by Q (X ′′Y ′′Z′′) and the local frame (X ′Y ′Z′), which are parallel

6.2.2 Covariance Matrix of the Plane Parameters

The standard deviations can be derived by transforming the points into the coordinate
system (X ′Y ′Z ′) of their weighted centroid. Then we only have three uncertain parameters
collected in the 3-vector

A◦ =

 A◦1
A◦2
A◦3

 . (6.8)

We have

• the uncertain Z ′-coordinate A◦1 of the centroid, and

• the uncertain X ′- and Y ′-coordinates (A◦2, A
◦
3) of the normal.

Hence we represent the uncertainty of the plane by

D(A◦) =

 σ2
q

σ2
φ

σ2
ψ

 . (6.9)

The three parameters are related to the centroid and the normal by

∆A∗ :=

[
∆X0

∆N

]
=


Q

 0
0

∆A◦1


Q

 ∆A◦2
∆A◦3

0



 = Jr(Q)∆A◦ (6.10)

with

Jr(Q)
6×3

=

[
Q

Q

]


0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

 =

[
q3 0 0
0 q1 q2

]
. (6.11)

The covariance matrices of the centroid and the normal then can be given directly. The
centroid and the normal are statistically uncorrelated.

The centroidX0 is only uncertain across the plane, hence in the direction of the normal

ΣX0X0
= Q

 0
0

σ2
q

QT = σ2
qNN

T . (6.12)
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The uncertainty of the normal N is

ΣNN = Q

 σ2
φ

σ2
ψ

0

QT = σ2
φq1q

T
1 + σ2

ψq2q
T
2 . (6.13)

Hence the direction of the major uncertainty of the normal of the plane is coded in the
covariance matrix. Eqs. (6.12) and (6.13) clarify, why we only need the rotation matrix Q
and the three standard deviations σq, σφ, and σψ for representing the uncertainty of the
plane. The rotation matrix Q this is responsible for both, the normal and the covariance
matrix of the plane.

The inverse relation is

∆A◦ =

 0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

[ Q
T

Q
T

] [
∆X0

∆N

]
=

 qT
3 0T

0T qT
1

0T qT
2

[ ∆X0

∆N

]
=: JT

r (Q)∆A∗ .

(6.14)
which has covariance matrix

ΣA◦A◦ =

 σ2
q

σ2
φ

σ2
ψ

 . (6.15)

Hence, if a point Xi lies on the plane A , then the point X ′i ([X ′i, Y ′i , 0]) lies on the plane
A ′, which is the X ′Y ′-plane. The points Xi and X ′i are related by

Xi = QX ′i +X0 or X ′i = Q
T(Xi −X0) . (6.16)

6.3 Uncertain Plane from 3D Points

6.3.1 Fitting a plane through 3D points with isotropic uncertainty

Given are I uncertain 3D points Xi, i = 1, ..., I, with {Xi, σ
2
i I 3}.

1. We can show that the best �tting plane A(A) with

A =

[
N
−D

]
(6.17)

passes through the weighted centroid X0, that its normal N is the eigenvector of
the (unweighted) moment matrix belonging to the smallest eigenvalue, and that it
is given by NT(X −X0) = 0.

The moment matrix is

M =
¸
i

wi(Xi −X0)(Xi −X0)T = QΛQT = λ1q1q
T
1 + λ2q2q

T
2 + λ3q3q

T
3 (6.18)

with

wi =
1

σ2
i

and X0 =

°
i wiXi°
wi

(6.19)

and the rotation matrix,
Q = [q1, q2, q3] , (6.20)

and the diagonal matrix

Λ =

 λ1

λ2

λ3

 , (6.21)

where the eigenvalues are sorted in decreasing order. The normal is

N = q3 = eT
3Q . (6.22)
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2. (Exercise) Show the theoretical variances of the parameters of a plane through I
equally weighted (wi = 1) 3D points Xi with standard deviation σ for all coordinates
can be determined from

σ2
q =

σ2

I
σ2
φ =

σ2

λ1
σ2
ψ =

σ2

λ2
, (6.23)

where σ2
q is the variance of the position of the plane in the direction of the normal

and σ2
φ and σ2

ψ are the variances of rotations around the two principle axes of the
point set.

Hint: Translate the point cloud into the origin and rotate it such that the two major
axes of the moment matrix fall into the X- and the Y -coordinate axes. Then apply
the reasoning from the chapter on the best �tting 2D line.

Using the weighted moment matrix, for general weights this generalizes to

σ2
q =

1

Iw̄
σ2
φ =

1

λ1
σ2
ψ =

1

λ2
(6.24)

3. (Exercise) Show that the estimated variance of the plane's position q perpendicular
to the plane and the two principle normal directions are given by

σ2
q =

1

I − 3

λ3

I
σ2
φ =

1

I − 3

λ3

λ1
σ2
ψ =

1

I − 3

λ3

λ2
. (6.25)

Using the weighted moment matrix, for general weights this generalizes to

pσ2
q =

1

I − 3

λ3

Iw̄
pσ2
φ =

1

I − 3

λ3

λ1
pσ2
ψ =

1

I − 3

λ3

λ2
. (6.26)

6.3.1.1 Relation to moments and recursive estimation

Now we observe, that the parameters specifying an uncertain plane can be uniquely derived
from the non-central moments. They allow a simple and possibly recursive estimation of
the mean of several planes.

The non-central moments are

mkln =
¸
i

wiX
k
i Y

l
i Z

n
i with k + l + n ∈ {0, 1, 2} (6.27)
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namely

m000 =
¸
i

wi (6.28)

m100 =
¸
i

wiXi (6.29)

m010 =
¸
i

wiYi (6.30)

m001 =
¸
i

wiZi (6.31)

m200 =
¸
i

wiX
2
i (6.32)

m110 =
¸
i

wiXiYi (6.33)

m101 =
¸
i

wiXiZi (6.34)

m020 =
¸
i

wiY
2
i (6.35)

m011 =
¸
i

wiYiZi (6.36)

m002 =
¸
i

wiZ
2
i (6.37)

together with the number of points
I =
¸
i

1 . (6.38)

Especially we have

Iw = m000 (6.39)

X0 = m100/m000 (6.40)

Y0 = m010/m000 (6.41)

Z0 = m001/m000 (6.42)

µ200 = m200/m000 −X2
0 (6.43)

µ110 = m110/m000 −X0Y0 (6.44)

µ101 = m101/m000 −X0Z0 (6.45)

µ020 = m020/m000 − Y 2
0 (6.46)

µ011 = m011/m000 − Y0Z0 (6.47)

µ002 = m002/m000 − Z2
0 (6.48)

M =

 µ200 µ110 µ101

µ110 µ020 µ011

µ101 µ011 µ002

 . (6.49)

The eigenvalues of the moment matrix yield the variances of the position and the normal
via (6.26). Hence we have a mapping from the moments m (including the number of
points I) to the centroid form c of the plane

m 7→ c : c = c(m) or
{
X0,Q;σ2

q , σ
2
φ, σ

2
ψ

}
← {m000, ...,m002, I} . (6.50)

6.3.2 Fitting a plane through a set of 3D points with arbitrary

covariance matrix

We can assume to have approximate values, thus only need to update these using an
iterative scheme, where often only one iteration is necessary.
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6.3.2.1 An iterative solution

We start from the nonlinear constraints

gi(xXi;xN , pD) = xNTxXi − pD = 0 (6.51)

where D is the distance of the plane to the origin. We will later �nd the centroid X0 on
the plane. In addition, we have the length constraint for the normal

h(xN) =
1

2

(
|xN |2 − 1

)
= 0 (6.52)

Starting from approximate values for the unknown parameters and the �tted observa-
tions we thus have the linearized model

gi(xXi;xN , pD) = xNaTxXa

i − pDa +xNaTy∆Xi +xXaT

i
z∆N + y∆D = 0 (6.53)

or
gi(xXi;xN , pD) = gi(xXa

i ;xNa
, pDa) + aT

i
x∆θ + bT

i
y∆y = 0 (6.54)

with the corrections to the unknown parameters, collected in a 4-vector

x∆θ :=

[ z∆Ny∆D
]
, y∆yi := y∆Xi , ai :=

[ xXa

i

1

]
, and bi := Na . (6.55)

Therefore we have the normal equations

Mx∆p = m or

[
N H

H
T 0

] [ x∆θ
λ

]
=

[
n
ch

]
(6.56)

with

N =
¸
i

wqiaia
T
i , (6.57)

n =
¸
i

wqi(ai(−gi + bT
i (xXi −Xi)) , (6.58)

H = xNa
, (6.59)

cg = −(|xNa
|2 − 1) (6.60)

wqi =
1

bT
i Σyiyibi

:=
1

NaTΣXiXiN
a

(6.61)

We use the following update for the normal

xN = N(xNa
+ ∆xN) (6.62)

The covariance matrix of the parameters results from the inverse of the normal equation
matrix, or, when eliminating the Lagrangian parameter from the 4× 4 matrix

Σpθpθ = (N + HH
T)−1 − HHT =

[
ΣxNxN ΣxN pD
Σ pDxN Σ pD pD

]
, (6.63)

which has rank 3, and generally is a full matrix.

6.3.2.2 Choosing the Local Coordinate System

We now choose the points reduced to some reference frame with center X0 and axes Q

Xi = QX ′i +X0 or X ′i = Q
T(Xi −X0) , (6.64)
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In homogeneous coordinates this is[
Xi

1

]
=

[
Q X0

0T 1

] [
X ′i
1

]
(6.65)

The plane therefore transforms as

A =

[
Ah

A0

]
=

[
Q X0

0T 1

]O

=

[
A′h
A′0

]
= A′ (6.66)

or explicitly [
Ah

A0

]
=

[
Q 0

−XT
0Q 1

] [
A′h
A′0

]
. (6.67)

The normal N = Ah therefore is transformed as

N = QN ′ or N ′ = Q
TN . (6.68)

The distance D = −A0 to the origin is transferred as

D = D′ +XT
0QN

′ = D′ +XT
0N or D′ = D −NTX0 . (6.69)

The covariance matrices transform as

D(A) =

[
ΣNN ΣND

ΣDN σ2
D

]
(6.70)

=

[
Q 0

XT
0Q 1

] [
ΣN ′N ′ 0

0 σ2
D′

] [
Q

T
Q

TX0

0 1

]
(6.71)

=

[
QΣN ′N ′Q

T
QΣN ′N ′Q

TX0

XT
0QΣN ′N ′Q

T XT
0QΣN ′N ′Q

TX0 + σ2
D′

]
(6.72)

and

D(A′) =

[
ΣN ′N ′ ΣN ′D′

ΣD′N ′ σ2
D′

]
(6.73)

=

[
Q

T 0

−XT
0 1

] [
ΣNN 0

0 σ2
D

] [
Q

T −X0

0 1

]
(6.74)

=

[
Q

TΣNNQ −QTΣNNX0

−XT
0 ΣNNQ XT

0 ΣNNX0 + σ2
D

]
(6.75)

We �rst choose Q such that the covariance matrix

ΣxNxN = QΣxN ′xN ′Q
T = Q

 σ2
pφ

σ2
pψ

0

QT (6.76)

of the normal is diagonal, which can be achieved by an eigenvalue decomposition of ΣxNxN .
Then the normal is (6.4)

xN ′ = N


 pN ′XpN ′Y

1


 = N

([ xN ′r
1

])
= Q

TN . (6.77)

After the diagonalization we obtain the covariance matrix, where the distance D′′ is in
the rotated and not yet translated system:

D

([ xN ′pD′′
])

=

 Diag([σ2
pφ, σ

2
pψ]) 0 ΣxN ′r pD′′

0T 0 0
Σ pD′′xN ′r 0 σ2

pD′′

 (6.78)
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with

D

([
N ′X
N ′Y

])
= Diag([σ2

pφ, σ
2
pψ]) =

[
qT

1

qT
2

]
ΣxNxN [q1, q2] (6.79)

and

Cov

([
N ′X
N ′Y

]
, pD′′) =

[
σxN ′X pD′′
σxN ′Y pD′′

]
=

[
qT

1

qT
2

]
ΣxN pD . (6.80)

Next we choose X0 such that the uncertainty of a point across the plane is minimum.
An arbitrary point X (X) has the distance

DX = NTX −D = [XT,−1]

[ xN
− pD

]
. (6.81)

Its variance is
σ2
DX = XTΣxNxNX − 2Σ pDxNX + σ2

pD . (6.82)

From its derivative w.r.t. dX

∂σ2
DX

∂X
= 2ΣxNxNX − 2Σ pDxN (6.83)

In the rotated system we have

∂σ2
D′′X

∂X ′′
= 2ΣxN ′xN ′X

′′ − 2Σ pD′′xN ′′ = 2

 σ2
pφ 0 0

0 σ2
pψ 0

0 0 0


 M ′′X
M ′′X

0

 . (6.84)

from which we obtain[
M ′′X
M ′′Y

]
= −

[
σ2
pφ 0

0 σ2
pψ

]−1 [
σxN ′X pD′′
σxN ′Y pD′′

]
= −

[
σ2
pφ 0

0 σ2
pψ

]−1 [
qT

1

qT
2

]
ΣxN pD (6.85)

Finally, we have the centroid

X0 = xN − Q
 σ2

pφ 0 0

0 σ2
pψ 0

0 0 0


+

Q
TΣxN pD . (6.86)

or

X0 = xN − Σ+
xN pDΣxN pD . (6.87)

Remark: This is in full analogy to the centroid of the 2D line when using the covariance
matrix of the normal

Σ
pnpn = σ2

φn
⊥n⊥T and Σ+

pnpn = σ−2
φ n⊥n⊥T with n =

[
sinα
cosα

]
and n⊥ =

[
cosα
− sinα

]
(6.88)

and the covariance with the distance
Σ

pn pd = σφdn
⊥ (6.89)

since

x0 =

[
cosα sinα
− sinα cosα

] [
m0

d

]
(6.90)

=

[
sinα
cosα

]
d+

[
cosα
− sinα

]
m0 (6.91)

= n−
[

cosα
− sinα

] (
−σ−2

φ σφd
)

(6.92)

= n− Σ+
pnpnΣpn pd . (6.93)

�
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6.3.3 Checking a Set of Points for Planarity

6.3.3.1 Assuming the uncertainty of the points is known

We test whether the surface consisting of I points is planar, testing the null hypothesis

H01 : pσ2
0 = 1 (6.94)

versus the alternative hypothesis

Ha1 : pσ2
0 > 1 (6.95)

using the chi-square test statistic

X|H01 = Ω|H01 ∼ χ2
R . (6.96)

which is χ2
R-distributed under the null hypothesis. If the test is rejected, this may be

caused

• by a too small standard deviation of the given points, or

• by a signi�cant deviation of the surface from a plane, or

• both.

Remark: The degrees of freedom R should not be taken too large, since otherwise the null-

hypothesis always will be rejected, see the discussion in Förstner and Wrobel (2016), around Eq.

(4.88). �

6.3.3.2 Assuming an estimate of the uncertainty of the points of the plane is

not known

We assume, the variance factor pσ2
0a of all given points may be taken from a robust estimate

of all variance factors. Its degrees of freedom is assumed to be R0.
We test the null hypothesis for the current plane

H02 : pσ2
0 = pσ2

0a (6.97)

against the alternative hypothesis

Ha2 : pσ2
0 > pσ2

0a (6.98)

using the Fisher test statistic

F |H02 =
pσ2

0pσ2
0a

|H02 ∼ FR,R0
(6.99)

which is FR,R0 -distributed under the null hypothesis.

6.4 Estimating a Mean Plane

Given are I planes Ai, the task is to �nd the best estimate for the mean plane A.
We discuss three solutions:

1. A solution based on moments of the point cloud, assuming isotropic uncertainty.

2. A statistically suboptimal solution for the.

3. A statistically optimal solution based on the centroid representation.
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6.4.1 Estimating the mean plane using moments

Let us assume we have J patches, represented by their moment vector mj .
Obviously, it is simple to derive the mean plane. We just need to add all non-central

moments. Hence:

m =
°J
j=1mj . (6.100)

The parameters of the uncertain mean plane can then be derived from c(m), see (6.50).
We need to observe:

1. Eq. (6.100) allows a recursive estimation of the plane. Let the mean plane derived
from the �rst j patches be

m(j) =
j̧

k=1

mk . (6.101)

Then adding the (j + 1)-th patch leads to

m(j+1) = m(j) +mj+1 . (6.102)

2. In a similar manner a patch k can be deleted if k ∈ {1, ..., j}:

m(j\k) = m(j) −mk . (6.103)

3. Before inserting a patch into the list of patches, a statistical test could be performed.
This can be based on the di�erence vector of the new patch Aj+1 and the current
mean plane A(j)

d = J
T
r (µA)(Aj+1 −A(j)) (6.104)

and its covariance matrix

Σdd = J
T
r (µA)

(
ΣAj+1Aj+1

+ ΣA(j)A(j)

)
Jr(µA) (6.105)

leading to the test statistic
T = dTΣ−1

dd d ∼ χ
2
3 . (6.106)

Observe, the vector d in (6.104) is the di�erence Aj+1,r −A(j)
r of the reduced plane

coordinates assuming the common tangent plane is given by µA. The argument µA
of J(µA) best is chosen as the current mean plane µA := A(j).

Here we assume, the planes are Euclideanly normalized, see (6.17), i.e., the normal
has length 1. Then the projection matrix Jr(A) is given by

Jr(A)
4×3

=

[
Jr(N)

3×2
0

0T 1

]
with Jr(N) = null(NT) . (6.107)

4. All moments need to refer to the same coordinate system. Therefore, it might be
useful to condition all coordinates before determining and fusing all patches.

5. There is no non-linearity involved in the recursive estimation involved, if we only
consider the moments. The non-linearity only refers to deriving the centroid or
other parameters of the planes. Especially no directions or angles are involved. A
recursive determination of the variances would be di�cult, without going back to
the moments.

6. Eq. (6.102) can also be specialized to including a single point.

7. The whole procedure could once be repeated with modi�ed weights. If the weights
are reduced to 0, this is equivalent to deleting previously included patches, which
can be done using (6.103).

Hence, the moments, the 11 parameters including the number of points, can be interpreted
as the memory generating the current version of the plane. In statistical terms, the
moments are su�cient test statistics, i.e., no other information is necessary to perform the
estimation.
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6.4.2 Approximate estimating the mean plane using plane param-

eters

Let us assume we have J patches, represented by their homogeneous vector Aj = [NT
j ,−Dj ]

T

together with the covariance matrix of the reduced vector, namely
{(
Aj ,ΣAjrAjr

)}
.

The constraint, that the individual patch is identical to the mean plane is given by

I I (Aj)A = − I I (A)Aj = 0 with I I (A) =


0 −NZ NY 0
NZ 0 −NX 0
−NY NX 0 0
−D 0 0 −NX

0 −D 0 −NY
0 0 −D −NZ

 ,
(6.108)

see Förstner and Wrobel (2016, Eq. (7.41)). Since a plane has only three degrees of
freedom, we need to select three constraints from the six constraints in (6.108). If the co-
ordinate system is chosen such that all distances Dj are non-zero, the last three constraints
may be used. leading to

C
T
j I I (Aj)A = −CT

j I I (A)Aj = 0 with C
T
j = [03 | I 3] , (6.109)

or

g(Aj ,A) = X jA = Z jAj = 0 with X
T
j = [−Dj I 3 | −N j ] and Z j = [DI 3 |N ] .

(6.110)
Observe, the Jacobians of the constraint g(Aj ,A) w.r.t. the unknown parameters and the
observations are X j and Z j , the last matrix is not depending on j.

For estimating the plane, we concatenate all 3J constraints in the following form

g({Aj},A) = X
3J×4

A = 0 . (6.111)

The right singular vector of X belonging to the smallest singular value is the algebraically
optimal mean plane, and can be determined using the SVD of X :

pA = V :,4 with X = USV
T . (6.112)

For deriving the covariance matrix of this solution, we start with the di�erential of g:

dg(y,A) = XJr(A)looomooon
3J×3

dAr
3×1

+ Zloomoon
3J×3J

dy
3J×1

(6.113)

with

y =


A1r

...
Ajr

...
AJr

 , Ajr = J
T
r (A) Aj and Z = Diag({Z j

4×3

Jr(A)
3×4

}) . (6.114)

With the reduced coe�cient matrix

X r = XJr(A) (6.115)

we thus obtain the di�erential estimatesxdAr = −X+
r Zdy = −(XT

rX r)
−1X

T
r Z dy . (6.116)

Hence, we have the covariance matrix of the estimated reduced plane parameters

Σ pAr pAr = X
+
r Z Σyy Z

T
X

+T
r . (6.117)
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where
Σyy = Diag

({
Σyjyj

})
= Diag

({
J

T
r (A)ΣAjAjJr(A)

})
. (6.118)

Observe, the solution is suboptimal, since the pseudo inverse X+
r is taken instead of the

weighted pseudo inverse (X r,Wll
)
+

= (XT
rW yyX r)

−1X
T
rW yy. Finally, we obtain the co-

variance matrix of the estimated mean plane

Σ pA pA = Jr(A) Σ pAr pAr J
T
r (A) , (6.119)

which has rank 3.

6.4.3 An optimal solution based on the centroid representation

We assume we have given the planes in centroid form,

Ai : {X0i,Qi;σqi , σφi , σψi} , (6.120)

and want to determine the mean plane, also in centroid form

A : {X0,Q;σq, σφ, σψ} . (6.121)

We use the following nonlinear constraints:

xN ×xN i = 0 , (6.122)

which represents two degrees of freedom. We select two independent constraints:

M
(s)
i S(xN)xN i = 0 (6.123)

and the translational constraint

xNT
(xX0i −xX0) = 0 , (6.124)

which represents the third degree of freedom. For proofs we will use

M
(s)
i = M

(s)(N i) = M
(s)(qi3) =

[
qT
i1

qT
i2

]
with M

(s)
i M

(s)T
i = I 2 , (6.125)

hence

M
(s)
i S(xN i) =

[
qT
i1

qT
i2

]
S(q3) =

[
qT

2

−qT
1

]
(6.126)

Hence the nonlinear constraints are

gi(
xN i,xX0i;xN ,xX0) =

[ xNT
(xX0i −xX0)

M
(s)
i S(xN)xN i

]
= 0 , i = 1, . . . , I . (6.127)

6.4.3.1 The Iterative Solution

We also can assume approximate values, thus can update them using an iterative scheme.
Linearization of the constraints yields

gi(
xN i,xX0i;xN ,xX0) = gi(

xNa

i ,
xXa

0i;
xNa

,xXa

0) (6.128)

+

[
(xX0i −xX0)Tz∆N +xNT{∆X0i −xNTz∆X0

−M(s)
S(xN i)z∆N +M

(s)
S(xN)z∆N i

]
(6.129)

This can be written as

gi(
xN i,xX0i;xN ,xX0) = gi(

xNa

i ,
xXa

0i;
xNa

,xXa

0) + X ix∆θ + Z
T
i
y∆yi (6.130)
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with

x∆θ = J
T
r

[
∆X0

∆N

]
= y∆A◦ and y∆yi = J

T
r

[
∆X0i

∆N i

]
= y∆A◦i (6.131)

and, since xN i ≡ xN ,

X i =

[
−xNT

(xX0i −xX0)T

02×3 −M(s)
S(xN)

]
Jr and Z

T
i =

[ xNT
0T

02×3 M
(s)
S(xN)

]
Jr =

[
1 0T

0 I 2

]
= I 3 .

(6.132)
The weight matrix of the residuals therefore is

W cici = (BT
i ΣyiyiBi)

−1 = WA◦iA
◦
i
. (6.133)

The normal equation matrix thus is

N =
¸
i

A
T
iW ciciAi (6.134)

=
¸
i

J
T
r

[
−xN 03×2

(xX0i −xX0) S(xN)M(s)T

]
WA◦iA

◦
i

[
−xNT

(xX0i −xX0)T

02×3 −M(s)
S(xN)

]
Jr (6.135)

=
¸
i

 qT
3 0T

0T qT
1

0T qT
2

[ −xN 03×2

(xX0i −xX0) S(xN)M(s)T

]
WA◦iA

◦
i

[
−xNT

(xX0i −xX0)T

02×3 −M(s)
S(xN)

] [
q3 0 0
0 q1 q2

]

=
¸
i

 −1 0 0
X ′′0i −X ′′0 1 0
Y ′′0i − Y ′′0 0 1

 wqi
wφi

wψi

 −1 X ′′0i −X ′′0 Y ′′0i − Y ′′0
0 1 0
0 0 1

 (6.136)

=
¸
i

 −1 0 0
X ′′0i −X ′′0 1 0
Y ′′0i − Y ′′0 0 1

 −wqi wqi(X
′′
0i −X ′′0 ) wqi(Y

′′
0i − Y ′′0 )

wφi
wψi

 (6.137)

=
¸
i

 wqi −wqi(X ′′0i −X ′0) −wqi(Y ′′0i − Y ′′0 )
−wqi(X ′′0i −X ′′0 ) wφi + wqi(X

′′
0i −X ′′0 )2 wqi(X

′′
0i −X ′0)(Y ′′0i − Y ′′0 )

−wqi(Y ′′0i − Y ′′0 ) wqi(X
′′
0i −X ′′0 )(Y ′′0i − Y ′′0 ) wψi + wqi(Y

′′
0i − Y ′′0 )2

 (6.138)

The normal equation matrix is diagonal, if1¸
i

wqi(X
′′
0i −X ′′0 ) =

¸
i

wqi(Y
′′
0i − Y ′′0 ) = 0 . (6.139)

Then we obtain

N =
¸
i

 wqi 0 0
0 wφi + wqiX

′2
0i

0 wψi + wqiY
′2
0i

 . (6.140)

Hence, all entities have to be taken at their estimates. If we use the centroid of the �tted
centroids

X ′′0 =

°
i wqi
xX ′′0i°

i wqi
(6.141)

and the individual centroids reduced to the common centroid

X ′0i = X ′′0i −X
′′
0 . (6.142)

The right hand side of the normal equation system is

n =
¸
i

A
T
iW cici(−gi(pθa, pya) + Bi(pyi − yi) . (6.143)

1The original note said
°
i wφi (X

′′
0i −X′′0 ) =

°
i wψi (Y

′′
0i − Y ′′0 ) = 0. But due to (6.141), this appears

to be incorrect.
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6.4.3.2 The Theoretical Precision

We obtain the variances for the three entities

σ2
pq =

1

I

1

wq
(6.144)

σ2
pφ =

1

I

1

wφ + wqX2
0i

(6.145)

σ2
pψ =

1

I

1

wψ + wqY 2
0i

. (6.146)

If the I planes would have the same precision we would obtain

σ2
pq =

1

I
σ2
q , σ2

pφ =
1

I

σ2
qσ

2
φ

σ2
q + σ2

φX
2
0i

, σ2
pψ =

1

I

σ2
qσ

2
ψ

σ2
q + σ2

ψY
2
0i

. (6.147)

This is a plausible result: The precision of the normal of the average plane increases with
the number I of the planes and with increasing scatter of the individual planes. Observe,
if the standard deviation σq is 0, then the directions will also have standard deviation 0.

6.5 Motion from Plane to Plane correspondences

6.5.1 Problem Statement

Given are I correspondences {Ai,A ′j} which are related by

M : A ′j 7→ Ai Ai ≡M (A ′j) for all (ij) ∈ C . (6.148)

There are two options to establish the correspondences:

1. The planes (Ai,A ′j) refer to the planar patches derived from some segmentation of
two point clouds. Then each of the planes Ai or A ′j may have several correspondences,
namely if there are coplanar planes one or both of the point clouds. The Jacobian
B of the Gauss�Helmert model is block diagonal, each block Bk referring to the
correspondence of coplanar planes {ik} and {j′k} in the two point clouds.

2. The planes (Ai,A ′j) refer to aggregated coplanar planes in each point cloud. Then
there is a one-to-one correspondence, and we may refer to the same index, thus refer
to (Ak,A ′k). In this case the partitioning of the point cloud has a �nal merge-step
to �nd sets of coplanar points and to determine the average (ML-estimates) plane
parameters.

We do not distinguish the two cases until we discuss the solution of the nonlinear Gauss�
Helmert model.

We explicitly have
Ai :

{
X0,Q;σ2

q , σ
2
φ, σ

2
ψ

}
i

(6.149)

The constraint implies an unknown motion M

M : {T ,R} (6.150)

which transforms the 3D points Xi into the coordinate system

X = RX ′ + T . (6.151)

The corresponding transformation of the plane parameters is

X0i = RX ′0j + T (6.152)
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and
Qi = RQ

′
j . (6.153)

We need three constraints for the identity of two planes. These can be the following
rotational constraint

N i = RN ′j , (6.154)

which represents two degrees of freedom, and the translational constraint

NT
i (RX ′0j + T −X0i) = 0 , (6.155)

which represents the third degree of freedom.
From a counting argument we would need only two planes. However, then the trans-

lation along the intersecting 3D line is not determined. Therefore, we need at least three
planes in general position for being able to determine the motion.

6.5.2 Minimal Solution for the Motion from Three Plane Corre-

spondences

The three planes need to intersect in a 3D point Y not at in�nity. Otherwise the translation
in this direction is not determined.

Then the translation can be determined from the two intersection points Y and Y ′,
and the rotation from the three normals.

If enough plane-plane correspondences are available the rotation may be derived from
(6.154) in the form

N = RN
′ (6.156)

Hence we have
H = N ′

T
N = UΛV T (6.157)

and thus
R = UV

T . (6.158)

Using this rotation the translation then can be determined from (6.155) in the form

NT
i (RX ′0j −X0i) = −NT

j T (6.159)

which leads to the linear equation system

B
T
BT = B

Tb (6.160)

with
B = −N = −[NT

i ] and b = [NT
i (RX ′0j −X0i)] . (6.161)

Weighting is possible.

6.5.3 An Iterative Solution

We use the three constraints for each correspondence

gij
3×1

(pT , pR(pθ);xX0i,xN i,xX ′0j ,xN ′j) =

[ xNT

i (pRxX ′0j + pT −xX0i)

M
(s)
i S(xN i)pRxN ′j

]
= 0 . (6.162)

WhereM
(s)
i S(xN i) ∈ null

T(NT
i ) is a orthonormal 2×3 matrix which is achieved by selecting

two independent rows of the skew symmetric matrix S(xN i).
The linearized model reads as

gij(
pT , pR(pθ);xX0i,xN i,xX ′0j ,xN ′j) = gij(

pθa, pya)(6.163)

+

[
(pRxX ′0j + pT −xX0i)

Tz∆N i −xNT

i S(pRxX ′0j)x∆θ +xNT

i
pRy∆X ′0j +xNT

i
y∆T −xNT

i
y∆X0i

−M(s)
i S(pRxN ′j)z∆N i −M(s)

i S(xN i)S(pRxN ′j)x∆θ +M
(s)
i S(xN i)pRz∆N ′j

]a
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Hence we have
gij = gij(

pθa, pya) + X ij x∆θ + Z
T
ij
y∆y = 0 (6.164)

with

∆θ
6×1

:=

[
∆T
∆θ

]
and ∆y

6×1
:=

[
∆A◦i
∆A◦j

]
(6.165)

The Jacobians are

X
T
ij

3×6

=
∂gij

∂pθ =

[
−xNT

i S(pRxX ′0j) xNT

i

−M(s)
i S(xN i)S(pRxN ′j) 0

]a
(6.166)

and

Z
T
ij

3×6

=
∂gij

∂[AT
i ,A

′T
j ]T

(6.167)

=
∂gij

∂[A∗Ti ,A′∗Tj ]T

∂[A∗Ti ,A′∗Tj ]T

∂[AT
i ,A

′T
j ]T

(6.168)

=

[
−xNT

i (pRxX ′0j + pT −xX0i)
T xNT

i
pR 0T

02×3 −M(s)
i S(pRxN ′j) 02×3 M

(s)
i S(xN i)pR

]
3×12

a [
Jr(Qi)

Jr(Q
′
j)

]a

If each plane only is present in one constraint, hence we have i = j, the normal
equations for the six unknown parameters read as

Nx∆θ = n (6.169)

with

N
6×6

=
¸
i

Ai
6×3

(BT
i

3×6
Diag({ΣA◦iA

◦
i
,ΣA′◦i A

′◦
i
})loooooooooooooomoooooooooooooon

6×6

Bi
6×3

)−1A
T
i

3×6
(6.170)

n
6×1

=
¸
i

Ai
6×3

(BT
i

3×6
Diag({ΣA◦iA

◦
i
,ΣA′◦i A

′◦
i
})loooooooooooooomoooooooooooooon

6×6

Bi
6×3

)−1(−gi(pθa, pyai )) + Bi(pyai − yi))loooooooooooooooooomoooooooooooooooooon
3×1

(6.171)

The update of the translation and the rotation then is[ pT (ν+1)

pR(ν+1)

]
=

[ pT (ν)
+ y∆T

R(x∆θ)pR(ν)

]
. (6.172)

6.5.4 Theoretical Accuracy of the Motion

We assume the rotation and translation is an identity. We also assume the corresponding
planes to have the same mean parameters and the same covariance matrix. This simpli�es
the expressions and allows us to derive the covariance matrix as a function of the planes.

We use the relations

Dr = = rrT (6.173)

S
2(r) = −(I 3 − Dr) (6.174)

S(r)R = RS(RTr) (6.175)

N = Qe3 or e3 = Q
TN . (6.176)

The Jacobians are (omitting the hats and assuming we always refer to the �tted values)

X
T
i =

∂gi

∂pθ =

[
−xNT

i S(X ′0j) NT
i

−M(s)
i S(N i)S(N ′i) 0

]
=

[
(X0i ×N i)

T NT
i

M
(s)
i (I 3 − DNi) 0

]
(6.177)
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and

Z
T
i =

∂gij

∂[AT
i ,A

′T
j ]T

(6.178)

=

[
−NT

i 0T NT
i 0T

02×3 −M(s)
i S(N i) 02×3 M

(s)
i S(N i)

]
[
q3 0 0
0 qi1 qi2

]
0

0

[
q3 0 0
0 qi1 qi2

]


=

[
−eT

1 eT
1

−M(s)
i [0, qi2,−qi1] M

(s)
i [0, qi2,−qi1]

]
(6.179)

We now assume the covariance matrices of all planes to be identical and isotropic

ΣA◦iA
◦
i

= ΣA◦A◦ =

 σ2
q

σ2
φ

σ2
φ

 (6.180)

Remark: Better do not do this! �
Then we have

B
T
i ΣA◦iA

◦
i
Bi =

[
−eT

1 eT
1

−M(s)
i [0, qi2,−qi1] M

(s)
i [0, qi2,−qi1]

] [
ΣA◦A◦

ΣA◦A◦

] [
−eT

1 eT
1

−M(s)
i [0, qi2,−qi1] M

(s)
i [0, qi2,−qi1]

]T

=

[
−eT

1 eT
1

−M(s)
i [0, qi2,−qi1] M

(s)
i [0, qi2,−qi1]

]

−ΣA◦A◦e3 −ΣA◦A◦

 0T

qT
i2

−qT
i1

M(s)T
i

ΣA◦A◦e3 ΣA◦A◦

 0T

qT
i2

−qT
i1

M(s)T
i

 (6.181)

=

[
σ2
q 0

0 2σ2
φ M

(s)
i (qi1q

T
i1 + qi2q

T
i2)M

(s)T

i

]
(6.182)

= 2ΣA◦A◦ (6.183)

Hence the normal equation matrix is

N =
1

2

¸
i

[
X0i ×N i (I 3 − DNi)M

(s)T
i

N i 0

] [
wq

wφI 2

][
(X0i ×N i)

T NT
i

M
(s)
i (I 3 − DNi) 0

]

=
1

2

¸
i

[
X0i ×N i (I 3 − DNi)M

(s)T
i

N i 0

][
wq(X0i ×N i)

T wqN
T
i

wφM
(s)
i (I 3 − DNi) 0

]
(6.184)

=
1

2

¸
i

[
wqD(X0i ×N i) + wφ(I 3 − DNi)M

(s)T
i M

(s)
i (I 3 − DNi) (X0i ×N i)N

T
i

N i(X0i ×N i)
T wqD(N i)

]
=

1

2

¸
i

[
wqD(X0i ×N i) + wφ(qi1q

T
i1 + qi2q

T
i2) wq S(X0i)D(N i)

wq D(N)S(X0i) wqD(N i)

]
(6.185)

=
1

2

¸
i

wq

[
(X0i ×N i)(X0i ×N i)

T (X0i ×N i)N i

N i(X0i ×N i)
T N iN

T
i

]
+ wφ

[
qi1q

T
i1 + qi2q

T
i2 0

0 0

]
or generally

N =
1

2

¸
i

wqi

[
X0i ×N i

N i

]
[X0i ×N i , N i] + wφi

[
qi1
0

]
[qT
i1 , 0T] + wψi

[
qi2
0

]
[qT
i2 , 0T]

(6.186)
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Reducing the parameters to the translation yields the reduced normal equation matrix

NTT =
1

2

¸
i

(
wqiD(X0i ×N i) + wφi(qi1q

T
i1 + qi2q

T
i2)
)

(6.187)

−

(¸
i

wqi D(N)S(X0i)

)(¸
i

wqiD(N i)

)−1(¸
i

wqi S(X0i)D(N i)

)
(6.188)

which can be determined if ¸
i

wqiD(N i) =
¸
i

wqiN iN
T
i (6.189)

is regular: Therefore at least three planes with non-coplanar normals are necessary for a
solution.
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7 Planes from Points

We describe the statistically optimal estimation of a single and of multiple planes
from a point cloud, where the full covariance matrix of all scene coordinates is
available, e.g., from bundle adjustment. This procedure might be used to derive
ground truth data for plane extraction or for homography estimation.

7.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3.1 The incidence constraint . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3.2 The optimization problem . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3.3 Conditioning and approximate values . . . . . . . . . . . . . . . . . 101

7.3.4 The algorithm for estimating the parameters . . . . . . . . . . . . . 102

7.4 Multiple planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.5 Outlier detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1 Preface

The note (2023) describes the statistically optimal estimation of a single and of multiple
planes from a point cloud, where the full covariance matrix of the scene coordinates is
available, e.g., from bundle adjustment. The solution for single planes di�ers from that of
Sect. 6.3.2 in Ch. 6: There the plane is Euclideanly normalized, here they are spherically
normalized, which leads to simpler expressions.

7.2 The Problem

Given areK sets {{Xi}, i = i, ..., I}k , k = 1, ...,K of 3D points together with their complete
covariance matrix Σ = [Σik,ik] the task is to �nde the best �tting planes Ak. We start
with the derivation for a single plane and then generalize to multiple planes.

The motivation is to derive reference data for homographies for identi�ed planes being
seen in pairs of images, whose poses and scene points have been determined by bundle
adjustment. Instead of including the plane constraints into the bundle adjustment, we
propose to use the coordinates of the estimated scene points together with their full co-
variance matrix and determine the best �tting plane parameters. This can be seen as
an estimation in steps (Kalman �ltering) where in the second step the plane constraints
are used to improve the estimates of the scene points, which in the �rst step have been
determined without these constraints.

Though it is possible to estimate the planes individually, the resulting parameters are
not optimal, since the mutual correlations between the scene points belonging to di�erent
planes are not taken into account.

We therefore just assume, the coordinates of the relevant scene points together with
their full covariance matrix is available, e.g., when using the Ceres solver.
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7.3 Formalization

We start with the case K = 1 and omit all indices referring tho the plane of interest.

7.3.1 The incidence constraint

We assume the points are given with their homogeneous coordinates Xi, i = 1, ..., I and
their joint covariance matrix

Σ = [ΣXiXj ] =

[[
ΣXiXj 0

0T 0

]]
, with i, j = 1, ..., I . (7.1)

and the plane A is represented by its spherically normalized homogeneous coordinates A
with

|A| = 1 . (7.2)

The a point Xi lies on the plane A if

XT
i A = 0 . (7.3)

7.3.2 The optimization problem

We now want to optimally estimate the plane parameters. The observations and unknown
parameters in a Gauss-Helmert model with constraints are

y
N×1

:= [Xi], , θ
4×1

:= A and y
N×1=4I×1

:= E(y) (7.4)

For achieving a ML-estimation we want minimize the residuals y− l squared and weighted
with the full weight matrix W

Ω(θ,y) = (y − y)TW (y − y) with W =

[[
Σ−1
XiXj

0

0T 0

]]
(7.5)

subject to the constraints

0 = g(θ,y) := [yT
i θ] ,

0 = h(θ) := 1
2 (|θ|2 − 1) .

(7.6)

7.3.3 Conditioning and approximate values

We assume the following:

• We have conditioned the given coordinates

Xc
i = MXi with M =

[
1
s I 3 − 1

sµX
0T 1

]
, (7.7)

and

s =

c
1

3
tr(Cov(Xi) , and µX =

1

I

¸
i

Xi (7.8)

since in non-homogeneous coordinates we have Xc
i = (Xi−µX)/s. Hence, we have

the conditioned covariance matrix

Σc = [MΣijM
T] (7.9)

Since we determine the plane parameters pθc = pAc in the conditioned coordinate
system where we can uncondition the estimated plane parameterspθ = Mpθc since Ac = M−1A . (7.10)

together with their covariance matrix

Σpθpθ = MΣpθc pθcM
T (7.11)
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• We have an approximate solution θc,a := Ac,a based on the conditioned 3D points
assuming all have the same covariance matrix I 3.

7.3.4 The algorithm for estimating the parameters

We refer to PCV Sect. 8.3.2 and the note on the Gauss-Helmert model, Sect. 4.1 aug-
mented by the constraints between the parameters. We omit all superscripts indicating
that we have conditioned the data.

We start from the correlated observed I scene points in homogeneous coordinates
{y,Σyy} := {[Xi], [Σij ]}, the constraints g(θ,y) := [yT

i A] = 0 and h(θ) = 1/2(|θ|2 − 1),
and the approximate values θa := Aa for the unknowns and ya := [Xi] for the mean
observations. We obtain the following algorithm for an iterative solution:

1. Iterate until convergence

(a) Determine the Jacobians X and Z at the current approximate values (θa,ya).

Here we haveJacobians at

current

approximations X
I×4

=
∂g

∂θ
:= Y

a = [yaT
i ] , Z

T

I×4I
=
∂g

∂y
= I I ⊗ pθaT

and hT

1×4
=
∂h

∂θ
:= θa,T .

(7.12)
In the �rst iteration we have

[y
(0)
i ] := [Xi] . (7.13)

(b) Determine the contradictions cg and ch of the negative constraints at the ap-
proximate values θa and y of the unknown parameters together with their
weight matrix 1contradictions of

constraints given

the parameters cg
I×1

:= −[lTi ]
I×4

θa
4×1

, W gg
I×I

= (ZTΣZ )−1 =
([
θa,TΣijθ

a
])−1

(7.14)

and

ch
1×1

=
1

2
(|θa|2 − 1) . (7.15)

(c) Solve the normal equation system for the corrections ∆θ and ∆y of the param-
etersnormal equation

system
[
X

T
W ggX h

hT 0

]
looooooooooomooooooooooon

N

[
∆θ
µ

]
=

[
X

T
W gg cg
ch

]
loooooooomoooooooon

m

. (7.16)

(d) Update the approximate parameters

θa := N(θa + ∆θ) with N(x) =
x

|x|
. (7.17)

(e) Determine the corrections for the mean observations

∆y = y − ya − Σ(I I ⊗ θa,T)W ggg(pθay) . (7.18)

(f) Update the approximate mean observationsupdate of

approximate mean

observations ya := [Ne(yi + ∆yi)] with Ne(X) =
X

X4
. (7.19)

2. Set the �nal estimates of the unknown parameters and of the mean observations,�nal estimates

sometimes called the �tted observation py := py
pθ := θa and py = ya . (7.20)
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3. Determine the estimated variance factorestimated variance

factor pσ2
0 =

cT
gW cgcgcg

I − 4
. (7.21)

If the model holds its expectation is equal to 1.

Observe: Instead of minimizing the squared residuals y−l weighted withW in (7.5),
thus minimize ||y−y||W , we equivalently may minimize the weighted residuals of the
squared constraints cg = −g(θ,y) weighted with their weight matrix W cgcg , thus
minimizing ||g(θ,y)||Wcgcg

, in both cases taking the constraints (7.6) into account.

4. Determine the covariance matrix of the estimated parameters covariance matrix

of the estimated

parameters
[
X

T
W ggX h

hT 0

]−1

=

[
Σpθpθ .
. .

]
. (7.22)

Remark: If the observational noise is small and an approximate solution is acceptable, the steps

1.(e�f) can be omitted. Then the Jacobians X and Z are to be determined at (θa,y) instead of

at (θa,ya). �

The complete procedure is given in the algorithm below.

Algorithm 2: Plane from correlated points, assuming conditioned values.
[pA,Σ pA pA, pσ2

0 , R] = CorrelatedPoints2Plane_D([Xi], [Σij ],A
a, Tθ, maxiter)

Input: observed values y = [yi] := [Xi], full covariance matrix Σ = [Σij ]
approximate values Aa,
parameters Tθ, maxiter for controlling convergence.
Output: estimated parameters pA,Σ pA pA for plane, variance factor pσ2

0 , redundancy
R.

1 Redundancy R = I − 3 ;
2 if R < 0 then stop, not enough constraints;

3 Iteration ν = 0, approx. values pθa := Aa, ya := [Xi], stopping variable: s = 0;
4 repeat

5 Jacobians: : A = [ya,Ti ], h = pθa;
6 Constraints: cg = −[yT

i ]θa, ch = −1/2(|θa|2 − 1);

7 Weight matrix of constraints: W gg = [θa,TΣijθ
a]−1;

8 Build normal equation system: [N,m], see (7.16);
9 if N is singular then stop: normal equation matrix is singular;
10 Updates of parameter vector θa := N(θa + ∆θ);
11 Corrections for �tted observations: ∆y, see (7.18);
12 Update �tted observations ya = [Ne(yai + ∆yi)], see (7.19);
13 Set iteration: ν := ν + 1;

14 if maxu(|x∆θu|/σapθu) < Tθ or ν = maxiter then s = 2;

15 until s ≡ 2;

16 Estimated parameters pA := pθa and covariance matrix : Σ pA pA, see (7.22);
17 if R > 0 then variance factor pσ2

0 = cT
gW gg cg/R;

18 else pσ2
0 = 1;

7.4 Multiple planes

We generalize the solution to the case of simultaneously estimating a set of K planes, in
order to exploit all information for one bundle adjustment. This will yield di�erent results
due to the correlation between the scene points.

1We do not indicate, that cg depends on approximate values thus omit a superscript a.
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We consider K planes Πk, k = 1, ...,K with their Ik points Xik, (ik) ∈ Ik. We assume
the point sets for di�erent planes are disjunct. We collect the Ik homogeneous coordinates
of the observed scene points and their expectation for plane k in the Ik × 4 matrices

Xk
IK×4

= [XT
ik] and Y k = E(Xk) . (7.23)

Then we have the following
G =

¸
k

Ik (7.24)

constraints

g
G×1

= [gik] = [E(Xk)Ak] = [E(XT
ik)Ak] = 0 , hk =

1

2
(|Ak|2 − 1) = 0 k = 1, ...,K .

(7.25)
Witht the 4K unknown parameters, the 4G observations and their expectations

xloomoon
4K×1

= [xk] := [Ak] , yloomoon
°
k Ik

= [yik] = [Xik] and and y = vec(Y T) = [E(Xik)]

(7.26)
the Jacobians X and Z are the following using the approximate values for θ and Y

X =
∂g

∂x
= Diag([X k]) := Diag([Y k]) and Z

T = Diag([ZT
ik]) := Diag([pθaT

k ]) (7.27)

The Jacobian for the constraints is

Figure 7.1: linearized constraints

H
4K×K

= Diag([θak]) (7.28)

Hence, with the approximate residuals

va = ya − y (7.29)
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we have the linearized optimization problem: Minimize

Ω(∆θ,∆y) = (ya + ∆y)TW
+(ya + ∆y) with W =

[[
Σ−1
XiXj

0

0T 0

]]
(7.30)

subject to the constraints

0 = g(∆θ,∆y) := X∆θ + Z
T∆y − g(θa,ya) ,

0 = h(∆θ) := H
T∆θ − h(∆θa) .

(7.31)

The full weight matrix of the constraints is

W gg
G×G

=
([
θa,Tik Σik,i′k′θ

a
i′k′

])−1

with (ik) ∈ Ik, k = 1, ...,K (7.32)

hence, with the residual constraints

cg = −g(θa,y) = −[X k]θa and ch = −h(θa) (7.33)

the normal equation system is

[
X

T
W ggX H

H
T 0

]
looooooooooomooooooooooon

N
5K×5K

 ∆θ
4K×1

µ
K×1

 =

[
X

T
W gg cg
ch

]
loooooooomoooooooon

m

. (7.34)

which, except for the block o�-diagonal matrix H, is full. The algorithm above requires
transparent adaptions.

Observe, the resulting plane parameters will be mutually correlated. But their in-
dividual 4 × 4 covariance matrix D(Ak) may be reported as uncertainty of the ground
truth.

7.5 Outlier detection

It may be useful to eliminate individual scene points before a �nal plane estimation. The
following test statistic can be used for outlier detection

Xik = cT
gik
W gik,gikcgik = wgik,gikX

T
ik
pθk . (7.35)

hence we explicitly need the weight matrix W gg in (7.32). If the given model is correct,
especially if the covariance matrix of the scene points is correct, then the test statistic Xik

follows a χ2
4-distribution.

In case, we normalize the test statistic by some estimate for the variance factor, its
distribution is not known.
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8 Direct Solutions for the Similarity from

Plane Pairs

We collect some direct solutions for determining the similarity (or motion) from
corresponding plane pairs, representing point clouds. Some of the solutions are
able to handle the case, where the sign of the normals are not consistent.

8.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.2 Minimal solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2.1 A one-step direct solution of a similarity from four plane pairs . . . 107
8.2.2 A two-step solution for a motion from three planes . . . . . . . . . . 107

8.3 Direct solutions the similarity from I ≥ 4 plane pairs . . . . . . . . . . . . . 108
8.3.1 One step procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.3.2 Two step procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.4 Stability of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.1 Problem

Given are plane pairs {Ai,A
′
i}i = 1, ..., I which are assumed to be related by the similarity

A′i = H−TAi . (8.1)

determine a good estimate of H

H =

[
λR T
0T 1

]
=

[
R T /λ
0T 1/λ

]
. (8.2)

We assume the planes to be Euclideanly normalized

A =

[
N
−S

]
, with |N | = 1. (8.3)

In addition, we assume the coordinates to be conditioned, i. e. the distances of the
planes to the origin should be less than 1. This can be achieved by a proper similarity
transformation of coordinate system, such that the origin is in the center of all points and
the distances Si have absolute coordinates less than 1.

As the normals may not be consistent, as A and −A represent the same plane, we can
distinguish two types of solutions, one which assumes the normals to be consistent, the
other assuming they are not consistent.

In the following we �rst discuss solutions which do not exploit the full covariance
structure or even do not refer to a statistical description of the uncertainty.

8.2 Minimal solutions

We discuss minimal a minimal solution for spatial similarity and for spatial motion.
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Sect. No. I of planes normals re�ection
8.2.1 I = 4 consistent allowed
8.2.2 I = 3 consistent allowed
8.3.1 I ≥ 4 not consistent allowed
8.3.2 I ≥ 4 consistent allowed

not consistent not allowed
Table 8.1: Direct solution for the similarity from plane pairs

8.2.1 A one-step direct solution of a similarity from four plane

pairs

The direct solution can be obtained from HTA′i = Ai or Ai
′TH = AT

i , or

A =


AT

1

AT
2

AT
2

AT
2

 =


A′

T
1

A′
T
2

A′
T
3

A′
T
4


[
R T /λ
0T 1/λ

]
= A′H (8.4)

Thus we directly obtain
H = (A′)−1A (8.5)

The matrix would be the correct result, if the data were noiseless. This is valid for both,
a similarity and a motion.

Therefore, in general we enforce the matrix to be a similarity by enforcing the upper
left 3× 3-matrix to be a rotation and the lack of a projective component. With

H(1 : 3, 1 : 3) = UDV
T (8.6)

we therefore have the best estimate for a similarity

H =

[
|D|1/3UV T H(1 : 3, 4)

0T H(4, 4)

]
(8.7)

This solution assumes the normals of the planes to be consistent. It allows for a mirroring.

8.2.2 A two-step solution for a motion from three planes

The two-step solution �rst determines the rotation from the three normals and then the
translation from the intersection point.

Rotation. The rotation directly can be determined from the normals using

B
′ = [N ′1,N

′
2,N

′
3] = R[N1,N2,N3] = RB (8.8)

from
R = B

−1
B
′ (8.9)

which in case the data are noisy is no rotation. The best rotation is again obtained from
the SVD of R = UDV

T from pR = UV
T (8.10)

If the data are related by a re�ection, then det(pR) = −1.

Translation. The translation can easily be determined from the intersection point of
the three planes.

Also, this solution assumes the normals of the planes to be consistent. The result
allows the data to contain a re�ection.
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8.3 Direct solutions the similarity from I ≥ 4 plane pairs

8.3.1 One step procedure

The basic constraint for each plane can be written as (see Heuel 2004, eq. (3.29) and sect.
3.3.1.6, tables 3.5 and 3.9)

Ai ≡ A ′i : Ai ∩ (HTA′i) = I I (Ai)H
TA′i = 0 , (8.11)

or
( I I (Ai)⊗AT

i )vecH
!
= 0 (8.12)

with the matrix

I I (A)
6×4

=

[
S(N) 0
−SI 3 −N

]
(8.13)

containing the skew matrix S(N) of the 3-vector N . Observe, this constraint is indepen-
dent on the sign of the plane vectors.

This gives rise to the direct solution
I I (A1)⊗AT

1

. . .

I I (Ai)⊗AT
i

. . .

I I (AI)⊗AT
I


looooooooooomooooooooooon

B
6I×16

h
!
= 0 (8.14)

The best estimate for h is the right singular vector of the 6I × 16-matrix B belonging to
the smallest singular value.

As each plane gives rise to three constraints, we need at least �ve planes. As we know
that the elements H4,1:3 are zero, we can cancel the corresponding columns in the matrix
B, then being of size 6I × 12 and can do with four planes minimum.

The result is an a�nity

H =

[
A T
0T s

]
(8.15)

which needs to be enforced to become a similarity, with

A = UDV
T (8.16)

leading to pH =

[
|D|1/3/sUV T T /s

0T 1

]
. (8.17)

Since only the deviation from the 0-constraints (8.14) is minimized, this solution allows
the normals to be inconsistent. Again, if the data contain a re�ection, the solution will be
a re�ection.

8.3.2 Two step procedure

We �rst determine the rotation, then rotate the planes and then determine translation
and scale. Thus we assume the similarity to be

pH =

[ pR pT /pλ
0 1/pλ

]
=

[
I 3 pT ′
0T pµ′

] [ pR 0
0T 1

]
(8.18)

with pT = pT ′/pµ′ , pλ = 1/pµ′ (8.19)
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8.3.2.1 Determining the rotation

Assuming consistency of the normals. For �nding the optimal rotation we minimize
the optimization function ¸

i

pi|N ′i − RN i|2 (8.20)

which is equivalent to maximize¸
i

piN
′
iRN i = tr(RH) , H =

¸
i

piN iN
′
i (8.21)

The weights pi can be approximated by

pi =
1

σ2
φi

+ σ2
φ′i

≈ N3
i N
′3
i

N3
i +N ′3i

. (8.22)

The approximation is valid in case the planes have been determined from Ni and N
′
i points,

assuming the normals to have isotropic uncertainty. The solution can be found by using
the SVD (or equivalently using quaternions)

H = UDV
T (8.23)

leading to the rotation

R = VU
T . (8.24)

If the data contain a re�ection, then detR = −1.

Not assuming consistency of the normals. From the constraints

N ′i ≡ R (Ni) : N ′i × RN i = S(N ′i)RN i = (NT
i ⊗ S(N ′i))vecR

!
= 0 (8.25)

we obtain the joint constraints 
NT

1 ⊗ S(N ′1)
. . .

NT
i ⊗ S(N ′i)
. . .

NT
I ⊗ S(N ′I)

 r !
= 0 (8.26)

This yields an approximation for a rotation matrix, except for the sign. Hence, we are not
able to allow for re�ections. From R = UDV

T we obtain an estimate for the rotation

pR = UV
Tsign(|UV ′|) (8.27)

with det pR = 1.

8.3.2.2 Rotating the planes

We now rotate the planes, which just needs to be applied to the normals, therefore

Ai =

[
N i

−Si

]
=

[ pRN i

−Si

]
, A

′
i =

[
N
′
i

−S′i

]
=

[ pRN ′i
−S′i

]
(8.28)

These planes only di�er by scale and translation.
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8.3.2.3 Estimating translation and scale

Transforming planes by translation T ′ and scale µ′ is performed by

Ai =

[
I 3 0

T ′
T

µ′

]
A
′
i (8.29)

thus only refers to the distances Si and S
′
i. We have the constraint

ci = Si − [N i
′T − S′i]

[
T ′

µ

]
!
= 0 (8.30)

with an approximate weight

wi ≈
1

σ2
qi + σ2

q′i

≈ NiN
′
i

Ni +N ′i
(8.31)

for the uncertainty of the position across the planar patches (but see the critics below).
Therefore, we can determine the scale and the translation from

S =


S1

. . .
Si
. . .
SI

 !
=


A′

T
1

. . .

A′
T
i

. . .

A′
T
I


loooomoooon

B
I×4

[
T ′

µ′

]
(8.32)

The least squares solution for the translation and the scale is[ pT ′pµ′
]

= (BT
WB)−1BW

TS , W = Diag([w1, ..., wi, ..., wI ]) . (8.33)

which in the case of four planes reduces to[ pT ′pµ′
]

= B
−1S (8.34)

The procedure cannot be based on some statistical model.

8.4 Stability of the solution

In case all planes are parallel the rotation cannot be determined.
In case the normals Ahi of the planes are coplanar, the translation cannot be deter-

mined.
In case the four planes intersect in one point the four plane vectors are linearly depen-

dent and the matrices A and A′ in (8.4) are singular or - in case of noise - close to singular.
Then the scale cannot be determined.

In case the normals are well distributed the condition numbers

κ =
λmax
λmin

(8.35)

of A and A′ should be signi�cantly less than the inverse standard deviation of the directions
measured in radiants.

110



Part III

Technical Notes on Bundle

Adjustment and Surface

Reconstruction

111



9 Rule of Thumb for Precision of Points

from Multiview Triangulation

For planning bundle adjustment con�gurations, the expected accuracy of triangu-
lated points is an essential ingredient. We derive rules of thumb for the accuracy
of multi-view triangulating by providing simple expressions for the depth and
lateral accuracy of 3D points, for images arranged in a line, in a planar region
and in a spherical region, covering the case of omnidirectional cameras.

9.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.3 Formal statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.4 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.5 Special con�gurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.5.1 Projection centers are on a straight line . . . . . . . . . . . . . . . . 114
9.5.2 Projection centers are on a regular grid . . . . . . . . . . . . . . . . 115
9.5.3 Projection centers on a spherical cap . . . . . . . . . . . . . . . . . . 116

9.1 Preface

The note (2013) provides explicit expressions (rules of thumb) for the depth accuracy
obtained from multi-view triangulation for three cases: (1) the projection centers lie in
a line, (2) the projection centers lie in square, and (3) the projection centers are equally
spaced on a spherical cap. The note is the basis for Förstner and Wrobel (2016, Sect.
15.7.1).

9.2 Problem

Given T images of a 3D point determine the precision of its position.
The standard deviation depends on

1. on whether the projection centers are in a row, in a rectangular grid, or on a spherical
cap

2. the coordinate precision σx′ or the directional precision σα,

3. the principal distance c,

4. the baseline B or the diameter D of the set of projection centers, on the spherical
cap δ measured in radiants, and

5. the common height Z above the unknown point or the radius Z of the spherical cap.

If the T projection centers are in a row we have for large T

σ
(1D)
xW =

`
12

T 3/2

Z2

B

σx′

c
=

c
12

T

Z2

D

σx′

c
. (9.1)
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1D configuration
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2D configuration
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t

Figure 9.1: Ideal con�guration for triangulation. Alternatively, the projection centers are
on a sphere with radius Z regularly spaced in a spherical cap with diameter δ.

If the T projection centers are in a rectangular grid we have for large T

σ
(2D)
xW =

`
6

T

Z2

B

σx′

c
=

c
12

T

Z2

D

σx′

c
, (9.2)

If the T projection centers are evenly distributed on a spherical cap with diameter δ we
have

σ
(cap)
xW =

`
3`
T

Z

2− cos δ2 − cos2 δ
2

σα . (9.3)

9.3 Formal statement

Without loss of generality the scene coordinate system sits close to the unknown scene
point X ([U, V,W ]). It is observed in T cameras, which for simplicity are assumed to be
identical and are nadir views with R = I 3. Their common principal distance is c. Their
projection centers Zt are at Zt, t = 1, ..., T . The projection matrices therefore are

Pt = Diag([c, c, 1])[I 3| −Zt] . (9.4)

We observe the T image points

x′t = c

[
xt
yt

]
= c

1

U − Zt

[
V −Xt

W − Yt

]
. (9.5)

The task is to estimate the unknown parameters X.

9.4 Linearization

Using Xa = 0, the linearized model reads as

∆x′t = c

 − 1
Zt

0 Xt
Z2
t

0 − 1
Zt

Yt
Z2
t

 ∆U
∆V
∆W

 . (9.6)

With weights wt for each point we obtain the normal equation matrix

N = c2


°
t
wt
Z2
t

0 −
°
t
wtXt
Z3
t

0
°
t
wt
Z2
t

−
°
t
wtYt
Z3
t

−
°
t
wtXt
Z3
t

−
°
t
wtXt
Z3
t

°
t
wt(X

2
t+Y 2

t )

Z4
t

 (9.7)
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If we assume the projection centers have the same Z-coordinate we obtain

N =
c2

Z4

 °
t wtZ

2 0 −
°
t wtXtZ

0
°
t wtZ

2
t −

°
t wtYtZ

−
°
t wtXtZ −

°
t wtXtZ

°
t wt(X

2
t + Y 2

t )

 (9.8)

If we now assume the X- and Y -coordinates are centred with

X̄ =

°
t wtXt°
t wt

Ȳ =

°
t wtYt°
t wt

(9.9)

and the weights are constant

w =
1

σ2
x′

(9.10)

the normal equation matrix is diagonal

N =
c2

Z4σx′2

 TZ2 0 0
TZ2 0

0 0
°
t(X

2
t + Y 2

t )

 . (9.11)

If we use the average distance of the projection center from its centroid

S =

c°
t(X

2
t + Y 2

t )

T
(9.12)

of the projection centers it reads as

N =
c2

Z4σx′2

 TZ2 0 0
TZ2 0

0 0 S2T

 . (9.13)

Thus the variances of the 3D point are

σ pU = σ pV =
Z`
T

σx′

c
and σxW =

Z2

S
`
T

σx′

c
=
Z

S
σ pU . (9.14)

9.5 Special con�gurations

9.5.1 Projection centers are on a straight line

If the T projection centers are on a straight line with basis B in X-direction, their Xt-
coordinates are

Xt =

(
t− T + 1

2

)
B t = 1, ..., T with −X1 = XT =

T − 1

2
B . (9.15)

Then we have

S2 =
1

12
(T 2 − 1)B2 . (9.16)

Thus we obtain the standard deviation

σxW =

`
12a

T (T 2 − 1)

Z2

B

σx′

c
. (9.17)

For large T we can use the approximation

σ
(1D)
xW =

`
12

T 3/2

Z2

B

σx′

c
. (9.18)
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If we use as reference the diameter D of the projection centers

D = (T − 1)B (9.19)

the average distance is

S2 =
1

12

T + 1

T − 1
D2 . (9.20)

and the standard deviation is

σxW =

d
12(T − 1)

T (T + 1)

Z2

D

σx′

c
. (9.21)

which for large T simpli�es to

σ
(1D)
xW =

c
12

T

Z2

D

σx′

c
. (9.22)

9.5.2 Projection centers are on a regular grid

If the T = MN projection centers are on a regular grid with basis BX in X- and BY in
Y direction, their coordinates are

Xm =

(
m− M + 1

2

)
BX m = 1, ...,M and Yn =

(
n− N + 1

2

)
BY n = 1, ..., N .

(9.23)
Then we have

S2 = S2
X + S2

Y =
1

12
((M2 − 1)B2

X + (N2 − 1)B2
Y ) . (9.24)

We now assume the grid is quadratic with BX = BY and T = N2. Then we obtain

S2 = S2
X + S2

Y =
1

6
(N2 − 1)B2 =

1

6
(T − 1)B2 . (9.25)

Then the standard deviation is

σxW =

`
6a

T (T − 1)

Z2

B

σx′

c
. (9.26)

For large T we can use the approximation

σ
(2D)
xW =

`
6

T

Z2

B

σx′

c
. (9.27)

Using the diameter
D =

`
2(N − 1)B (9.28)

we have the average distance squared

S2 =
1

12

T − 1`
T − 1

D2 (9.29)

which yields the standard deviation

σ
(2D)
xW =

d
12(
`
T − 1)

T − 1

Z2

D

σx′

c
(9.30)

which for large T simpli�es to

σ
(2D)
xW =

c
12

T

Z2

D

σx′

c
, (9.31)

which is identical to the standard deviation if the projection centers are on a straight line.

115



9.5.3 Projection centers on a spherical cap

If the T projection centers are evenly distributed on a spherical cap with radius Z and
angular diameter δ we use a slightly di�erent model. We assume the uncertainty of the
rays to be uniform in all directions with standard deviation σα, which corresponds to σx′/c
if the observed point is close to the principal point. Then the uncertainty of the ray at
the observed image point is σq = Zσα. The direction of the ray is

d =

 cosλ sinφ
sinλ sinφ

cosφ

 . (9.32)

The normal equation matrix is (see PCV-A Sect. 9.5.3.2)

N =
¸
t

wt(I 3 − dtdT
t ) . (9.33)

We again assume wt = 1/σ2
q .

We now replace the sum by an integral

N = wt
¸
t

(I 3 − dtdT
t ) ≈ T 1

σ2
q

³
λ,φ∈C(I 3 − dtdT

t ) cosφ dλdφ³
λ,φ∈C cosφdλdφ

. (9.34)

For symmetry reason the normal equation matrix is diagonal:

N11 = N22 =
1

6σ2
q

(
4 + cos2 δ

2
+ cos

δ

2

)
T and N33 =

1

3σ2
q

(
2− cos2 δ

2
− cos

δ

2

)
T ,

(9.35)
the second expression proving (9.3).

Observe for d = 2π due to cos δ2 = −1 we obtain the fully isotropic con�guration

N11 = N22 = N33 =
2

3σ2
q

. (9.36)

Thus the standard deviation for the ZW -coordinate is

σ
(cap)
xW =

`
3`
T

Z

2− cos δ2 − cos2 δ
2

σα . (9.37)

For small δ we obtain the approximation

σ
(cap)
xW =

`
8`
T

Z

δ
σα . (9.38)

Taking into account that then δ = D/Z and σα = σx′/c we obtain

σ
(cap)
xW =

`
8`
T

Z2

D

σx′

c
. (9.39)

The di�erence of the constants (
`

12 versus
`

8) result from the di�erent roundness of the
two �gures (square versus circle).
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10 Multi-View Triangulation with Di-

rections

We provide simple solution to the optimal triangulation of a scene point from
multiple views assuming isotropic uncertainty of the directions. As a special case
we provide a simple expression for the distance of the triangulated point in case of
homogeneous directional uncertainty and small basis, expressed as a function of
the e�ective base line, the viewing angle and the resolution of an omnidirectional
camera and the matching accuracy in pixels.

10.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

10.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

10.3 The approximate Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10.4 The Solution with Di�erent Uncertainties of the Distances . . . . . . . . . . 119

10.5 The Solution for Directional Observations with Di�erent Uncertainty . . . . 120

10.6 Assuming Correlations between the Directions due to Least Squares Matching120

10.6.1 The 2D Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

10.6.2 The 3D Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

10.7 Uncertainty of binocular triangulation with omnidirectional cameras . . . . 122

10.1 Preface

This note from 2007, and extended 2023, provides a simple solution to the optimal tri-
angulation of a scene point from multiple views. It also provides a simple expression for
the distance of the triangulated point in case of homogeneous directional uncertainty and
small basis, expressed as a function of the e�ective base line, the viewing angle and the
resolution of an omnidirectional camera and the matching accuracy in pixels.

10.2 The Problem

Given are K projection matrices Pk, k = 1, ...,K and corresponding image points xk, k =
1, ...,K. Triangulate a good 3D-point.k The idea is the following: The projection matrices
together with the image point determine N projection rays, see Fig. 10.1. The optimal
pointX is the one closest to all these rays, where the notion distance needs to be speci�ed
and leads to di�erent solutions.

We extend the approximate solution in three ways:

1. We handle the case where the distances are weighted individually.

2. We handle the case of isotropic and homogeneous uncertainty of the directions.

3. We handle the case of homogeneous mutual correlations between the directions.

In all cases we provide a rigorous solution.
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Figure 10.1: Optimal multi-view triangulation for directions. The problem is nonlinear
in general, since the e�ect of directional uncertainties onto the 3D point depends on the
unknown distances of the point to the given projection centers

10.3 The approximate Solution

The �rst solution just minimizes the sum of the squares of the distances of the rays to the
3D point.

The projection centers are

Zk = −H−1
n∞hk (10.1)

with

Pk = [Hn∞|hk] (10.2)

The projection lines have normalized direction

dk = N
(
H−1
n∞xk

)
(10.3)

The 3D projection lines have Plücker coordinates

Lk =

[
Lh
L0

]
k

=

[
dk

Zk × dk

]
(10.4)

The squared distances of the unknown point X to the lines are

d2
XLk

= |L0i + S(Lhi)X|2 (10.5)

= (Zk × dk + S(dk)X)T(Zk × dk + S(dk)X) (10.6)

= |Zk × dk|2 + 2(Zk × dk)TS(dk)X +XT
S(dk)TS(dk)X (10.7)

The sum of the squared distances therefore is

Ω =
¸
k

d2
XLk

(10.8)

=
¸
k

|Zk × dk|2 + 2
¸
k

(Zk × dk)TS(dk)X +XT
¸
k

S(dk)TS(dk)X (10.9)

The necessary condition for the minimum is

1

2

∂Ω

∂X
=
¸
k

S(dk)T(Zk × dk) +
¸
k

S(dk)TS(dk)X = 0 (10.10)

Thus, the optimal point is given by

xX =

(¸
k

S(dk)TS(dk)

)−1¸
k

S(dk)TS(dk)Zk (10.11)
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or

xX =

(¸
k

W k

)−1¸
k

W kZk (10.12)

with

W k = I 3 − dkd
T
k (10.13)

in case dk is normalized. Obviously, this is a weighted mean of the projection centers
Zk where the weight matrix is 0 in the direction of dk and 1 otherwise. Thus, W k is
representing a cylindrical covariance matrix, with in�nite uncertainty in the direction of
the projection lines and standard deviation 1 perpendicular to the viewing direction.

The estimated variance of the distances of the �tted points to the projection lines can
be obtained from

pσ2
d =

Ω

2I − 3
with Ω =

¸
k

d2(X ,Lk) =
¸
k

(
dT
k (xX −Zk)

|xX −Zk|
)2

. (10.14)

The theoretical covariance matrix of the estimated points is

ΣxXxX = σ2
d (
°
kW k)

−1
(10.15)

with some prior assumption about the standard deviation σd of the distances.

10.4 The Solution with Di�erent Uncertainties of the

Distances

Instead of (10.8) we optimize

Ω =
¸
k

d2
XLk

σ2
dk

, (10.16)

where the standard deviations of the distances are σdk . We obtain the same solution
(10.12) however instead of the weight-matrices in (10.13) we use

W k =
1

σ2
dk

(
I 3 − dkd

T
k

)
, (10.17)

see PCV Eq. (10.174).

If the solution (10.12) is written with the normal equation matrix and the right-hand
sides

N =
¸
k

W k and n =
¸
k

W kZk (10.18)

(using the weights eq : W −WLS, assuming σ0 = 1) we have the theoretical covariance
matrix

ΣxXxX = σ0N
−1 . (10.19)

Similarly, we obtain an estimate for the variance factor

pσ2
0 =

Ω

2I − 3
with Ω =

¸
k

(
dT
k (xX −Zk)

|xX −Zk|
)2

. (10.20)
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10.5 The Solution for Directional Observations with Dif-

ferent Uncertainty

In case directions δk are observed, the uncertainty of the distances dk of the unknown
point to the given rays depend on the distances sk of the point x to the projection centers
Zk:

σdk = skσδk with sk = |X −Zk| (10.21)

We cannot optimize (10.16) since the distances sk depend on the unknown point.
However, see Fig. 10.2, we can iteratively update X by using (10.21) after an initializa-

tion with sk = 1 in the �rst iteration. For not too large directional errors, say below 0.01
[rad] or 1 ◦, only a second iteration is necessary. This procedure can replace Algorithm 21

Figure 10.2: Optimal triangulation with isotropic directional uncertainties.

in PCV, in case it is clear that the 3D point is at �nity and the rays do not diverge, or if
some su�ciently good approximate value for X is known.

10.6 Assuming Correlations between the Directions due

to Least Squares Matching

10.6.1 The 2D Model

We assume the position of the keypoint in one image is determined by some keypoint de-
tector and the coordinate di�erences, i.e., parallaxes, to the other images are determined
by least squares matching, like the Kanade-Lucas-Tracker. The reason simply is: the coor-
dinates x1 of the detection usually is less accurate, say with standard deviation σx whereas
the determination of the parallaxes pk = xk −x0, k = 2, ...,K is highly accurate, say σp0 .
Assuming a homogeneous con�guration and enforcing the mean coordinate, derived from
the parallaxes is 0 the uncertainty of the �nal coordinates xk can be derived from

x =


x1

...
xk
...
xK

 =


E(x1)
...

E(xk)
...

E(xK)

+


∆x0

...
∆x0

...
∆x0

+


∆p1

...
∆pk
...

∆pK

 (10.22)

with the covariance matrices for the detection ∆x0 and the parallaxes ∆p = [∆p
k
]:

D(∆x0) = Σx0x0
and D(∆p) = (IK − JK/K)⊗ Σpp with J = 1K1T

K (10.23)

see Förstner (1998). In the isotropic case we have

Σx0x0
= σ2

x0
I 2 and Σpp = σ2

pI 2 . (10.24)
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This yields the following covariance matrix for the K points

Σxx =
(
σ2
x0
JK + σ2

p (IK − JK/K)
)
⊗ I 2 (10.25)

We have the extreme case where the parallaxes are perfect: σp = 0:

Σxx = σ2
x0

11T ⊗ I 2 (10.26)

Then all points are 100% correlated.

10.6.2 The 3D Model

We now want to extend the model to observed directions, namely assuming they are
correlated. This extension is non-trivial, why we provide an approximate solution.

The reason is that the basic model (10.22) implicitely assumes the projection centers
are coplanar, the viewing directions are parallel, the scene is fronto-parallel, and the image
coordinates refer to a perspective model. Then a surface patch is mapped to identical image
patches, allowing to use the result of Förstner (1998). As soon as the surface element is
observed from di�erent directions, this model does not hold anymore. This not only holds
for tilted cameras but also for spherical cameras, where the addition in (10.22) cannot be
easily replaced.

We therefore exploit the result of Förstner (1998) by modelling the situation is two
steps:

1. In the �rst step, we assume the surface patch is seen along its normal, however,
allowing the distance of the projection centers may vary. Then the setup of a simul-
taneous homogeneous least squares matching is possible. The resulting accuracies
refer to the image coordinates (∆pk) refer to the scene, and, using the distances sk to
the projection centers can be transformed into individual directional uncertainties,
which, due to the isotropy assumption, lead to isotropic directional uncertainties.

2. In the second step, we assume the directional accuracy approximately transfers to
directions not being parallel to the normal. This is a valuable approximation if
the deviation from the normal is not too large, since the deviation increases with
1/ cos(αk), where αk is the angle between the observed direction and the normal of
the surface patch. Neglecting this factor simulates the situation where the scene is
assumed to consist of small spheres, whose relative direction is determined by least
squares matching, which is an unlikely but not invalid assumption.

10.6.2.1 Observed Directions parallel to the Normal of a Surface Patch

The result of the previous subsection can directly be used for expressing the lateral uncer-
tainty of the spatial deviations across the direction. Using (10.21) we �nd the directional
uncertainty from

σδk =
σdk
sk

(10.27)

where the standard deviations σdk correspond to the σxk in the left bracket of (10.25).
Hence we assume the directional errors d = [dk] ]are isotropic with

Σdd = σ2
x0
JK + σ2

p (IK − JK/K) (10.28)

Since we need the factors

wdk= =
1

σ2
dk

(10.29)

in the weight matrices, which now are not independent we use the weight matrix

W dd = Σ−1
dd = [wkk′ ] =

1

σ2
p

IK −
Kσ2

x0
− σ2

p

K2σ2
pσ

2
x0

JK (10.30)
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Since the individual weight matrix (10.17) for one direction can be written as

W k = S(dk) (wdk I 3)ST(dk) (10.31)

we obtain the full weight matrix as

W = [W kk′ ] = Diag(S(dk)) [wkk′ I 3]DiagT(S(dk)) (10.32)

or more explicit
W kk′ = wkk′S(dk)S(dk′) (10.33)

Therefore, the solution for the 3D point reads asxX = N
−1n with N = [Nij ] =

¸
k,k′

W kk′ and n = [nj ] =
¸
k,k′

W kk′Zk′ . (10.34)

10.7 Uncertainty of binocular triangulation with omni-

directional cameras

Given is the con�guration

• Distance D

• Basis B

• Angular range α

• E�ective image diameter/width W

• Matching accuracy σδ referring to the direction

Figure 10.3: Con�guration

Then we have for small δ

• The parallactic angle

γ =
b

D
or Dγ = b and dD γ +D dγ = 0 and

σγ
γ

=
σD
D

(10.35)

thus

σD =
D

γ
σγ =

D2

b
σγ (10.36)

• The pixel size corresponding to direction elements ∆δ in [rad] is

∆δ =
α

W
(10.37)

assuming a pixel distance corresponds to the same directional di�erence, which is an
approximation.

• the uncertainty of the measured parallactic angle, as di�erence of two directions

σγ =
`

2 σδ (10.38)
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Hence, we �nally have the distance accuracy

σD =
`

2
D

γ
σδ (10.39)

Since we usually describe the matching accuracy, i.e., the accuracy σp of the parallax in
pixels, we need to take the resolution into account. Then we have

σδ =
α

W

σp`
2

(10.40)

Then we obtain for the distance

σD =
D

γ

α

W
σp =

D2

b

α

W
σp (10.41)

If we refer to the inverse depth

s =
1

D
with sD = 1 and ds D + s dD = 0 and

σs
s

=
σD
D

(10.42)

we obtain

σs =
s

D
σD =

s

D

D2

b

α

W
σp =

1

b

α

W
σp (10.43)

from which we may derive the matching accuracy

σp = b
W

α
σs (10.44)

if we know the camera, i.e., the viewing angle α, how its image is used (possibly reduced
in resolution), i.e., the diameter of the image in pixels, and how large the e�ective baseline
b is.
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