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Part 1

Technical Notes on Statistics and
Estimation Theory



1 Gauss—Helmert Model as Optimiza-
tion Problem

The Gauss—Helmert generalizes the well-known Gauss—Markov model by allowing
implicit relations between the observations and the unknown parameters. The
classical derivation of the estimation procedure refers to the statistical nature
of the Maximum-Likelihood optimization. The note separates the description of
the model and the optimization function from the generally iterative numerical
optimization procedure, in order to elucidate the non-statistical properties of the
intermediate steps before treating point of convergence as final estimate.
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Remark: While throughout the notes we use one of the classical statistical notation (obser-
vations y, and parameters 0) , in this note we adopt one of the notations used in Geodesy and
Photogrammetry which better fits to the notation used by Boyd and Vandenberghe (2004), thus
we name the observations ! and the unknown parameters . o

1.1 Preface

This note (2021) describes the estimation within the Gauss—Helmert model as a specific
optimization problem, making explicit the numerical character of the numerical process
for determining the parameters, omitting the statistical interpretation of the intermediate
steps within the optimization procedure. This clarifies (1) the role of the stochastical
model at the beginning of statistical parameter estimation task and used for evaluating
the uncertainty of the result, and (2) the non-statistical role of the numerical method for
achieving the final parameters. It is common to derive the estimator for a parameter vector
within a statistical framework, and not distinguish the different aspects of the whole task:
(a) the specification of the model, (b) the specification of the optimization function, (c)
the numerical process of optimization, and (d) the evaluation of the obtained parameters.
This note is intended to separate these steps.



1.2 Motivation

Parameter estimation consists in determining unknown parameters from given observa-
tions. Its mathematical model consists of the functional model, relating the mean values
of the observations to the unknown parameters, and the stochastical model which describes
the uncertainty of observation process. We often categorize functional models according
to their algebraic structure. The Gauss-Markov model is a functional model, where the
mean observations are an ezplicit function E(l) = f(x) of the parameters.

Here we discuss the mathematical model of an estimation task with a functional model,
where the mean observations and the parameters are related by an implicit function This is
called the Gauss—Helmert model. Given are N observations I together with the uncertainty
of the observation process D(1), implicitly assuming the measuring deviations are normally
distributed. The mean values (1) of the observations are functionally related to unknown
parameters x by G implicit equations

g(z,E(l)) =0. (1.1)

The task is to find optimal estimates & for the unknown parameters.

The derivation, presented here, is based on the following assumptions.

e We consider the cases where the representation of the parameters and observations
may be redundant, such as for normalized homogeneous coordinates or rotation
matrices. Instead of including constraints, such as a length or an orthogonality
constraint, we allow that the estimation refers to a minimal representation of the
corrections, close to the approximate values of the parameters or the observations,
namely in the tangent space defined by the individual constraints. As a consequence,
the observations and parameters may be lists of individual groups of possibly redun-
dantly represented entities, e.g.,  := {R, ¢, \) for the rotation, the translation, and
the scale of a spatial similarity, the corrections, however, are vectors of a locally
minimal representation, e.g., Az = [ArT, At", A)\]T, where Ar describes a small
rotation with three parameters.

e We treat the expectation of the observations y = E(I) as unknowns. This is a
consequence of the previous point and in contrast to classical setups, where the
optimization function has the residuals as unknown. In the linearized model the cor-
rections Ay and Az to the expectation of the observations IE(l) and the parameters
x are unknown, which allows us to update them in the original, non-linear model
taking their algebraic properties, e.g., length or orthogonality, into account.

1.3 The Gauss—Helmert model for estimating parame-
ters

We now describe the set-up of the estimation procedure with a Gauss—Helmert model as
functional model, derive the optimization task, provide a solution for the case where the
model is linear, finally provide the solution to the non-linear model using a linearized
model within an iterative scheme.

1.3.1 The mathematical model

We start from N given observations, collected in the N-vector I. We assume, they are a
sample of a normal distribution, specified by the unknown expectation vector and partially
known dispersion matriz. The stochastical model for the observation process therefore is
given by

L~ N(E@), D). (1.2)

The dispersion matrix of the observations

Gauss—Markov
model

Gauss—Helmert
model

stochastical model

variance factor od
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likelihood function
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parameters

and unknown mean
observations y

D(l) = 05 X (1.3)

is specified by an approximate covariance matrix ;; which differs from the true covariance
matrix by an unknown variance factor o3. The functional model of the Gauss—Helmert as-
sumes the U unknown parameters « and the N unknown mean values IE(l) are constrained
by the following G-dimensional implicit function'?

g (& E@)=0. (1.4)
Gx1 Ux1 Nx1

Observe, that (1.2) can be interpreted as the likelihood function of the unknown parame-
ters x

L(x) := L(z,g) = p(l | z,g) = M(E(l | z,g9),D( | x,9)), (1.5)

for given observations I and functions g, where the distribution M is characterized by its
first and second moment. In order to be able to determine the U parameters & we need
to require there are at least as many constraints as unknowns:

G>U, (1.6)
or that the number of redundant constraints, i.e., the redundancy
R=G-U2>0. (1.7)

is non-negative. Similarly, in order to have a guarantee that the implicit function (1.4) of
[T, E1")] € RV is not empty, the number G of constraints should not exceed U + N,
hence

N>G-U (1.8)
Therefore we have the following relation
N>R>0 (1.9)

as a necessary condition for the model setup.

1.3.2 The task

The goal is to find the maximum-likelihood estimates & and ¥ for the unknown parameters
« and the unknown expectation of the observations, short, the mean observations y = (1)
such that the weighted sum of the residuals®

=91, (1.10)

namely
Q=v"%;', (1.11)

becomes minimum and the estimates fulfil the constraints
9(2.9) = 0. (1.12)
Observe,

e the optimization function (1.11) does not depend on the variance factor o3.

IThe Gauss-Markov model E(l) = f(x) therefore can be interpreted as a special case of the Gauss—
Helmert model, setting g(x, E(l)) = —E() + f(x)

2The definition of the implicit function is different from Forstner and Wrobel (2016, Eq. (4.426)),
where the two arguments of the implicit function g are exchanged

3We us the variable y for the mean observation, in order to avoid to define approximate values for the
fitted observations y within the iteration loop, since the intermediate values in an iteration scheme have
no statistical meaning.



e In order to simplify the notation, and avoid statistical terms within the optimization
procedure as far as possible, we will also write the optimization problem as follows:*
For given observations I, constraints g and weight matrix W = Zl_ll find values for
x and y that

minimize  (y — )" Wy(y — 1) (1.13)
subject to  g(x,y) =0, (1.14)

where y stands for the unknown mean observation E(1).

Remark: We may assume the observations appear in I statistically independent groups
{li;%1,1,},2 = 1,..., I, and if the dimension of these groups is the same, say d, we have N = dI.
Furthermore, we often face the situation, that the constraints only refer to one group of observa-
tions. Then the functional model (1.12) can be written as

9:(x,y;)=0, i=1,.,1I. (1.15)

Hence, if the number of constraints per group is constant, say ¢, then the number of constraints
is G = ¢I. As an example, this situation holds for the model of a 3D similarity for two sets of
3D points, where we have groups of d = 6 observations, namely the 3D coordinates in the two
systems, and ¢ = 3 constraints per group relating these coordinates via a similarity transformation
with their parameters x. o

We first provide a solution for the linear Gauss—Helmert model. We specialize it for
independent and identically distributed observations and derive the solution for the two
basic models, namely the Gauss—Markov model and the model with constraints between
observations only. We also show, that the Gauss—Helmert model can be solved by chosing
adequate substitute observations leading to a Gauss—-Markov model. Since in case the
model is non-linear the coefficient matrices need to be updated during the iteration process,
why this model is called a quasi Gauss—Markov model. In the next section we then handle
the non-linear case. Finally, we provide a derivation via an equivalent Gauss—Markov
model.

1.4 The solutions for linear models

1.4.1 The solution for the basic linear Gauss—Helmert model

We start with the linear Gauss—Helmert model with covariance matrix D(l) = ¥;; = /.
We handle it as an algebraic, not a statistical optimization problem.

The original optimization problem reads as: for given observations I € IRY, a regular
N x N covariance matrix ¥;; = [y, full rank coefficient matrices. X € RV and
Y € RN and a constant vector b € IR

GHM: minimize (y—1)T(y—1) (1.16)
subject to Xz +Y'y+b=0. )
w.r.t. the unknown parameters  and the mean observations y.
Hence, here we chose the constraint function
gz, y)=Xe+YTy+b (1.17)

which is linear in the unknown parameters. The coefficient matrices often are called design
matrices, since they specify the design of the observation process. They are assumed to
be given and fixed.

Furthermore, for a compact representation of the solution we use the substituted ob-
servations n(l) together with their covariance matrix

n(l) =Y +b and ]D(@) =Y., = YTy . (1.18)

4This in the flavour of the problems discussed in Boyd and Vandenberghe (2004).




We obtain the estimated parameters and the fitted observations from

= (XTI 1X)"XTEln(l) (1.19)
§=1-v5,lg@.1). |
Remark: Generally, the parameters are estimated based on the normal equations
XTZiX)@ + X", n(l) =0 (1.20)

which can be solved in any numerical manner, especially if we want ot exploit the sparsity of X,
):”, or Znn. <o

Proof: Using Lagrangian multipliers we need to find the minimum of
1
®(z,y,\) = §(y—l)T(y—l)+>\T(x:;:+ YTy +b). (1.21)

Necessary conditions are

0P

= 5T = XA (1.22)
P

0:5? = y—Il+YA (1.23)
P

0:% = Xz+Y'y+b. (1.24)

Multiplying (1.23) with YT from the left leads to
y=1l-YA. (1.25)
Substituting this expression for y in (1.24) yields
0=Xx+Y'(l-YA+b, (1.26)
which allows to solve for A
A=YTY) "Xz + YTl +b). (1.27)

From (1.22) and (1.27) we obtain the normal equations for the estimates of the unknown

pzaurzaurneters5 T
X(Y'Y) Xz = -X(Y'Y)" Y YTl +b). (1.28)

From (1.25) and (1.27) we finally obtain estimates ¢ for the mean observations® y,
g=1-YY'Y) ' Xz+YTl+b), (1.29)

as a function of the estimated parameters Z and the observations .

1.4.2 The Gauss—Helmert model for general covariance matrix

The Gauss—Helmert model with general covariance matrix reads as: for given observations
l, regular covariance matrix ¥, = Wl_ll, and coeflicient matrices X and Y

GHM(X): minimize (y—1)T%; (y —1)

1.
subject to Xz +Y'y+b=0. (1.30)

50Observe, for given substitute observations n = YTl + b, this is the solution for the Gauss—Markov
model minimizing (X@ + n)¥ 1 (Xx + n) w.r.t. the parameters

80bserve, for fixed @, this is the solution of the problem with constraints for observations I only,
minimizing |X& + YTl + b)|2 w.r.t. the observations I, leading to fitted observations I = 3.
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w.r.t. the unknown parameters  and the mean observations y. For a compact repre-
sentation of the solution we use the substituted observations with their — now different —
covariance matrix

n=Yl+b and Dn)=%,,=Y'I;Y. (1.31)

We obtain the estimated parameters and the fitted observations from

(XTI X)) XTE m(l)

% = nn
y=1-5,Y%  g(z.1). (1.32)

Proof: We transfer this model to an unweighted Gauss—Helmert model. Especially,
we eliminate the weights of the observations. For eliminating the weights, we use the
substitutions

Yo=5/°Y, 1,=5,;"1, and y,=%,""y. (1.33)
Now, we need to solve the following unweighted Gauss—Helmert model: for given observa-
tions I, and coefficient matrices X and Y,

GHM(w):  minimize  (y, — lg)T(yg —1,)

subject to Xz + Y;yg =0, (1.34)
w.r.t. the unknown parameters x and the mean observations y,.
We thus obtain the normal equation system
X(Y V) T' X =-X(Y]Yy) (Y]l +b). (1.35)
or explicitly
XT(YTE, V) ' Xz=-X" (YT, Y)Yyl (1.36)
The fitted observations we obtain from
Gy =1y = Yy(Y Yy H(XZ+ Y]l +b)). (1.37)
or finally
g=1-XyY(Y L, Y)Y\ X2+ YTl +b). (1.38)

1.4.3 Gauss—Markov model

The Gauss—Markov results from specializing the design matrix Y in the Gauss—Helmert
model to

Y=-/, (1.39)
leading to the constraint function
gz, y)=Xr—y+>b (1.40)
and substitute observations and their covariance matrix
n(l)=-1l+b with D(n)=X,,=X;. (1.41)

The Gauss—Markov model with covariance matrix ¥; = Wl_l1 leads to the following general
least squares optimization problem, for given observations I, weight matrix Wy = Zfll,

and coefficient matrix X

GMM(X): minimize (y—0)"Wy(y —1)
subject to y=Xx+b.

(1.42)

w.r.t. the unknown parameters & and mean observations y. It yields the optimal param-
eters

Z=—(X"WpX) ' XTWy n(l) (1.43)
Yy = l- g(iL’, l)

or explicitly in the classical form
Z=X"WyX)" ' XTWy (1 —b) (1.44)
y=Xz+b. )

11



1.4.4 Model with constraints between the observations only

The model with constraints between the observations only results from specializing the
design matrix X in the Gauss-Helmert model to:

X=0, (1.45)
leading to the constraint function
g(y)=YTy+b, (1.46)

not depending on unknown parameters «, and substitute observations and their covariance
matrix

n(l)=Y'l+b with Dn)=%,,=Y L,;Y". (1.47)

The model with constraints between the given observations I having covariance matrix ¥
leads to the following least squares problem

CONSTR(Y): minimize (y—1)TZ; (y —1)

1.4
subject to YTy +b=0. (1.48)

w.r.t. the mean observations y. It yields the optimal estimates for the fitted observations

g=1-XyY(YTZ, YY) (YTl +b). (1.49)

1.4.5 The quasi Gauss—Markov model

As already indicated in the footnotes for (1.28) and (1.29) we can perform the estimation
in the Gauss—Helmert model in two steps:

1. First we perform a Gauss—Markov model using the substitute observations
n=Y"+b (1.50)
hence
n=Xz with Dn)=Y'¥L,;Y, (1.51)

Using (1.43), this leads to the optimal estimates for the parameters x using the
normal equations
2=X"W,.,X) "' X W,, n. (1.52)

2. Now, as we have the optimal estimates &, we can treat them as fixed values. With
the constant vector
c(x) =Xz +b, (1.53)

thus
g) =Yl +¢(2), (1.54)

we can find the estimates for the fitted observations from the model for constraints
between the observations only

Y'l+c@) =0 and D) =Y. (1.55)
With (1.49), this leads to the estimates
G=1-uY(YTZuY) ' g(0) (1.56)

The Gauss—Markov model (1.51) is called the quasi Gauss—Markov model in the context
of solving the parameters in the Gauss-Helmert model. In case the constraints are non-
linear, the coefficient matrices are not fixed but need to be updated during the iteration
process, which motivates the prefix quasi.

12



1.4.6 Results using pseudo inverses

The results can be written compactly using pseudo inverses. This is motivated from the
least-squares solution of the simple Gauss—Markov model relating the mean observations
to the unknown parameters via

y=Xzx (1.57)

and minimizing |y — I|o. This leads to the classical solution & = (X' X)~'X" I, which
with the pseudo inverse
Xt =X"X)"'xT (1.58)

can be written as
z=X"1 (1.59)

This is an intuitive description of the inversion of (1.57), keeping in mind, that the inversion
is not unique, since X is not regular, and regularization is enforced by the least squares
principle.

Similarly, in case we minimize a weighted sum of squares (y —1)TW(y — 1) w.r.t. the
parameters x, with the weighted pseudo inverse

XE=X"wx)"'xTw (1.60)
we obtain the solution
=Xl (1.61)

We first define the properties of pseudo inverses and then provide the solutions of the
different estimation problems.

1.4.6.1 Pseudo inverse and weighted pseudo inverse

For the regular M x N matrix A, with M > N and rk(A) = N we use the pseudo inverse
At
AT = (ATA)TIAT (1.62)

It fulfils further the four relations:
AATA=A ATAAT = AT (AAT)T=AAT ATA=1. (1.63)

Similarly, with the symmetric weight matrix U we use the weighted pseudo inverse (see
Pepié (2010))
Al = (ATUA)TTATU (1.64)

which fulfils the four relations

AATA=A ATAAT = AT (UAAD)T = UAAT ATA=1. (1.65)

1.4.6.2 Solutions with pseudo inverses

We explicitly use the following inverses:

" (XTX)7t X7 (1.66)
Xoy = XTWyuX) XTwy, (1.67)
-’v_vm = X WnnX) X TWo, (1.68)
yt o= (yTy)7tyT (1.69)
Y5, (YTZuY) ™ YTey, (1.70)

Then we obtain the following solutions:

13



e Gauss—Markov model (Y = —/). Starting from the model

y—-b=Xuz (1.71)
we obtain
z =-X} n() and v =l+g@l) (1.72)
=X, (1-b) =XZ+b. (1.73)
e Model with constraints between the observations only (X = 0). Starting from the
model
Yi(y—1)+gl)=0 (1.74)
we arrive at the solution y — 1 = —YJ{; g(l), or
§ = 1-Yil W) (1.75)

e Gauss—Helmert model. Starting from the model

Xe+ Y y+b=Y"(y—1)+g(z,1)=0 (1.76)
—
ny)

when first using n(l) as observations and then fixing the estimate for & we arrive at

2=-X§, n(l) and F = 1-Y{i g@l (1.77)

Won
taking the covariance matrix ¥,,, of n(l) into account.

The solutions are collected in the following Table, starting with the Gauss—Helmert model
with general covariance matrix and then showing the different specializations.

Table 1.1: Statistically optimal solutions in the linear model (X, Y, DD(l)) with its special-
izations: g(x,y) = Xz + Y y+b = 0 relating the mean y = (1) of the observations I to the
unknown parameters & assuming a general covariance matrix and a unit matrix D(l) = X
and D(l) = I, respectively. We use the substitute observations n(l) = YTl + b with their
covariance matrix ¥,p,.

Rows 1 and 2: Gauss—Helmert model.

Rows 3 and 4: Gauss—Markov: n(l) = -1 +b.

Rows 5 and 6: Model with constraints between the observations: g(y) = Y y + b.

model(X, Y,D(1)) | task solution

1 GHM(X,Y,Ij) min. (y—0)T5,;'(y-1) 2= — X, n()

st. Xe+YTy=c g=1— vl 9@
2 GHM(X,Y,I) min. (y—1)T(y —1) z= — X, n(l

st. Xe+Yy=c g=1—- vy g@&,
3 GMM(X,—1,%;) min. (y—0)T5,;'(y-1) z= - X,, n()

st. Xr—y=c y=1- gz, )b
4 GMM(X, —1,1) min. (y—1)T(y —1) z= — X n()

st. Xr—y=c y=1- gz,
5 CONSTR(0,Y,Y;) | min. (y—0)T%,; (y -1

st. Y'y=c g=1- Yi' g()
6 CONSTR(0,Y,l) |min. (y—10)"(y—1)

st. Yy=c g=1— YT g

1) This is equivalent to § = XZ + b

14



This closes the section on the estimation in the linear Gauss—Helmert model. We did
not construct the solutions, but just proved they are correct. The generalization to non-
linear constraints will also use the reduction to a Gauss—Markov model, but derive the
iterative solution explicitly. Moreover, coefficient matrices X and Y then depend on the
current estimates of the parameters and the observations thus need to be updated in each
iteration.

1.5 The non-linear Gauss—Helmert model

The functional model generally is non-linear. We assume we have approximate values x®
and y® for the parameters & and the mean observations y and updates

T :=u,(x? Azx)) eg., z%:=z"+Ax. (1.78)
and
y:=uy(y", Ay) eg., y':=y"+Ay. (1.79)
These relations hold for small corrections Az and Ay. Given values for  and its approx-
imations % we assume we can determine the corrections from
Az =u;'(x,x%) eg., Ax=x—z° (1.80)

Similarly, we assume there exist inverse functions for the mean observations

Ay=u, ' (y,y") eg, Ay=y—y° (1.81)
Hence we have the update function with m > n, for small Az, especially for m =n

Uy : R" = R™ Az x =u,(Azx;x®) especially x=Ax+z® (1.82)

u; 't R™ = R x— Az =u, '(z;2%) especially Ax =z —x®, (1.83)

and similarly, for u,.

Example: Non-linear update and its inversion for 3D rotations. Let the
unknown parameters be a 3 x 3 rotation matrix R. We actually estimate a small 3-vector
Ar of small rotation angles. The approximate rotation matrix R® the can be corrected
using

R =u,(R*,Ar) = R(Ar) R*. (1.84)

where R(Ar) is a rotation matrix depending on the 3-vector Ar, e.g., using the exponential
or the Cayley form

R(A7) = exp(S(A7)) or R(Ar) = (I + S(Ar/2))(I — S(Ar/2))~* (1.85)

with the skew symmetric matrix S(a) inducing the cross product a x b = S(a)b. In case
we have given R and some approximation R?, we may determine the correction vector Ar

from
S(A7) =log(RTR*) ~ RTR" — I, (1.86)

thus taking the off diagonal terms of the product RTR® of the two rotation matrices as
the sought 3-vector. This can compactly be written as

Ar =u; ' (R,R*) = s(R"TR%). (1.87)
where the function
1| As2— Az
s(A) = 5 Az — Az (1.88)
Az — Ay
extracts the skew vector of the 3 x 3 rotation matrix A. o
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Similarly, we have the updates and their inversion starting from I, first for the approx-
imations of the mean observations

y* =uy(l,v*) and v°= u;l(y“,l) = —u;l(Ly“) . (1.89)

which for small residuals can be defined in either manner. Thus we have for the mean
observations

y=uy(l,v) and vzu;l(y,l) = —u;l(l,y). (1.90)

For small values we have
v=v"+ Ay, (1.91)

see Fig. 1.1. Since the observations I and the residuals v may have a different structure,
e.g., if the observations are rotation matrices and the residuals are rotation vectors, the
covariance matrix ¥ ;; refers to the residuals of the observations

Covariance matrix for rotation matrices. In the case of an observed rotation
matrix R, we represent the uncertain rotation as

R=R(r)E(R) with D(r)=E,, (1.92)

If R is observed, the we refer to the 3 x 3 matrix ¥,, as the covariance matrix ¥;; of the
observed rotation. o

We are now prepared to derive a linear substitute problem used for iteratively deter-
mining the unknowns y and x.

g(ux(xa,Ax), uy(ya,Ay))= 0

g(xa’ ya)z 0

Figure 1.1: Update of the unknowns and the mean observations in the Gauss—Helmert
model. The corrections Ax = u;l(m,w“) to the parameters and the corrections Ay =
uy '(y,y") = v — v* to the mean observations and residuals are meant to converge to
zero. The figure assumes the dimensions of the observations/parameters (I,y,y®) and the
dimensions of their residuals/corrections (v, v*, y*) are the same

1. We define the corrections to the parameters and the mean observations
Az =u,'(z,z*) =2" —x and Ay = u;l(y, yt) =v—v°, (1.93)
in order to iteratively improve the approximations x® and y° such that after con-

vergence Ax = 0 and Ay = 0. Observe, that the approximate residuals v* = y% —1
also are to be corrected by Ay.

2. The optimization function then reads as’

Q="+ Ay) T, (v + Ay). (1.94)

where the covariance matrix ¥ ;; refers to the corrections v of the observations.
Remark: Observe, the optimization function (1.94) of this non-linear model results from
the one (1.30) of the linear model using y —l = y* + Ay — I = v* + Ay. o
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3. Linearization of the nonlinear implicit function (1.12) leads to the constraints
g(z,y) = g(u. (2", Az), uy(y", Ay)) = g(2*,y") + XAz + YTAy =0  (1.95)

with the Jacobians

_ Og T Og
dxu " 0Aw and ¥

v = ny (1.96)

?
T=z,y=y*

T=x,y=y°

to be evaluated at the approximations of the mean observations and of the parame-
ters.

Remark: Also the structure of the constraints of the linear Gauss—Helmert model is pre-
served, when replacing the unknowns & and y by their corrections Az and Ay and the
constant b by g(z®, y%). o

Therefore the linear substitute problem for determining the corrections Az and Ay is:
minimize  (v* + Ay)' ;! (v* + Ay) (1.97)
subject to  g(x®,y*) + XAz + YTAy=0, (1.98)

for given approximate values y and thus v* = uy L(y2,1), function g, Jacobians X and
Y, and covariance matrix ;.

We first will provide the algorithm and then its derivation.

1.5.1 The algorithm for estimating the parameters

We start from the observations {l, X;; }, the implicit functions g(x,y) = 0, and the approx-
imate values x“ for the unknowns and y® for the mean observations, which are initiated
with y* := 1. We obtain the following algorithm for an iterative solution:

1. Iterate until convergence

(a) Determine the Jacobians X and Y (1.96) at the current approximate values
(x,y*).

(b) Determine the contradictions ¢, of the negative constraints at the appproximate
values % of the unknown parameters together with their weight matrix & °

cy=—g(x®1) and W, = (Y'L,;Y) !, (1.99)
(c) Solve the normal equation system for the corrections Ax of the parameters
NAz =m with N=X"W, X and m=X W, c,. (1.100)
(d) Update the approximate parameters
= uy (2, Ax) eg., z%:=z+Ax. (1.101)

hence
—g(x®1) :==cy — XAz (1.102)

(e) Determine the corrections for the mean observations
Ay =Y Wye(eg — XAzx) — 0. (1.103)
(f) Update the approximate mean observations

Y =uy(y", Ay) eg, y'i=y"+Ay. (1.104)
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covariance matric
of the estimated
parameters

estimated variance
factor

2. Set the final estimates of the unknown parameters and of the mean observations,
sometimes called the fitted observation I := gy

-~ a

z:=z% and y=y". (1.105)
3. Determine the covariance matrix of the estimated parameters
Yz = N (1.106)

4. If we only know an approximate covariance matrix ¥j; and we assume the covariance
matrix ¥ differs from the approximation by an unknown variance factor o2

Y= O’%Z?I with Wy =%, (1.107)

then we can perform the estimation with Yjj, instead of using ¥;, which has no
effect onto the estimates. But then we can find an estimate

T T o
o Wi a2 _ CaWeye,C (1.108)

2
“Ta-u YT T Ga-v

for the estimated variance factor. Then we obtain an estimate for the covariance
matrix of the estimated parameters

Sop = 02¥%: with Y& = (XT(YTZoy) 1x)L. (1.109)

the attribute estimated only referring to use of the estimated variance factor.

Remark: If the observational noise is small and an approximate solution is acceptable, the steps
1.(e—f) can be omitted. Then the Jacobians X and Y are to be determined at (x“,1) instead of
at (z%,y?). o

The complete procedure is given in the algorithm below. The green parts refer to the
case, where the degrees of freedom of the parameters and observations is less than the
number of elements of their representation.

1.5.2 Derivation of the procedure

We now derive the procedure.

1.5.2.1 Estimating the parameters with a quasi Gauss—Markov model

We start from the constraint (1.95) rewritten as
—glx® y") — Y Ay = XAzx. (1.110)

In order to eliminate the dependeny of Ay, we introduce the contradiction of the con-
straints, i.e., the value

cg =—g(x,1) (1.111)

choosing the negative sign for making the following equations more intuitive. With
g(z®, y*) = g(x®, 1) + Y 0% and v = v® + Ay we have, up to first order, g(x®, y*) +
YTAy = g(x*,1) + Y v and therefore we can rewrite (1.110) as

cg— YTv=XAx. (1.112)

7Observe, we do not have the estimated residuals v in the optimization function, but their corrections
v —v® = Ay (1.93), in order to be able to handle observations, such as directions or rotations, where a
non-linear update of the observations is more appropriate, replacing (1.93), see (7.19).

8 Again we do not indicate, that ¢y depends on approximate values thus omit a superscript ¢.

91f we have the special linear Gauss—Markov model g(x,y) = X —y = 0, thus Y = —/, and use the
approximate values % = 0, then we have ¢y = —g(x?,l) =L.
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Algorithm 1: Estimation in the Gauss—Helmert model.

[Z,¥3z,05, R] = GaussHelmertModell _D(I, ¥, c,, -, x®, 0%, Ty, maxiter)
Input: observed values {l, X}, number N,

constraint function [c4, X, Y] = ¢4(1, y*, *), number G,

approximate values x®, possibly 03 ,
u

parameters Tp, maxiter for controlling convergence.
Output: estimated parameters {Z,¥;;}, variance factor 62, redundancy R.

1 Redundancy R=G - U ;

2 if R < 0 then stop, not enough constraints;

3 Initiate: iteration v = 0, approximate values y® := [, stopping variable: s = 0;
4 repeat

5 Constraints and Jacobians : [cg, X, Y] = ¢4 (1, y*, ), see (7.14), (1.96);

6 Weight matrix of constraints: W, = (Y'TZ;Y)"1;

7 Build normal equation system: [N, m], see (7.16);

8 if N is singular then stop: normal equation matrix is singular;

9 Updates of parameter vector: Az, see (1.78), _;

10 Corrections for fitted observations: Ay, see (7.18);

11 Update fitted observations: _, see (7.19);

12 Set iteration: v := v + 1;

13 if max, (|Az,|/0% ) < T, or v = maxiter then s=2;

14 until s = 2;

15 Estimated parameters Z := Z“ and covariance matrix: ¥zz, see (7.22);
16 if R > 0 then variance factor 63 = ¢] Wy, ¢/ R;

17 else 63 = 1;

Now, we define the substitution
vy=—-Y"v. (1.113)

This is that part of the residuals v of the observations I, which is relevant for the con-
straints. Its uncertainty results from (1.112), since Az is assumed to be fixed in this
step,

D(c,) = D(—g(z",1)) =Ly = Y ;Y. (1.114)
We thus arrive at a representation of the functional model which has the algebraic structure
of a Gauss-Markov model with ¢, as observations and Az as unknowns quasi
Gauss-Markov
¢y +vy=XAz with D(c,) =Z,. (1.115)  model representing
the Gauss—Helmert
model

Starting from here we solve the optimization problem for determining the corrections Ax

minimize v, ¥\ v, (1.116)
subject to  — (cg +vy) + XAz =0, (1.117)
for given the contradictions ¢, of the constraints, the Jacobian X, and the covariance

matrix ¥, .,. As we know from the estimation with the Gauss-Markov model, we obtain
the normal equation system

NAz =m with N=X"(YTZ,Y)"'X and m=X"(Y'5;Y) le,.| (1.118)

Hence the updated parameters are

= uy,(x?, Ax). (1.119)
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We, however, need to be aware of the following: both, the coefficient matrix X and —
via the Jacobian Y — the covariance matrix ¥, in (1.114) generally depend on the current
values ® and y?, since the Jacobians have to be determined at these values, see (1.96).
So, we need to determine updates Ay for the mean observations y within the iterative
scheme.

Since its Jacobian and covariance matrix depend on the unknown parameters we call
thus functional the quasi Gauss—Markov model replacing the implicit constraints in the
Gauss-Helmert model.'°

1.5.2.2 Update of approximate fitted observations

From (1.115) and (1.113) we have the residuals v, at some point within the iteration
scheme
vy =—cy+ XAz =-YTv, (1.120)

which result after finding the locally best corrections Az. If we could determine the
residuals v of the original observations from the residuals vy, i.e., invert the relation
vy = fYTv, we could derive the corrections

Ay =—v"+wv. (1.121)

We could use them to determine updates for the mean observations y. We obviously
cannot determine the residuals v of the original observations by inversion of (1.113), since
the matrix Y in generally does not have full rank.

Therefore we determine those residuals v which fulfil the constraint (1.120) and mini-
mize {2 = vTZl’llv. With the Lagrangian parameter vector A we thus need to

CONSTR(Y): minimize v'¥;'v
) T (1.122)
subject to Y v+wv,=0.
w.r.t. the residuals v. Setting the partials of
1
®(v,A) = EUTZl_llv—i—/\T(YTv—&—vg) (1.123)
to 0 yields the two necessary equations for v
0P _ 0P
W :lel’v—F YAZO and W = YTU+U9 :0 (1124)
From the first equation we obtain
v = —le YA (1.125)
which from the second equation leads to
By - YTIYA=0 (1.126)
Therefore we have
A=(YTE,Y) o, (1.127)
which finally yields
D=3 Y(Y'I,Y) 13, (1.128)

inverting the substitution in (1.113) in an intuitive manner. Hence, from (1.121) and
(1.90) we obtain the corrections

Ay = —u, (y* 1) - T Y (Y ZuY) 7 gl 1). (1.129)

10Tn the German geodetic literature on adjustment theory (equivalent to the estimation theory) the
functional model (1.115) is called ’quasi vermittelnde Ausgleichung’, derived from the German ’wvermit-
telnde Ausgleichung’ representing the Gauss—Markov model. This motivates the English naming of this
functional model, which only occurs as substitute for the linearized Gauss—Helmert model
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If the residuals/corrections and the parameters/observations have the same dimension,
e.g., for classical point coordinates, this simplifies to

Ay=—y*+1-X;Y(Y V) gx1). (1.130)

The update for the estimates of the mean observations then read as

y* i=uy(y*, Ay) especially y“:=7y"+ Ay. (1.131)

If the observations and the constraints, I and g are grouped as I = [I;] and g = [g,],
such that each group g, only refers to the corresponding group I; and the observational
groups are mutually independent, i.e., for i# j we have Cov(l;,l;) = 0, then with v{ the
updates can be done group wise:

Ay, =uy 1, y?) — T, Ya(Y T, Ye) "L g(@, 1), (1.132)

with the individual updates
Ui = uy(y;, Ay;). (1.133)

If the observational noise is small, the Jacobian Y can be determined at the observa-
tions [ instead of at the current value y of the mean observations. Hence the update step
in (7.19) then would be omitted. The evaluation still can be based on the estimated vari-
ance factor, which can be based on ¢, alone, and the covariance matrix of the estimated
parameters.

1.5.2.3 Final estimates and evaluation

The final estimates are derived from the approximate values in the last iteration, assuming
convergence is achieved. Hence we have the final estimates

a a

z:=z% y:=y*, and v=10". (1.134)
The estimated variance factor uses the value of the optimization function at the estimates
and can be written in different ways

so _ URT) _ D' Wy _ e Wogey (1.135)
0 G-U G-U G-U

The last relation can be derived at the point of convergence where Ax = 0, Ay = 0,
and g(x,y) =0, using ¢, = Y Tv. Hence, the optimization can be based on the weighted
sums of the squares of the estimated residuals v or the contradiction ¢, of the constraints.

Finally, the theoretical covariance matrix of the estimated parameters can be derived
from (1.118) by variance propagation, leading to the Cramer-Rao bound for the uncertainty

Tas = (XT(YTZY) ' X))~ (1.136)
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2 Pre-calibration and in-situ Self-calibration
with Correlated Observations

Deformation analysis based on point clouds taken at different times may require
to take into account both preclalibration and in situ self-calibration of the used
instruments. We analyse the mutual effect of pre-calibration and in-situ self-
calibration w.r.t. (1) the necessity to exploit the full covariance structure of the
point cloud induced by the pre-calibration and (2) the possibility of increasing
the computational efficiency during the self-calibration.

2.1 Preface . . . . . . 22
2.2 SUummary . ... .. e 22
2.3 Introduction . . . . . . . . . L. 24
2.3.1 Motivation . . . . . .. 24
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233 Goalandresult . . . ... .. oL o 26
24 Thesetup . . . . . o e e e 26
2.4.1 The covariance matrix of the observations . . . . . . ... ... ... 26
2.4.2 A: Self-calibration with independent points . . . . . ... ... ... 29
2.4.3 B: Self-calibration with fusion using independent points . . . . . . . 29
2.4.4  C: Self-calibration exploiting a priori calibration . . .. .. ... .. 30
2.4.5 D: Self-calibration with fusion using correlated points . . . . . . .. 32
2.5 SYynopsis . ... e 33
2.6 Concluding remarks . . . . ... ... oL 34
2.7 Appendix: Covariance matrix for given design matrix, observations, esti-
mate and covariance matrix of parameters . . . . . . ... ... L 34
2.7.1 Example: The mean of two values y;, 1 =1,2 . . .. ... ... ... 34

2.1 Preface

The note (2023) addresses the question how a priori pre-calibration result may influence
a possible in-situ self-calibration, both concerning the achievable accuracy as well as the
numerical effort. The result uses a lemma by Rao (1967, Lemma 5a) which states under
which conditions the result of an estimation is invariant to a change in the assumed
structure of the covariance matrix of the observations.

2.2 Summary

We analyse the computational and statistical efficiency of self-calibration when recon-
structing a surface from point cloud taken with a laser scanner where we know the cali-
bration result. We discuss fusing the prior calibration information with the one from the
in-situ measurements and the effect of the uncertainty of the prior calibration (¢,, X, )
onto the covariance matrix ID(@) of the unknown parameters 6.

We address four cases, A to D, differing by their stochastical and their functional
models:
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e The a priori calibration result is not available (or used, cases (A,C)) or is integrated
into the self-calibration with a priori information in a Bayesian manner (cases (B,D)
). Hence, we have the two (linearized) functional models for estimating the parame-
ters y of the object’s form and the calibration parameters c

(4,0) : E(y):[s,q[ﬂ,or(ap): E({g D:{g f”ﬂ 2.1)

=a

e The covariance matrix of the observations is assumed to be (a) block diagonal,
assuming the points are mutually uncorrelated or to be (b) fully populated due to
the joint effect of the uncertainty ¥, ., of the a priori calibration parameters c,
onto the observations C,e,. So we either use

(A): D(y)=Zup=:%0, or (O): D(y)=%o+ Ca¥e,e,Ci=:X. (2.2)
(2[5 2]« wo((2])-[5 8] § Jmaen

The four cases are analysed w.r.t. their estimates and covariance matrices, see Tab. 2.1.

10 |

a

| [ D(y) = %o D(y) =X
SC 0| A = 9| C
D@ | A) = 1 D@ |C) =
T T -
s crmie | D@4+ | ) |Teclo.rel
BSC D@ | B) - D@ | D) =
[ BTW,B BTW,C ]_1 b [ (B"WoB)™' 0 ]
C"WoB C"W,C+W,,.. ' 0 Yo,

Table 2.1: Estimates and covariance matrices of the estimated parameters when using the
four models for self-calibration and assuming C = C,. SC: self-calibration without prior,
BSC: Bayesian self-calibration

The main result of this note is the following: If the matriz C = C, is common to the
stochastical model in (2.2) and the functional models in (2.1), then, following Rao (1967,
Lemma 5a), the estimates of model A and C coincide, allowing to use model A for an
efficient estimation of the parameters and their covariance matrix. Moreover, using Rao’s
lemma decorrelates and simplifies the solution for model D.

Especially, we have the following relations between the estimates in the model A and
in the models B and C

~

@14

D(0 D@ |C), (2.3)
D(g | A)

D(y|C).

D@ | B)
D | D) <D | B)

IN

<
<

An individual sensitivity analysis allows to determine the expected loss in quality, accuracy
and reliability in Baarda’s sense, without requiring actual observations.
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2.3 Introduction

2.3.1 Motivation

Taking point clouds as observations for the estimation of object forms, for deformation
analysis, or for calibration needs to take the stochastical properties of the coordinates of
the points into account as far as necessary. The quality of the assumed stochastical model
needs to be acceptable, not necessarily optimal, for the envisaged application.

Especially for deformation analysis, where the deformations are in the order of the
measuring precision, a realistic stochastical model, taking all known dependencies into
account, may be required.

Unfortunately, the points in a point cloud may be correlated due to the uncertainty
of the instrumental calibration. This generally leads to a large fully populated covariance
matrix >, of the NV observations, collected in the vector y. As a consequence any estima-
tion minimizing the weighed squares of the residuals is confronted with using the inverse
Wy = ¥y, which often is called information matrix or precision matrix.

This note shows under which conditions it is possible to work with uncorrelated points,
thus with a block matrix containing the 3 x 3 covariance matrices ¥, of the I individual
points, instead of a fully populated covariance matrix, without losing accuracy.

2.3.2 Rao’s lemma

The idea is to exploit the Lemma 5a in Rao (1967) which states under which conditions the
estimation with a covariance matrix containing certain additive variance components does
not change the parameters. Especially, it starts from the given the linear Gauss-Markov
model,

y+v=X0 with Xo=D(y), (2.5)

and the estimated parameters
6o = (XT251X) " X5 by, (2.6)
Then, when using the modified covariance matrix
Y =XIX" +Y0Z0Z"5g+ %o with Z'X =0, (2.7)

with arbitrary matrices I' and ® (which we will not need in the following) the estimate
0, from (2.6) is identical to the estimate,

6=XTE ' X)'XTE 1y, (2.8)

when using the full covariance matrix.

Fig. 2.1 shows the principle of least squares estimation with a unit matrix and an
arbitrary covariance matrix for the observations in the simple model y ~ N(x6,%). Fig.
2.2 visualizes the idea of Rao’s lemma. B

As can be seen by variance propagation its covariance matrix is

Y= XTI X)), (2.9)

hence, not (X TZO_ 1X)~1, thus in principal needs to take the full covariance matrix ¥ into
account.?
Observe, the two first components in the covariance matrix (2.7) have the structure of

a weighted block dyadic product XSX T similar to the 1D case szxT.

1 The result has as special case the mean of N values y,, in case the observations have the same variance
o? and are mutually correlated with the same correlation coefficient p € [~1/(N —1), +1]. Then the normal
arithmetic mean i = 3, In/N is the optimal estimator, but its variance is ag = (1+7r(N—-1))-0%/N, but

not o2/N. This can be shown using A = 1y, thus a vector of N ones, and ¥ = o2[(1 — p)Iy + pln1}].
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Figure 2.1: Least squares estimation. Model y ~ N(z0,%). If £ = I, indicated by the
blue circular standard ellipse, the optimal point lies on the footpoint g | /2 = z0 | 12 of y
onto the line E(y) = «0. If the covariance matrix X is a general matrix, represented by the
red standard ellipse, then the optimal point g | X = w§| ¥ is the intersection of the (blue)
line E(y) = af passing through O and the (red) line, defined by the direction from y to that
point of the ellipse, where the tangent (yellow) is parallel to «

x8] 1, =xb] I,+xxT x0) 1, =xB| 1,4z T

Figure 2.2: Visualization of Rao’s lemma: Least squares estimation with modified covari-
ance matrix. Model y ~ N (z6,X). If ¥ = o?l +yxx” orif ¥ = 0?1 4 022", with z | @,
hence generally, if ¥ = 02/ 4+ yzax' +0zz", the semi-axes of the standard ellipse are parallel
or orthogonal to . Then, the least squares estimate for the generalized covariance matrix
is the same as for ¥ = /2. However, the covariance matrix of the estimate depends on the
modification, namely the factors ¢ and ~.
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Remark: Tt is well known?, that changing the covariance matrix of the observations leads to
an effect onto the estimated parameter, which is in the range of their standard deviations, unless
the change of the covariance matrix or the weight matrix is very large. It mainly influences their
covariance matrix. The result of Rao’s Lemma addresses the extreme case, where the effect onto
the parameters is zero, which requires that the change of the covariance matrix has a special
structure. The effect of model errors has been discussed in the context of self-calibration in
Forstner (1982). o

2.3.3 Goal and result

The idea is to choose the matrices X, ¥y, I, and © in (2.7), such, that the estimation of
the parameters for the object and the calibration

1. can be performed within self-calibration with a block diagonal matrix for the ob-
served points, which increases computational efficiency

2. can use the parameters of a priori calibration for an in-situ self-calibration possibly
improving these parameters, and

3. efficiently derive the uncertainty of the estimated parameters.

Computational efficiency also can be achieved, in case only a part of the calibration param-
eters is included in the self-calibration. The increase in efficiency refers to the estimation
of the parameters, as well as to determination of their covariance matrix.

2.4 The setup

We now discuss the used stochastical model of the observations and then four mathematical
models for the self-calibration

2.4.1 The covariance matrix of the observations

We assume two sources of measurement deviations, (1) caused by the object properties,
yielding ¥, ,,, and (2) caused by the prior calibration, yielding ¥,, .. Hence, we assume
the complete uncertainty is described by

zyy = zyy,p + zyy,c : (2-10)

1. The covariance matrix ¥, ,, is assumed to be block diagonal

Yyyp = Diag({zyiyhp}) . (2.11)

and has full rank. The individual 3 x 3 covariance matrices X, , are assumed to
reflect those parts of the directional and distance uncertainties, which are indepen-
dent for each point, including those parts which depend on the surface point, e.g.,
its material and the impact angle.

2. The covariance matrix X, . is assumed to contain all uncertainties of the a priori
calibration which effect all points of a scan simultaneously. We do not assume
other types of correlations, e.g., caused by the atmosphere. Using the primary error
concept the effect of the C calibration parameters® ¢ onto the observations is assumed
to be describable by

Yy, = Coucq - (2.12)

2See Koch (1999), where eq. (3.108) shows the effect of using a slightly changed weight matrix W+AW
instead of W, and with (3.32) reads as 6 | (W +AW) = 8 | W — (XTWX)~1XTAW &, with the estimated
residuals & = y — X0.

3We assume a perfectly constructed instrument would lead to ¢ = 0.
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Agsuming a linear model appears to be reasonable as the effects are small. The
estimated parameters ¢, := ¢, of the a priori calibration will be uncertain®

ey~ Nty Toe,). (2.13)

This leads to the uncertain effects of the calibration onto the observations
y, ~ Ny, Tyye,) with p, =Cop,, and Xy, =Colc,, cr. (214
The covariance matrix has a low rank C' = rk(C,), but generally is fully populated.
Hence, also the covariance matrix ¥, will be fully populated since it has the structure
Tyy = Zyyp + Ca¥epe, Co » (2.15)

where the first part is sparse, namely block-diagonal, and the second part has the structure
of a block dyadic product.

On notation: In the following we denote the inverses of covariance matrices as weight /precision /-
or information matrices:

W=x1 Wy=%", W,,=%"  and W

yy,p>

=y 1. (2.16)

C€ocCo coco

We now discuss four cases for the self-calibration, which simultaneously determines the
parameters of the object and calibration parameters. We assume two alternatives for the
functional model of the self-calibration and two alternatives for the stochastical model for
the observations. Hence, we arrive at the following models

A. Uncorrelated points for self-calibration

B. Uncorrelated points for self-calibration with fusion of the prior calibration
C. Correlated points for self-calibration
D

. Correlated points for self-calibration with fusion of the prior calibration

—_

The a priori calibration result (A,C) is not available or used or (B,D) is fusing the self-
calibration with a priori information. Hence, we have the two (linearized) functional
models for estimating the parameters y of the object’s form and the calibration
parameters ¢

wor -] wwoes((£])-[2 §][2]

C,

(2.17)
We call models (A,C) self-calibration and models (B,D) self-calibration with fusion
in the following.
Depending on the context, the self-calibration may refer to only a subset of param-
eters used in the prior calibration, e.g., only those which are to be expected to be
determinable within the self-calibration. Similarly, self-calibration with fusion (2)
may only refer to those parameters which are expected to change over time. Hence,
the models may have the same coefficient matrix B but different coefficient matrices

C.

2. The covariance matrix of the observations is assumed to be block diagonal, assuming
the points are mutually uncorrelated or to be fully populated due to the joint effect of
the uncertainty ¥, ., of the a priori calibration parameters ¢, onto the observations
Cucq-

4Random variables are underscored.

27



Since the observation vectors in models (A,C) are different from thos in models (B,D)
we need to consider them separately.
In case of models (A,C) we either use

D(y | A) =X,,, = Yo, (2.18)
or
Dy |C)=%yyp+Tyye=Tyyp+ CaXe,e,Cl = 3. (2.19)

Stochastical model (A) is a special case of model (C), so, when used, leads to sub-
optimal estimates, if the observations actually are correlated.

In case of models B the a priori information (¢4, X, ., used in the self-calibration
with fusion we reasonably may assume the prior information is independent of the
observed points, hence we have

o((2))-[5 o) e

In case D we assume the observed coordinates are mutually correlated due to the
common calibration uncertainty. But, then also the calibration parameters c, will
be correlated with the observed points, since we have

£)-[5% ) 5]

Hence we obtain the joint covariance matrix

o([2]i0) =[5 S][™ o |[& 9] e=

(IS

] . (2.21)

[ Yyyp+ CaZene, Cl CuXee
— ) aCa aCa 22
 s..cl Tl (2.23)
_ [ Zyy,p 0 Ca T
o R I P R A

There is a profound difference when fusing the uncorrelated and the correlated ob-
servations in models B and D.

We first look at the models A and C. As can be seen from (2.18) and (2.19), the
uncertainty does not decrease when taking the correlations into account:

D(y|C)—D(y | A) =% %o =Cu¥c,c,Cq >0 (2.25)

Hence, the uncertainty in model C generally is higher than in model A. Hence, we
can expect, the results using model B are worse (not better) than those with model
A. Since the two groups of observations is not independent the model does represent
a Bayesian estimation of the parameters.

This contrasts to the relation between the uncertainties in models B and D. Here we
have

Yyup+ CaZee. Cr CuXenc. Y 0
Dly| D)~ Dly [ B) = | Tt Cotpen G GFoe | e 0
_ Cazc,lc,l CI Cazcaca <
_ { g - Lo. (2.26)

Hence, the accuracy difference is indefinite. This indicates, that model D will not
generally lead to better results than model B. Also, since the two groups of observa-
tions is not independent the model does not represent a Bayesian estimation of the
parameters.

We now discuss the four different models in more detail.
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2.4.2 A: Self-calibration with independent points
The most simple model, case A, is in-situ self-calibration without having access (or using)
to the result of a prior calibration. It reads as

E(y|A)=X0 D(y|A) =%, with X=[B,C], 0:[3” (2.27)

where

e the Y parameters y are used to describe the object, e.g., using splines, and

e the C parameters ¢ are calibration parameters within the self-calibrating estimation.
They generally need not be the same as in a pre-calibration.

e Since we do not use or have access to a prior calibration, we need to assume the
covariance matrix of the observations is block diagonal.

The uncertainty of the estimated parameters results from the normal equations

Nob = no (2.28)
with ] )
O Tl R [ A I
and ]
"= [ Z;E ] - { f‘Tm})Z ] : (2.30)

The index 0 stands using the block-diagonal matrix ¥y. In case model A holds we have
the covariance matrix

D@ | A) = N;*. (2.31)

This model is useful, since the normal equation system can be setup point by point,
and it will generally be sparse, since each point only influences the coordinates of the
neighbouring knots/control points of a spline surface. The sparsity of Ny has two positive
numerical effects:

(i) The solution of the normal equation system can exploit the sparsity, and therefore
can be performed numerically efficient.

(ii) Though the covariance matrix Zé@,o =N, ! will be generally full, one may efficiently
determine those elements of the covariance matrix, where the normal equation ma-
trix is non-zero, without needing to determine the other elements of the covariance
matrix, see Takahashi et al. (1973, ¢f MATLAB-code sparseinv.m) and Vanhatalo
and Vehtari (2008).

This model certainly is too simplified, since neither possible correlations between the
observations nor some, possibly available, a priori information is taken into account.

2.4.3 B: Self-calibration with fusion using independent points

In model B, we now want to fuse some a priori results (¢4, ¢, ¢, ) within the self-calibration
from (2.27). As we discussed above, this corresponds to a Bayesian estimation of the pa-
rameter vector, with prior on the calibration parameters. This then just leads to additional
observations ¢, ~ M (cq, X, c,) and thus the model

s([2]im)=[2 ]1E] o
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with the extended covariance matrix of the joint observation vector (y,,c,)

D([i}w):[zoo zo} (2.33)

The normal equation system reads as

M8 = my (2.34)
with
0 B"W,B B"W,C
Mo = No + [ Io } We,e,l0, Ic] = { CTWoB CTW,oC+ W, (2.35)
and similarly
my =mng+ [ WcOc c ] . (2.36)

Also here, the normal equation matrix will be sparse, allowing to increase numerical ef-
ficiency, both during the solution as well as for determining the covariance matrix of the
parameters. This is the main motivation for using this model.

Remark: 1. Though this model formally is correct, in the context of in-situ self-calibration
it contains a contradiction: The prior calibration result (cs,Xc,c, is used explicitely, but the
observed points are assumed to be uncorrelated, though they are assume to be measured by the
same instrument, thus should be treated as mutually dependent. o

Remark: 2. In case parameters ¢ are partitioned, namely cq2 of ¢,, e.g., if

Ca:{cal] and yc:[Cvaz}{zal

Cqa2

:| = Cica1 + Caca2 (2.37)

a2

where the parameters c,1 are just fixed values, used for correcting the observations, then we can
rewrite the model as
(gp + Cicar + Caca2) +v = By + Cc, (2.38)

Now, since the effect of the parameters c,2 onto the observations is the same as those of ¢, the
coefficient matrices C and Cs coincide, why we obtain the model

(ngr Cica1) +v=By+ C(c— ca2), (2.39)

Hence if we only are able to estimate the difference Ac = c¢—c,2, i.e., for given ¢,z the corrections
Ac. o

Though this model takes into account the result of a prior calibration it still assumes a
too simplistic covariance matrix ¥y for the observations, thus is statistically suboptimal,
in case correlations between the points exist.

2.4.4 C: Self-calibration exploiting a priori calibration
2.4.4.1 The model

In model C, we instead of fusing the result of the a priori calibration with the current
measurements, we correct take into account that the observations due to the uncertainty
of the a priori calibration are correlated. Hence, we have the same functional model as in
case A,

E(y| C)=E(y, + Cac, | €)= X0 with X =[B,C], ez{ﬂ, (2.40)

but now assume the covariance matrix of the observations is

D(y|C)=Xyyp+ Co¥ee,Co = L. (2.41)
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Observe, we generally do not enforce, the self-calibration determines/corrects the same
parameters as the a priori calibration, which is reasonable, in case we only want to improve
the results of some calibration parameters.

Though the design matrix B is sparse, the resulting normal equation system will not be
sparse. Thus — without further constraints — no numerically efficient solution is possible.

2.4.4.2 Exploiting Rao’s result

This changes, if we assume the two matrices C and C, coincide. Then Rao’s lemma can
be applied.
If we refer to (2.7), then, when assuming

0 0

C=Co, XTo=2XZyyp, I‘[O > coca

} and ©@ =0, (2.42)

we obtain ¥ := ¥, of (2.15), and therefore can conclude: under the mentioned conditions,
using the block-diagonal matriz ¥, during estimation leads to the same estimates as
when using the full covariance matriz ¥,.

Explicitly, the estimated parameters following from the model

y+uv=[B,(] [ :Z ] , and X := Zy%p—l—CZCGCGCT. (2.43)
are identical to those following from model A
y+v=[B,(] [ 301 } , and Xo:i=X,,,. (2.44)

independent on whether we correct the observations for their calibration errors Ce,, as
discussed above, thus

6|C=6]|4 (2.45)
The covariance matrix of the estimates now results from
0= X"WoX)"' X" W, y (2.46)
We obtain the uncertainty of the parameters by variance propagation as
DO |C) = XTWeX) ' XTWo(Zo+ CZee, CTHYWX(XT W X)™! (2.47)
(XTWoX)™t + (XTWoX)IXTW(CE,., .. CTWX(XTWoX)Y(2.48)
But since
XTWX) I XTWoB, XTW(C] = H ’g } { IOC ” (2.49)
we arrive at
D@1C)= X Wox) "+ | )| Eeefo. el (2.50)
or
D@|C)=D(@ | 4)+ [ ; } el l0,1c] (251)
or explicitely
DE|6)= { égg Zaaozi&%%% ] (2.52)

Hence, using model C allows arrive at computational efficient estimation of the parameters,
as well determination of their covariance matrix.

This observation gives some insight into the ability of this model to compensate for
information of some prior calibration, which allows to exploit Rao’s result to increase
computational efficiency for determining the parameters.

However, this observation also indicates that the prior information is not fully inte-
grated.
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2.4.5 D: Self-calibration with fusion using correlated points

Model D now integrates the prior calibration and the in-situ measurements in a Bayesian
self-calibration. The model now is

EQ«Z]IO_w[H (2.53)

X

We now have to take into account that the observations y and the prior values c, are
correlated and use the joint covariance matrix from (2.22):

g — Zyy7p + Cazcaca C:}Lr Cazcaca
D ([ c, } |D> = { 5. Ct o (2.54)
X 0 Ca
- [ 0" o ] * [ I } Teseal Cas 1] (2.55)

This model appears to enables the invocation of to Rao’s Lemma if C = C,, since the
second column of X is common to the functional and the stochastical model.
The model then leads to the same estimated parameters as when using the covariance

matrix
D({ibz[zyg,p 3}7 (2.56)

However, this implies, that the parameters ¢, from the prior calibration have variance
zero, thus are taken as fixed values, just correcting the observations y — Cec, in a non-self-
calibrating model

y—Cc, =By with D(y) =2o. (2.57)

Again, using the actual (fully populated) covariance matrix of the joint observation vector
into consideration, we obtain the covariance matrix of the estimates by variance propaga-
tion from

] B"W,B)"'B"W, 0 y — Ce,
[E} _ {( ()) I (2.58)
WoB)~ 1B —(B"WB)"'B"W,C
_ [ (87 ()) Wo —(B Wo /)c 0 ¥ (2.59)
Using
Niy = B"WyB and Ny =B W,C (2.60)
neglecting the index zero, this reads as
v NT'B™W, =N Ny, y
[ : } _ [ ’ i L (2.61)
and we obtain
~ B Wo =N N Yo 0 WoBN7' 0
_ 11 0 11 V12 0 0 11
D@ |D) = [ I ] [ 0 0 } { TN NS 1o ] (2.62)
NulBTWO —N Ny C T WoBN 0
+ |: IC I ZCQCQ[C I] 7N21N1_11 IC
(B"W,B 0 0
_ [ o ’ } n { e } S [0, 16] (2.63)
BTW B 0
_ [ i )~ 0 } . (2.64)

This is a stunning result: The fusion of the prior information (¢4, X.,c,) from the cali-
bration does neither improve the calibration parameters, the correlations assumed for the
joint observation vector (y, c.) (1) have no effect onto the calibration parameters, (2) are
not needed to determine the object parameters y, and (3) decorrelate the estimation of
the parameter for object and calibration.
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2.5 Synopsis

The following Table 2.2 collects the results, especially the covariance matrices

D@ |k), k=AB,CD. (2.65)
for the four cases.
| [ D(y) = %o \ D(y) =% |
SC 0] A = 0|C
D@ | A) = D@ | C) =

[ BTW,B BTW,C }1

3 0
CTWoB  CTW,C D@ | A)+ [ o } Yeoe,[0,10]
35)

(2.29) (2.
BSC D0 | B) = D@ | D) =
BTW,B BTW,C - b | BTWeB) 0
C'WoB C"WoC+W,,., ' 0 Yo
(2.51) (2.64)

Table 2.2: The covariance matrices of the estimated parameters when using the four models
for self-calibration, SC: self-calibration without prior, BSC: Bayesian self-calibration

First, the estimated parameters for model A and C are the same, see (2.45):
6|C=6]A. (2.66)
Second, we compare the accuracy achievable in the different models:

1. the influence of changing the covariance matrix onto the accuracy can be determined
for models A and C. Since the uncertainty of the observations in model A are assumed
to be not larger than that in model C, hence because ¥ — ¥y > 0 the uncertainty of
the parameters in model C generally is larger than that of models A:

D@|C)>D@ | 4). (2.67)
However, the accuracy of the object parameters for models A and C is the same:
Dy |C)=D(y|A). (2.68)

2. the influence of the fusion of prior and in-situ self-calibration can be determined for
models A and B. Since the model B includes additional, independent information
compared to model A, the uncertainty generally increased by the fusion process:

D@ | 4)>D@|B). (2.69)

Observe, this holds for both, the parameters y of the object as well as the calibration
parameters ¢, which easily can be seen using the Schur complements of the two
diagonal block matrices of the covariance matrices.

3. the accuracy of the estimated parameters in model D cannot be compared to the
others in general, since it is not a generalization of one of them. However, the
accuracy of the estimated object parameters can be compared. We especially have

D(y | D)<D(y|B)<D(y|A)=D(y|C), (2.70)

again using the Schur complements of the corresponding covariance matrices.

33



2.6 Concluding remarks

Generally, these result only are valid, if Rao’s lemma can be applied, i.e., if the calibration
parameters ¢ determined in the self-calibration are the same which cause the correlations
between the points, formally if the coefficient matrix C in the functional model is the same
as the one C, used in the stochastical model, hence if C, = C. This may, be enforced by
assuming the calibration parameters not corrected in the self-calibration have zero effect
onto the observed points, e.g., of one assumes the these parameters, which are determined
in the prior calibration, have small enough variance, to assume it to be zero.

2.7 Appendix: Covariance matrix for given design ma-
trix, observations, estimate and covariance matrix
of parameters

On can show, that there is a set of covariance matrices ¥, if the following is given:

L. the linear model E(y) = X0,

2. the value of the estimate and its covariance matrix {(@, Y;5) = (0,V)} of the pa-
rameters, and

3. a vector y of observations,

such that the estimated parameters and their covariance matrix follow from a weighted
least squares estimation.

2.7.1 Example: The mean of two values y;,i = 1,2

Given are two observations y = [y;] and an estimate § = @ for the mean with variance
v = a%. The covariance matrix of the observations is to be chosen adequately.

2.7.1.1 A special solution
We have the following model

E(y) = X0 with X = [ ' } ~ 1, 2.71)
and need to choose, say in the form, containing the correlation coefficient p € [—1,+1]
o 1 pk .
D(y) =0o ok K2 with oy, =0 and oy, =ko, (2.72)
such that the two constraints
0 Ts—1y\—1 yTs—1
0 = 0=(X'L, X)) X', v, (2.73)
vo= o2 =(XTE,X)". (2.74)

This are two constraints for the three not yet specified parameters o, k, and p.
Explicitely, we obtain

1 k2 —pk
W = 1= ) [ k1 } =
and
~ 2 - - B — —
g _ lthokhp—kbp kk—p)h— (o=l (2.76)
k2 —2pk + 1 k? —2pk + 1
k(1= p?)
~2 MU0 2
o= U, (2.77)
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From the two constraints

f=0 and 52=v (2.78)

we obtain the two parameters o and p as a function of k and the given observations:

— -2
gl rlimino am
k219 —2k2 e+ k222 — 1, + 21l — 2
_ v (l1 —lg) (ll + 15 —2.’13) (280)
((ZQ - .Z‘) + kly — kx)(—(lz — I) + ki — kl‘)
l2—.’£+k211—k2x
= 2.81
P k(b +1o—22) (281)

(lz — k211) + (1 — k2)I

= 2.82
k (ll + 1y — 2.’17) ( )

For the special case
h=1, =0, o=-1 (2.83)

we obtain
3 2k? +1

2 = —_— = f . 2. 4
o e 17 and p 3% or ke (0.5,1) (2.84)

2.7.1.2 A generalizable solution

We use the following Fig. 2.3, assuming = X = 15, and we observe the following:

Figure 2.3: The generalized mean

1. The observed point y is slantly projected to 1:5|Z on the line x6.

2. The length of radius of the standard ellipse parallel to the line leads to the standard
interval of the estimated point x6, in the figure half of length of the yellow tangent
segment.

3. The length of the conjugate diameter is irrelevant for both, the position and the
standard deviation of the estimate.

Hence we can specify the set of covariance matrices by mapping the reference covariance
matrix Yo = /5 to X by applying the mapping the two unit vectors e;,i = 1,2 to the tow
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conjugate diameters d;,7 = 1,2 of the standard ellipse of ¥. The two conjugate diameters
are

0 —
d; = %0 and do(f) = Hf for some arbitrary standard deviationf > 0.
(2.85)
Hence we obtain the set of covariance matrices, parametrized by f from
dy T T
I(f) = ldida(f)] a |- did; +da(f)dy (f) (2.86)
2
T T
zx' 5, (0 —y)(xd—y)' .,
_ 2.87
Tz’ + (xf —y)T(z6 — y) f (2:87)
T T
= XX 2 T o — 20 —
= 7,0 + rTrf with r=x0-1y (2.88)
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3 The Mean of Correlated Observations

For uncorrelated observations the accuracy of the mean increases with the num-
ber of observations. In case they are correlated, there is an upper limit for
the accuracy. The note analyses the situation for constant correlation and for
exponentially decaying correlation, autoregressive noise.

3.1 Preface . . . . . . e e e
3.2 Goal . ... e e e
3.3 Random constant bias . . . . . . . . . ... .. e
3.3.1 Themodel . . ... .. ... . ...
3.3.2 Thesolution . . .. .. .. . . ... ...
3.3.3 Alternative derivation . . . . .. .. . ... ... ... ... ... ..
3.3.4 Covariance of arithmetic mean with correlated observations . . . . .
3.3.5 Using a more general covariance matrix . . ... ... ... .....
3.4 Random autoregressive noise . . . . ... .. ...
3.4.1 Themodel . ... ... ... . ... ... e
3.4.2 Thesolution . . .. .. .. . . ... ...
3.5 Thegeneral case . . . . . . . . . . . e

3.1 Preface

The arithmetic mean in many cases can be used as a proxy for a more general estimation
problem. Here, we analyse the effect of correlations onto the accuracy of the estimated

mean. The Note 4 generalizes the results.

3.2 Goal

We derive the precision of the correlated mean, by generatively model the observed values
as a mean value which additively is distorted by a random effect with zero mean. We

discuss two cases:

1. The noise in the measurements y. consists of a uncorrelated part d; and a correlated
part b, where the correlated part b is describable as a noisy bias. Namely, we have:

y,=p+b+d;, i=1,.,N with d;~M(0,05) and b~ M(0,07)

We obtain the following result:

(a) The estimated mean is independent of the bias

2=

o=

n

(3.1)

> n- (3.2)

(b) The variance of the estimated mean cannot become smaller than the variance

of the bias

Q
=N
Il
=N
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2. The noise is an autoregressive process of first order AR(1), namely
y,=u+b, n=1.,N (3.4)

and the AR(1)-process with parameter a

bi=ab_1+e with n>1 (3.5)
starting with
2
e~ M0,02) and e =M (0, 1i6&2) (3.6)
The variance of the estimated mean is
1+a o2
2 p .
e — € th 1. 3.7
AT Tra—zman Vb lal< (37

3.3 Random constant bias

3.3.1 The model

We can write the generative model as

y=1u+1b+n (3.8)

leading to the covariance matrix
Y, =0y +11707. (3.9)

Thus, the observed values have the variance and covariance

o =o;+0; and oy, =0} for i j (3.10)

hence have correlation coefficient

2

gy . .

= —— >0 f . 3.11
5”0,3_'_05 Orl#] ( )

Pij
Therefore, with the common correlation coefficient
%
= 2= fori#j, 3.12
ey +J (3.12)

the covariance matrix explicitly reads

1 p p
Y=+ p ... 1 ... p|. (3.13)
p p 1
3.3.2 The solution
The Gauss-Markov model reads
y+v=1p with ¥ =03y + nglT (3.14)

The weight matrix of the observations has the structure

Wy =aly+0b117. (3.15)
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Therefore, we can determine a and b from

(021 + 02117)(al +0117) = ac? | + (ac} 4+ bo% +bNo)117. (3.16)
S~ ~ ~ -~
=1 1=0
We obtain ) )
1 ao o
a=— and b=-— b = — b 3.17
o2 02+ No? o%(02 + No?) (3.17)

Therefore the weight matrix is

w,, — L % 1T =L (1 % g7 (3.18)
W o2 N o2(0% 4+ No?) o2 02+ No? ’
The normal equation system is R
NO =n (3.19)
with 5 o )
N N<o N No
N=1"Wy1=— - ————b -~ (1 —_~—"b 3.20
= a1 e (320
and
1 No? 1 No?
= 1"Wyy=—(1"T- 21T )y=— (1 - —L— - 3.21
n ny 03( 02+ No? Yy o2 024+ No? ;y (3.21)
The solution for the mean is
N 1
h= Nzyn. (3.22)

Hence we have the result: The correlated arithmetic mean is independent on the
correlation coefficient.
The variance of the estimated mean is

2 2 2 2
9 0405+ Noy oy 2

g

Hence we have the result: The variance of the estimated mean of correlated obser-
vations diminishes with increasing N but cannot be smaller than the variance
of the bias. Hence, in case the variance of the bias is much larger than the variance of
the noise, the variance of the mean is close to the variance of the bias.

3.3.3 Alternative derivation

We assume the model

] s ] e (QED 15 2] oo

with by = 0, since we assumed b ~ M (0,07). The normal equation matrix

_ 1T 0 wdl 0 1 1 _ ’LUL{N U)dN
N_|:1T 1:||:0T wb][O 1:|_|:de de+1Ub (325)

with its inverse

Nt = m { wd_JZU:wa wﬁffv ] (3.26)
Hence the variances of the estimate [ is
o2
0% = ﬁd + 02, (3.27)



as above.
We also can directly determine the variance of ji using the Schur-complement of N in
(3.25):

w2N? -
, N WAN? 3.28
%h (wd wglN + wb) 2%
-1
_ wiN? + wqwp N — w3 N? — 13 +o?. (3.29)
wgN + wy N

3.3.4 Covariance of arithmetic mean with correlated observations

The simple arithmetic mean assumes ¥ := aﬁl . Then the estimate is

1T

= 3.30
==y, (3.30)

with covariance matrix, assuming ¥ holds

2
2 _ 94

o5 =7 (3.31)

If this arithmetic mean is taken, but the actual covariance matrix is 03/ N+ afllT
variance propagation of (3.30) yields

o 1T 20Ty 1
This can be simplified to
2
o
or = Nd + o2, (3.33)

which coinsides with (3.23).

3.3.5 Using a more general covariance matrix

The observations up to now have been assumed to be positively correlated, see (3.12)

2 2
o} o} P
= —_— = — . 3-34
P o2 + o} or o2 1-p (3.34)

However, they also may have negative correlation. Of course, this then cannot be explained
by a stochastic bias term anymore.
Therefore we assume

1 p P
Yy=0tlp ... 1 ... p|=0t(1-p)in+oiplll. (3.35)
p .. p .. 1

If p < 0 this is implicitly assuming o7 < 0. Therefore, we use the derivation above, which
is valid also for O'g < 0. We now realize, that the correlation cannot have an arbitrary
negative value > —1, since the variance (3.23) of the mean needs to be positive. This leads
to the following constraint, first formally

2 2
94 2 L _ 9
N Z g, Or N Z 0_73 (336)
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then using (3.34)

—_

1 p P =

—_>_r 7 s - .
NZ1o, or 1SN (3.37)
which finally leads to a constraint on the correlation coefficient
> b (3.38)
P=N_1" :

For example: for two observations N = 2 the correlation coefficient may be arbitrary in
the range [—1, +1], but for three observations N = 3 the correlation coefficient needs to
be larger than —50%.

3.4 Random autoregressive noise

3.4.1 The model

The N observations result from

y=1u+b (3.39)
with the following covariance matrices
o2 o
D(b) = Tpp = [To,] = 7 [a\z—ﬂl} with |a| < 1. (3.40)

Hence the covariance matrix of the noise is
Yy = Tpp (3.41)

We have the inverse of the covariance matrix of the bias, which is a tridiagonal matrix:

L. 2 2
U—ETH[LI—F@ y ooy L+ 0%, 1][—a, ..., —a] (3.42)

Wy, = Zb_b1 =

3.4.2 The solution

The Gauss—Markov model reads as
g+v=1p with T, =Yy =W,"'. (3.43)

The normal equation system now is R
NG =n (3.44)

with (canceling the common factor o2/(1 — a))

or _2+(N-2)(1+a®)—2(N—1)a _

N=1"W,,1—< =(N—(N-2 4
wl 72— — (N=(N=2)a) (349)
and
0_2 N N-1
_ 1T e  _ R .
n=1 Wyy:I: m = TLZ::l Xy a ’;2 X . (346)

The variance of the estimated mean is

N
—_
]

2 A4
S T (N D) (3.47)
which can be rewritten as
2 1 Ug
~ = - . -4
T 1-a)1-(1-2/N)a) N (3:48)

We have the following limits.
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e For large N we achieve
lim o2 Lol (3.49)
im 0 = ——=—= .
No AP T a2 N
thus the variance is larger by a factor 1/(1—a?) compared to the uncorrelated mean.
e For a = 0 we obtain the result of the uncorrelated mean.

e For a = 1, the noise process is semi-stationary, and we obtain

lim o3 = oo (3.50)

a—1

independent on the number of observations.

3.5 The general case

The situation of the mean with constant correlation is a special case discussed in Rao
(1967) in Lemma 5a. The estimated parameters of the model (y = X0,%) are the same
if instead of ¥ the covariance matrix ¥ + XT'X " is used. In our case we used I' = o2.
The efficiency of the estimate, thought being the same, is reduced due to the correlations
induced by b.

Generalizing (3.24), we use the model, assuming T' = Y,

][5 500E] e n((E D[ 2] e

again assuming by = 0. The normal equation matrix is

[ M M
N = M MW ] (3.52)
[ xT o0 W,, 0 X X
- [ IH S (3.53)
[ XTW,, X XTW,, X
= T T (3.54)
| XTW,, X XTW X + Wy
with its inverse
Yin Yoo
Yos=N"1= [ e b } . (3.55)
i Yo L
Now we use the inverse of Schur-complement,
Yop = (M= MM+ Wy) M)~ (3.56)
and the Woodbury identity,
(A+CBCH 1=A"—AT'C(B +CTAIO)ICTAT?, (3.57)
with A= M, B =YX, and C =/, and obtain
Yan = M~ + Y4, (3.58)
hence,
Taa = (XTE,) X))t + Ty (3.59)

The prior, influencing all parameters the same way, leads to an increase of the covariance
matrix.
Again, the result, using I' = ¥, also holds if I' < 0, but only if

XTE, ) X) 7 >y (3.60)
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4 Accuracy of the Mean when using
Wrong Covariance Matrix

Suboptimal, i.e., approximate solutions often are used or needed when estimating
parameters. One of such simplifications refers to the stochastical model, espe-
cially the covariance matrix of the observations, which often is assume to be a
multiple of a unit matrix, implicitly assuming all observations have the same
weight and are mutually uncorrelated. This note provides the general relation
between the accuracy of the estimated parameters when using an approximate
covariance matrix and exemplifies this using the mean of repeated observations.
4.1 Preface . . . . . L e
4.2 SUmMINAary . . . ... i e e e e e
4.3 Problem . . . . . ..
4.4 The accuracy of the approximate solution . . . . .. .. ... ... .. ...
4.5 The weighted arithmeticmean . . . .. ... ... ... ... ... .....
4.5.1 The effect of using equal weights . . . . . ... ... ... ... ...
4.5.2 Modeling the weights using the Gamma-distribution . . . . . .. ..
4.6 Anexample . . . . . ...

4.1 Preface

a

The arithmetic mean in many cases can be used as a proxy for a more general estimation
problem. Here, we analyse the loss in accuracy of the estimated mean when using a wrong

covariance matrix. The note generalizes the results from Note 77?.

4.2 Summary

The note shows the effect of using a wrong covariance matrix when estimating parameters.

Especially we obtain the following results for estimating the mean from N values l,,:

1. If the mean is estimated assuming, that all values have the same weight w = 1/02,

thus 6 = .. In/N, but the values really have individual weights

then the variance of the approximately determined mean is larger by a factor
_ 1l
A=0d2 - 1/62 =% (4.2)
Ha2

thus the ratio of the arithmetic mean and the harmonic mean of the variances. The

factor A only is 1, in case the variances are identical for all values [,,.
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2. In the special case, that the weights are assumed to be randomly taken from a
Gamma distribution and their relative variation is

Ow

[

CcC =

<1, (4.3)

then the factor is given by

- (4.4)

If ¢ > 1 the factor is not limited.

4.3 Problem

If the estimation is performed in a Gauss-Markov model E(y) = X0 with ¥,, = ¥ but

the true covariance matrix of the observations is ¥, = ¥, then the covariance matrix of
the estimated parameters is

o= (XTE LX) IXTE L E s X (XTE X)L, (4.5)

which follows from § = (X" 'X)~'XTE ! (y — ). Observe, only if £ = ¥ do we obtain
the classical result
Y= (X'TX)7L. (4.6)

4.4 The accuracy of the approximate solution

The relation between both covariance matrices can be derived from the eigenvalues of the
quotient

M550 = A ((XTZ—1X)—1XT2—1 Sy ix(XTElX)! xTi—lx) . (4.7)

Equations (4.5) and (4.7) can be used to investigate the effect of choosing a simplified
stochastical model, e.g., when using ¥,, = 0%/ instead of X.
For ¥ = 02/ we would obtain

MEg550) = A ((XTX)*XT S X(XTX)! XTiflx) , (4.8)

obviously, independent on the scaling of the covariance matrices.
With the hat matrix
H=XX"Xx)"t xT (4.9)

this is equivalent to analysing

MZ55%57) = MHEHE ) > 1, (4.10)

which is a unitless quantity. Due to the Gauss—Markov theorem his quantity always is
not smaller than 1, i.e., — as to be expected — the approximate solution generally is less
accurate than the optimal.

4.5 The weighted arithmetic mean

We want to investigate the effect of using a wrong covariance matrix in case of diagonal
covariance matrices,

> = Diag([;\g]) and X =1, (4.11)
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4.5.1 The effect of using equal weights

We start with a simple example, the weighted arithmetic mean of N observations. The
design matrix for the arithmetic mean is

X=1. (4.12)

Then with X" X =171 = N Eq. (4.10) reduces to

o2
—1 [’
NTE) = o4 (4.13)
6
1 N
= ) (11T211Tz 1) (4.14)
1 o
= ) (1Tz1-1TZ 11) (4.15)
1 & «
N ~ N
_ X On Xy W (4.17)
N N '
= 52w, (4.18)
(a)
= Mo 5y, (4.19)
(R
Ha2

(@) _ !

or the ratio of the arithmetic mean 43 = 52 and the harmonic mean u(h) = (1 / &%) B

52
of the variances or of the weights. This ratio always is larger than 1 except all variances
are identical.

4.5.2 Modeling the weights using the Gamma-distribution

The Gamma-distribution is a useful model for the weights, since it is the conjugate prior
for the precision w = 1/0? of the Gaussian distribution with known mean.
Let the weights be Gamma distributed

w,, ~ Gamma(a, f) = Gamma(k, ) (4.20)

where the two parametrizations are related by

k=« and 0= L

5 (4.21)

The mean and the variance are given by

E(w,) = % =k and V(w,)= % = k62 (4.22)

So, given a mean weight /1,, and a variance of the weights 02, we may choose the parameters

2
a= M—;” and = Tw (4.23)
Ow Haw

The inverse weights, thus the variances follow an inverse Gamma distribution

o? ~ invGamma(a, ) (4.24)

with the same parameters. Their mean is

> s 2 B
IB(gn):Oéi1 fora>1 and V(gn):m.

(4.25)
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For values a < 1 the inverse Gamma distribution has no finite mean, similar to the variance
of the Cauchy distribution. This is plausible, since then the likelihood of small weights
thus large variances is very high.

Hence the product of the means of the variances and the weights is given by

o B 2 > (4.26)

a1 a 1o

So, in case the weights on an average are p,, and have a standard deviation of o, =
C - [y, thus

c:Z—w, (4.27)

we obtain ,
N I S (4.28)
C62 o 1) '

w

For values ¢ > 1 the ratio of the variances is unlimited.

4.6 An example

We take as an example the mean of two points in the plane, and compare the arithmetic
mean with the statistically optimal mean.
The Fig. 4.1 4.1 shows the arithmetic mean and the weighted mean (centroids) of two

12
10 o L1
8 N
s Tl O
€0% w
4 L
2 AL
i
5 10 15

Figure 4.1: Simple mean x¢ and weighted mean ¢ of two points 1 and @2 with strongly
anisotropic uncertainty (red standard ellipses). The centroid determined as weighted mean
clearly lies outside the line joining the two points.

points. They are assumed to be mutually independent. Their uncertainty is different and
anisotropic (red standard ellipses). The centroids result from the two models

(2]~ ([ 2 Jaromn) .

{ o } NN([ ;z :|$15,Diag({):11,222})> : (4.30)

and

Ly

The variance o2 in model (4.29) was assumed to be the mean of the two variances in model
(4.30), s. the two blue circles.
Explicitly, the centroids are

)

a 1 AW —_ — — — —
o= 5(901 +x2) und ZTo = (2111 + 2221) 1():111301 + 22213:2) . (4.31)

The simple arithmetic mean lies in the middle of the two points @; und xs on the con-
necting line. The weighted mean, however, lies significantly off the connecting line. The
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uncertainty of the two given points allows, that the centroid may be more easily shifted
in the direction of the major axes of the standard ellipses.
The standard ellipses around represent centroids are

e the covariance matrix (blue circle) of the arithmetic mean, assuming the same
isotropic accuracy (blue dashed circles) of the two points. It clearly overestimates
its accuracy, compared to

e the covariance matrix (black ellipse) of the arithmetic mean, assuming the anisotropic
accuracy (red circles around the points), and

e the covariance matrix (red ellipse) of the weighted mean, which is smaller than the
accuracy of the arithmetic mean, when assuming the known uncertainty of the point
during estimation.
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Part 11

Technical Notes on Estimation of
Geometric Entities
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5 Motions and their Uncertainty

We addresses the ambiguity of representing uncertain motions. We analyse the
relation between an exponential representation with a homogeneous 4x4 matrix
and the representation with a rotation matrix, also represented exponentially,
and a translation vector. The rotation parts turns out to be identical, while
the translation parts differ, why a transparent documentation of the motion
representation is necessary. As a sideline, the note addresses the inversion, the
concatenation, and the difference of uncertain rotations and uncertain motions.
5.1 Preface . . . . o e
5.2 Motivation . . . . . ... e
5.3 OVerview . . . . . .. e
5.4 Uncertain Rotations . . . . . . . . . ... . L
54.1 General setup . . . . ...
5.4.2 Representing rotations . . . . ... ... oL oL oL
5.4.3 Relations between the representations . . . . .. ... ... .....
5.4.4 The rotation in exponential representation . . . . . . .. ... .. ..
5.5 Uncertain Motions . . . . . . . . . . . . . e
5.5.1 Representations . . . . . . . ... L Lo o
5.5.2 Comparing the two representations . . . . . . . . . . .. ... .. ..
5.5.3 The motion in exponential representation . . . ... ... ... ...
5.5.4 The motion in partially exponential representation . . . . .. .. ..
5.5.5 Evaluating the covariance matrix of estimated motions . . . . . . . .
5.6 Examples . . . . . . . e
5.6.1 Estimating motion parameters . . . ... ... ... .. ... ... .

5.6.2 Example for comparing absolute and relative poses in multi-view
analysis . . . .. e e e e e

5.7 MATLAB Software . . . . . . . . . . . . .
5.8 Appendix . . ... L e e
5.8.1 Epipolar constraint using motion matrices . . . . . . .. ... .. ..

5.8.2 Differential relation between Euler angles and the exponential rep-
resentation . . . . . . L L L L e e e e e

5.8.3 Adjoint motion matrix in exponential representation . . . . . . . ..
5.8.4 Adjoint motion in partially exponential representation . . . . . . . .
5.8.5 Uncertain inverse rotation . . . . . . .. . ... ... ... ... ..
5.8.6 Uncertain inverse motion in exponential representation . . . . . . . .
5.8.7 Uncertain inverse motion in partially exponential representation

5.8.8 Uncertain concatenated motions in exponential representation . . . .

5.8.9 Uncertain concatenated motions in partially exponential represen-
tation . . ... Lo

5.8.10 Uncertain relative motion in exponential representation . . . . . . .
5.8.11 Uncertain relative motion in partially exponential representation
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5.1 Preface

The note initially (2009) was motivated by the need to concatenate uncertain motions.
Later, in 2017 an extension was motivated by the search for an error in a program for
estimating the motion between two point clouds based on corresponding planar regions.
The error turned out to be a conceptual one: the generation of the test data and the
check of the estimated motions was inconsistent, since one used the exponential form of a
motion, while the other used the exponential form of a rotation and the translation. For
a detailed discussion see Sola et al. (2018).

5.2 Motivation

This note is motivated by a problem when handling uncertain 3D motions or poses: The
two classical representations, the one what we call the exponential representation and the
other what we call partially exponential representation, may both be used for estimating
motions or poses, but lead to different covariance matrices of the translation component.
The note aims at clarifying the mutual relations between the different representations.

The exponential representation of an uncertain motion with mean rotation R and mean
translation Z, exploits the Lie group structure of the noise component of the motion using
what is called a twist vector s, which contains the noise components r and t for rotation
and translation,' in the form

"M = exp(A(s)) M, (5.1)
I A B RO R AT
and
0 —rz
S =| rm 0 —rn|. (5.3)
—ry T 0

The matrix A(s) is close to zero, such that the motion matrix exp(A(s)) is close to /4.
The partially exponential representation directly integrates the noise components p and
1 for a small rotation and translation

exp(S(P)R Z+1

C pu—
M o' 1 ’

(5.4)

into M thus only applies the exponential map to the noise component of the rotation.
Again, since p is small, the rotation matrix exp(S(p)) is close to /3.

The following example shows the effect of the different representations. Given are 100
random samples of an uncertain motion together with the true motion. From this sample
we may obtain two covariance matrices X1 and ¥ with the following vectors of standard
deviations for the rotational and the translational component:

0.5109 0.5109
0.4803 0.4803
0.2760 0.2760

1= ga696 | M 2= (4195 (5.5)
0.3324 0.6189
0.3501 0.7433

The rotation parameters have the same standard deviations, while the standard devia-
tions of the translational component significantly differ. Without further information we
cannot judge, which covariance matrix is the correct one. We would prefer the first one,

lRandom variables are underscored.
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since it shows smaller standard deviations for the translation component, and thus is more
likely to be the Cramér-Rao lower bound for the uncertainty of the parameters. Actu-
ally, the motion matrices were simulated using the partially exponential representation
and the covariance matrices ¥; and ¥, were derived from the sample assuming the par-
tially exponential representation and the exponential representation, respectively. This
demonstrates, the meaning of the two vectors (r,t) and (p, ) are different.

Both representations are useful, as the following examples demonstrate:

1. On one hand, concatenating uncertain motions appears to be easier with the expo-
nential representation, where the (differential of the) twist vector s of the concate-
nated motion M = MM is given by

_ . . Ro 0
ds = Ad(My) ds; +dsy  with Ad(My) = S(Z>)Rs Rs | (5.6)
or
dr = Ry dr; +dry and dt = Ry dt; +dits + S(ZQ)RQd’I‘Q . (57)

Observe, the matrix Ad(Ms) only depends on one of the two motions. In contrast,
the partially exponential representation yields the joined rotation and translation
components

dp=Rydp, +dp, and dr =R, dr, +dry—S(RyZ1)dp,, (5.8)

which looks very similar. But the relation cannot be written using a matrix only de-
pending on one of the two motions, which is a clear disadvantage when concatenating
multiple motions.

2. On the other hand the epipolar constraint for two calibrated images using partially
exponential representation directly refers to the uncertain rotation and translation
component

X1 S(Z+1)R(p)RX"=0 (5.9)

whereas with the exponential representation it is given by

x'T[I3] 0] Ad(M)™" [ /2, ]x" =0, (5.10)

with the adjoint motion matrix Ad(M) (5.73) or more explicitly by
x'"S(R(r)Z +t) Rr)Rx" =0 (5.11)
which is more cumbersome to handle, see (5.60).

When estimating a motion matrix from observed points, lines or planes using a maxi-
mum likelihood approach we basically obtain three types of numbers, which can be checked,
i.e., statistically tested, using simulated data, which should lead to the following state-
ments: (a) there are no reasons to believe the parameters are biased, (b) there are no
reasons to believe the variance factor® deviates from 1, and (c) there are no reasons to
believe the theoretical covariance matrix differs from the empirical covariance matrix, see
(Forstner and Wrobel, 2016, Sect. 4.6.8). The test on the parameters and the covariance
matrix may be performed for rotations and translations separately. Depending on how
the representation for the motion is chosen and how the empirical tests are realized, the
parameters usually show no bias, the variance factor does not show a deviation from 1,
the covariance matrix of the rotation parameters coincide but there may be discrepancies
in the covariance matrix of the translation parameters.

2The variance factor measures the distance of the assumed model and the given data. It is Fisher
distributed, if the model holds.
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The dependency on the representation of motions or poses has a direct effect on (1)
checking their covariance matrices empirically, either using real or synthetic data,® on (2)
reporting covariance matrices for motions or poses, and on (3) using them in subsequent
analysis steps.

This note especially we will show:

e The Lie group property of matrix groups can, with some slight modifications be
applied to the definition and use of uncertain motions represented with the partially
exponential representation.

e We will discuss the variance propagation for inverse, concatenated and relative mo-
tions.

e We derive the relations for rotations as most simple case, and for motions in the
mentioned two representations.

e We give two examples: (1) for estimating motions from corresponding points, and (2)
deriving relative motions from bundle adjustment taking the full covariance matrix
of the resulting pose parameters into account.

Basic material on Lie groups for representing uncertain transformations has been col-
lected by Eade (2014), however, the note does not provide proofs. The most recent paper
on handling uncertain motions which are correlated is by ?, which appears not to always
give the most intuitive expressions. Both papers do not address the second representation
with the pair (R, Z), only.

The note is organized as follows. We first give a summary of the relations, assuming
the reader is acquainted with the basic concepts. Then we will provide the relations
in more detail, first for rotations — as special motions —, and then for the two types of
motion representations. We will compare the two motion representations and, finally, give
examples for estimating motions and analysing the relative pose derived from a bundle
adjustment. The proofs will be found in an appendix.

On notation. Matrices are written in capital sans-serif letters, homogeneous 4 x4 matri-
ces in upright letters, 3x3 matrices in slanted letters, such as M, A and R, S. Vectors are
written in boldface times, 3-vectors representing 3D points in upright, such as Z vectors
representing (numerically), numerically small entities are written in small vectors, such
as r or m. Stochastic entities are underscored, such as a stochastic 3x3 matrix R or a
stochastic 3-vector r. Names of entities are written in calligraphic letters, in order to be
able to express different representations, e.g., M (M) and M (R, Z). If the entity is as-
sumed to be uncertain we underscore its name, e.g., the uncertain motion may be defined
as M (M). For clarity, we sometimes use the multiplication dot between matrices, e.g., in
the expression Ad(M) - s, which is not the multiplication dot for the scalar multiplication
in a-b.

5.3 Overview

We assume the following notation for Lie groups, which in our context refer to groups of
regular matrices:

e A Lie group G has elements g,h € G, an operation f = goh € G and an inverse
element such that g7' o g = go g~' = e, with the unit element e. The dimension
n of the Lie group is the number of degrees of freedom for representing an element.
An element of G also is called an action (rotation, motion), as it is meant to operate
on a vector.

3The author, not being aware of the difference in the two representations, spent one month finding an
error in his software on estimating a motion from corresponding planes, see (Forstner and Khoshelham,
2017)
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In our case we discuss rotations R € SO(3) and motions M € SE(3), having dimension
n = 3 and n = 6 respectively.

The corresponding Lie algebra g spans the tangent space at the unit element, its
elements are n-vectors x € IR" or — equivalently — matrices X = 2" (read: “wedge”)*
linearly depending on z,y and having the same size as the elements of the Lie group.
The inverse relation is z = XV used for deriving the n-vector from the corresponding
matrix.

In our case the elements are 3-vectors r € g = IR3, also called rotation vectors,
and the — not necessarily small — 6-vectors m € g = IR® also called twist vectors,
concatenating the rotation and the translation components of the motion. As an
example for the matrix X, we have the element S(r) = r", being the skew matrix
of the rotation vector r € g = R®.

The basic relation between the Lie algebra and the Lie group is the exponential map

g G:g=exp(a") (5.12)

which describes the elements g of G around the unit element e.
As an example, we have the exponential R(r) = exp(S5(r)), being the rotation matrix
as element of G = SO(3). The unit element e € G of the rotation group G = SO(3)
here is the unit matrix /3 = exp(5(0)) and corresponds to the 3-vector 0, i.e.,
xz =0 € g in the Lie algebra g = s0(3).
If we write exp(x), where z is an element of the Lie algebra, we actually mean
exp(z" ):

exp(r) := exp(a”" ). (5.13)

The two tables 5.1 and 5.2 collect the main algebraic relations for rotations, and motions
in exponential and partially exponential representation. They are derived and discussed
more in detail in the next section. The collected relations are useful in the following
situations:

Representing rotations ® (R) and motions M (M) (row 1).

Generating uncertain rotations & (R) and uncertain motions M (M) (rows 6, with
2 and 3), assuming the small elements have mean 0 and some covariance matrix.
Here the difference between the exponential representation M (M) and the partially
exponential representation M (‘M) become visible.

Deriving the small left rotation or motion from a small right rotation or motion
leading to the same uncertain rotation or motion (rows 4 and 5), e.g., in the form
M(Ad(M)-s) M = M(s,4)-M = M-M(s), derived from the adjoint action exp(z,q) =
g exp(z)g~!. Observe, the adjoint matrix is not used in other relations of the
partially exponential representation.

Deriving small deviations between estimated and true rotations and motions (row
7) using V(r) = I3 and R(dr) = I3+ S(dr).

Switching between the two motion representations (row 8, columns 3 and 4).
Deriving the mean and covariance matrix of the inverse (rows 10 and 11).

Deriving mean and the covariance matrix of the concatenation (rows 12 and 13), of
two possibly correlated rotations or motions.

Deriving mean and the covariance matrix of the relative rotation or motion (rows
14 and 15), of two possibly correlated rotations or motions.

Comparing the relations for the two motion representations in columns 3 and 4, we observe
great similarities, partially identical relations. Specifically, the two differential motions ds

4The notation results from the outer product of two vectors, which in the special case of 3-vectors
reduces to the cross product. Thus we have = A y = " y equivalent to X y = [z]xy = S(z)y
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of the exponential representation and d¢{ of the partially exponential representation are
related by a linear transformation. This can be interpreted as a change of the basis of the
three axes in the tangent space of the Lie group which refer to the translation component.
On the other hand, is it obvious, that the relations for the exponential representation are
simpler and more mutually connected. As mentioned above, e.g., the concatenation of
two differential motions (row 12, column 3) only uses the adjoint matrix Ad(Ms) of the
second motion, whereas the term —S(R3Z;) with the skew matrix in the expression for
the translation component (row 4) depends on both motions.

l 1 2 3 [ 4
1 1 object \ G — | SO [ SEG). s [ SEG).C
1 action, group element
R zZ R V4
9€G R M:[OT 1] M:[OT 1
2 small algebra element
TEy T s = [ : :| ¢ = |: ¢ }
3 log of small action
A S(r) t
X=z S(r) A(s) = o7 0 (log of row 7, column 4)
(5.3) (5.2)
4 adjoint action at e € G
cxp(acad) = gcxp(:c)g71 R(rad) = RR(’!‘)RT M(Sad) =M M(s) M~ M(¢ d) =M M() M~
(5.209 (5.70) (5.91)
5 adjoint matrix for dz
Xog, degg = X,q da R,q =R Ad(M) = R 0 Ad(M) = R 0
ad> “fad = “ad ad = ~ | S(Z)R R ~ | S(Z2)R R
(5.34) (5.73) (5.94)
6 uncertain group element
R(p)R
g=-exp(z)g € G, z small R=R(r)R *M = exp(A(s)) M ‘M= [ (OBT) Z;rl ]
(5.21) (5.52) (5.54)
7 multiplicative noise element
_ R V(r)t R Is—R Z+T
ep@ =go €G || R@) ewa) = | TP VL] | TP e RenEre ]
(5.56) (5.56) (5.90)
8 differential noise element
. _ Is 0 I5 0
dx €y dr ds = [ s(2) Is ] d¢ d¢ = [ —5(2) Is } ds
(5.67) (5.67) (5.67)

Table 5.1: Lie group elements (1/2): actions, adjoints, noisy elements, inverses, concate-
nations and relative actions

5.4 Uncertain Rotations

5.4.1 General setup

In all cases we represent the uncertain linear transformation X by the mean transformation
matrix of size m x m

l : {X7 ZAQTAQT}

and a stochastic n-vector Az, which captures the noise of the transformation, and has
zero mean and a covariance matrix as second moments

(5.14)

I.e. we assume the distribution is uni-modal and can be represented sufficiently well by the
first two moments. We do not assume the distribution to be a normal distribution, unless
we want to perform statistical testing. Then, we assume higher order of the nonlinear
relations effects are small enough to be acceptable for the application.

The dimension n of the vector Az is identical to the degrees of freedom of the trans-
formation, in order to have regular covariance matrix in general. Hence, the two matrices
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1

[3

l
l

T2
| SO0B3)

[ T object \ G — [ SEB),s [ SE®),¢
9 uncertain inverse
(=D\RT T (=1)
(=1 -1 _ pT (.(-1)) pT sp—1 — =1 (g(—=1) —1 | ¢y-1_| R )R —-R'Z+T1
¢Veg R7'=R"(2D)RT | sM7t =Mt (s M M o )
(5.36) (5.77) (5.95)
10 differential inverse
(=1) T
(-1 gp(-D (-1) — _RT (-1 — -1 dp - _ R 0 dp
dz , do €yg dr =—-R'dr ds = Madds [ dr(-D } = [ R'S(z) R' dr
(5.38) (5.78) (5.97)
11 concatenation
g=g2091 €G R = R2R; M = M2M; M = M2M;
12 differential
concatenation dr = R2,ad dri +drs | ds = Ad(M3) ds; + dsa dp =dp, + R2dp,
dz = d(z2 0ox1) dr = d72 + R2d71 — 5(R2Z1)dp,
(5.42) (5.238) (5.244)
13 relative action
g9=0;'09€G || R=RIR, M= MM, M = MM,
14 differential

relative action

dz = d(z7! o 22)

dr = R] (drs — dry)

(5.49)

dsip = I\/I;;d (dsy — dsy)

(5.87)

dp = R](dp, —dp,)
dT = R]S(Z2> — Z1)dp, + R]d(7T2 — T1)
(5.107), (5.108)

Table 5.2: Lie group elements (2/2): actions, adjoints, noisy elements, inverses, concate-
nations and relative actions

X and Y aza, have different dimension in general. The matrix X may be the mean mo-
tion X := E(X), or an estimated motion X := X, depending on the context. If we use
a minimal representation, it also may be the vector x specifying the motion. The way
how X is related to Ax needs to be specified, and even may vary for the same type of
transformation. In all cases we might exploit the fact that transformations build a Lie
group, i.e., a continuous group, and can be written as matrix exponential. We warm up
with rotations as special motions.

5.4.2 Representing rotations

There are many ways to represent rotations. We only address three of them.

1. We start with the classical definition of rotations using Euler angles, say o

(a1, a9, as). We generally have the uncertain rotation

e.g., specified by

R:

R= RQ(Qg)R2(QQ)R1(Q1)

{a7 onzAa} .

with a=a+ A«,

(5.16)

(5.17)

where the indices of the rotation matrices indicate the rotation axes. In whatever
sequenced the angles are applied, and what ever axis sequence is chosen, the repre-
sentation for some angles will have a singularity, what is called the gimbal lock.

Therefore the Rodriguez form, depending on a rotation vector 1, often is preferred.
Here we have the uncertain rotation

R :

{9, Zavas}.

(5.18)

It is given by the exponential map of the skew matrix Sy of the rotation vector 9:

R = exp(S(8)) =

J, . snl9]

1 — cos [

19

§,9+

S2  with
EE.
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9=9+A0,

(5.19)




3. Finally, we also can adopt the multiplicative definition of an uncertain rotation. Here
the uncertain rotation is given by

R: {R.}, (5.20)

specified by
R=exp(S5(r)) R=R(r) R. (5.21)

5.4.3 Relations between the representations

When comparing the three definitions of the uncertain rotations, we need to have explicit
expressions for the derivatives of R w.r.t. the elements of the noise component, either A,
A8, or 7.

Unfortunately, the expressions for the derivatives of the exponential exp(S(9)) w.r.t. ¥
at some arbitrary — not necessarily small — vector, e.g., at ¥ = [£(4) are quite cumbersome.
Therefore in the following we will not use the definition of an uncertain transformation
using the exponential of some matrix depending on arbitrary parameters. This excludes
choice 2 for defining uncertain rotations.

However, we can derive the Jacobian of the angles  in the multiplicative exponential
representation w.r.t. Euler angles a. We specifically have

_Or

Jra T [Ra(as)Ra(an)er | Ra(as)es | es] (5.22)

see Appendix 5.8.2. Since |J,o| = cos @y we have
Jor =J71 if  cosas#0. (5.23)

This not only makes the Gimbal lock of the representation with Euler angles explicit, but
shows, that we can choose either representation if we avoid the Gimbal lock.

Since all minimal representations for rotations show singularities for specific rotations
or are not unique, we only discuss the option 3, with the multiplicative way to represent
an uncertain rotation.

5.4.4 The rotation in exponential representation

We now discuss the adjoint rotation, the inverse, the concatenated, and the relative rota-
tion.

5.4.4.1 The adjoint rotation

Let us for a moment define an uncertain rotation by first applying a small random rotation
R(q) and then a fixed large rotation, e.g., R := E(R):

R=RR(q) D(g) = Xqq- (5.24)
Applying it to a vector & we obtain a stochastic vector
y=Rx=RR(q)z. (5.25)

Now, let us choose another small rotation via what is called the adjoint rotation vector

5
e R(q.q) =R R(q) R™' =R R(q) R". (5.26)

If we apply this small rotation with g,4 to y = Rz we obtain

R(g,,) Rz =RR(q) =. (5.27)

5the use of the name g for a rotation vector, should not be confused with the common naming of
quaternions, which do not play a role in this note.
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Hence, if we first perturb « by a small rotation g and then rotate the perturbed vector
R(q) x we obtain the same uncertain vector as when first rotating = and then perturbing
the rotated vector y = Rz with the adjoint rotation vector q,, We could also have
written the relation — neutrally w.r.t. order — as

R(q,) Rz =R R(q,) =, (5.28)

the indices standing for left and right hand rotation. Hence the adjoint rotation q.,=4;
leads to the same result if applied to the left of a rotation as the original rotation g applied
to the right of a rotation.®

Thus we have for any rotation vector r the adjoint rotation
R(r,q) =RR(r)R™" (5.29)

or the relation

[R(r,q) R=RR(r).| (5.30)

Now, we express the differential adjoint rotation vector dr,q directly as a function of the
differential vector dr. We have

dR(raq) R = R dR(r) (5.31)

. S(draq) R = R S(dr) = S(Rdr) R (5.32)

539

We observe: the differential rotation vector r and its differential adjoint rotation vector
draq are linearly related by the rotation matrix R. Since, due to R(r) = I3+ S(r)+O(r2),
the vector r spans the tangent space of a rotation at the unit rotation. But 7,4 also defines
a basis, just a different one in this 3-dimensional tangent space.

Later we will see that the rotation matrix in (5.33) actually is the adjoint rotation
matrix, which in this case simplifies to

hence

Rua = R, (5.34)
see (5.73).

5.4.4.2 The uncertain inverse rotation
Let now the uncertain rotation be given by
R=R(r)R. (5.35)
The inverse rotation is represented the same way
R = R(g(_l)) R L. (5.36)
The mean of the uncertain inverse is the inverse of the mean rotation:
E(R™") = (E(R)™" . (5.37)

The differential rotation vector dr(—1) of the inverse rotation can be shown to be

]dr<—1> = —R"dr, (5.38)

see Appendix 5.8.5.

6Following this interpretation of the adjoint rotation it would have been straight forward to de-
fine an uncertain rotation by R = R exp(S(r)). However, most authors use the original definition
of an uncertain rotation, where the noise component of the rotation is applied after the mean rota-
tion. Unfortunately the definiton of a similarity transformation or conjugation of matrices B = X ~1AX
(https://mathworld.wolfram.com/SimilarMatrices.html) is just using the inverse operation sequence as
the adjoint action exp(w,q) = g exp(z) g~ ! in a Lie group; however, see https://mathworld.wolfram.
com/SimilarityTransformation.html.
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5.4.4.3 The uncertain concatenated rotation

Let a possibly correlated rotation pair be given by

{r.2,} {meran ([ 2]} (5.59

The concatenated rotation is
R=R,R : R=R,R, =R(R. (5.40)
The mean of the concatenated rotations is
E(R) = E(R,) E(R,) . (5.41)

The differential of the rotation vector r of the concatenated rotations is given by

|dr = Rydry +dr, .| (5.42)

This is a special case of the concatenated motions, see Appendix 5.8.8.
Observe, Eq. (5.42) allows to derive the uncertainty of a correlated rotation pair

{&,2,}

Yo =J Y JT, (5.43)
with
J=[Rs|l5] and ¥,,=D ([ I D _ [ Lo T ] . (5.44)
rs roTy T2T2

5.4.4.4 The uncertain relative rotation

We want to determine the relative rotation
Ri2 = R7'Ry (5.45)

in case all rotations are uncertain and possibly correlated. Let the uncertain rotations be
given by

R, =R(r;) Ry and R, =R(ry) R>. (5.46)
Then the uncertain relative rotation is
R(ry5) Riz = (R(ry) R1)'R(ry) Ra. (5.47)

The mean of the relative rotations is

E(R) = E(R,) ™" E(R,). (5.48)

The differential drio of the rotation vector of the relative rotation is

d7‘12 = RI(d"'Q - drl) . (549)

The result is a special case of the relative motion, see Appendix 5.8.10
The result in (5.49) can be derived using the relation (5.36) for the inverse and the
relation (5.42) for the concatenation.
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5.5 Uncertain Motions

5.5.1 Representations

The uncertainty of a motion is captured in the uncertain twist vector m(Am)
Am ~ N (07 zAmAm) . (550)
We address the following two representations

1. The exponential representation with the twist vector

m: s:{Z]. (5.51)

is given by
SM: M =exp(A(s) M with A(s) = [ Séﬁ) : ] . (5.52)

2. The partially exponential representation with the twist vector

m: c:[f}. (5.53)
is given by . .
aL: M= [ 5z ] (5.54)
with
SR=exp(S(p)) R and ‘Z=Z+ T (5.55)

It appears obvious, that both representations are useful. However, they differ in the
meaning of the twist vector, as we will see.

Observe, we have

R(r) = exp(S(r)) and M(s) = exp(A(s)) = { Ripy Vi } (5.56)
with
& S5™(r) sin ||7|] 1 —cos|7| -2
R(r) =I5+ — I+ S, + s2 5.57
() =ls+ 2, = =l = Lk (5.57)
and
B o S"(r) _ 1 — cos ||r|| 1 —sin||r| .o
V(r) = /3+nZ:]1 i I35+ T S, + e s2. (5.58)

see Leonardos et al. (2015, eq. (19)). Thus for small values of ||| we may use the first
order approximation
V(r)~ ;. (5.59)

Therefore we have for an uncertain motion in exponential representation with small s

(5.60)

x| RO L[ R E)_[ROR Rzt

of 1|0 1 o' 1

The corresponding expression for the partially exponential representation is lengthy.
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5.5.2 Comparing the two representations

We now compare the two representations with the two twist vectors

_| T _| P
s-[t] and C—[T} (5.61)
for defining the uncertain motions as
M = exp(A(s) M and M — [ eXp(f)(TQ) Roanr } . (5.62)

Assuming the two uncertain motions are statistically equivalent, we can relate the differ-
entials of the twist vectors. We obtain the total differential for the two motions from:

e for the exponential representation

sang | Sdr) dt R Z | | Sdr)R S(dr)Z+dt
dM_{ o' 0 } [OT 1 }_[ o' 1 (5.63)
and
e for the partially exponential model
S(dp) dr R Z S(dp)R dr
¢ — —

If the uncertain motions are the same, the two differentials must be identical, and we
obtain the relations

dr =dp or dp=dr (5.65)
dt =dr+ S(Z)dp or dr =dt - S(Z)dr (5.66)

[3:}:[52% /"Hfm . [3“:[5//?2) IoH?it}

between the twist vectors s and . Hence, we have the relations

’ds = Joed¢ and d¢ = JCsds‘ (5.67)
with
[ 150 = I 0
Js( = |: S(Z) I3 :| and JCs _Js( = |: 75(Z) /3 ] . (5.68)

This allows us to transfer the covariance matrices of the twist vectors
Yoo = JocTecdle and Lo = JocTasdl: (5.69)

between both representations.

As a result, we find: the uncertain rotation components dr and dp of both representa-
tions are identical but the uncertain translation components dt and dr differ by the effect
of the uncertain rotation applied to the full translation Z.

5.5.3 The motion in exponential representation

We now discuss the adjoint, the inverse, the concatenated, and the relative motion in
exponential representation.
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5.5.3.1 The adjoint motion for the exponential representation

The adjoint motion M(saq) is defined with, what is called the adjoint motion vector Saq,
M(8aa) = M M(s) M~1. (5.70)

For proofs we often use it in the differential form
A(saa) M =MA(s), (5.71)
allowing to exchange the differential of the perturbing noise matrix A and the motion

matrix M. Also here we obtain a simple linear relation between the differentials of the
twist vectors

| dsaa = Ad(M) ds, | (5.72)

with the adjoint motion matrix relating the two 6-vectors

Ad(M) = { 5(§)R g] , (5.73)
and its inverse .
My = { RT §T(Z) F\?T } . (5.74)
Eq. (5.73) can also be written as
[A(Ad(M) -ds) M =M A(ds).] (5.75)

The proof is given in Appendix 5.8.3. We observe: the differential rotation vector s
and its differential adjoint motion vector ds.q are linearly related by the adjoint motion
matrix Ad(M). The relation between the small motion vectors only holds for differential
motions. This is sufficient for all practical cases, where the relative precision of the motion
parameters is high enough. Observe, when restricting to rotations we have

Rua = R, (5.76)

The simplicity of this relation does not reveil the strength of the concept for more general
transformations.
5.5.3.2 The inverse motion in exponential representation

Similarly as for rotations, we can derive the relation between the differential twist vector
of the inverse motion to the one of the original motion.
We have the basic relation

M =M (sC0) M = (M) M) =M M ). (5.77)

Using the adjoint motion we can derive the following relation between the differential twist
vectors:

ds(-D = —Ad(M)"" ds, (5.78)

see the proof in the Appendix 5.8.6

5.5.3.3 The concatenated motion in exponential representation

Let a possibly correlated motion pair be given by
"My, oMy} {[Ml,Mﬂ,]D <[ i; ])} . (5.79)
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The concatenated motion is
D=0, M= M, M, = M(s)M.
The mean of the concatenated motion is
E(°M) = E(°*M,) E(°M,).

The differential of the rotation vector s of the concatenated rotation is given by

|ds = Mads; +ds, |

see Appendix 5.8.8.

5.5.3.4 The relative motion in exponential representation
We want to determine the relative motion
Mip = M; M,
in case all motions are uncertain. Let the uncertain motions be given by
*M; =M(s;) My and *M, = M(s,) M3
Then the uncertain relative motion is
M(s12) M1z = (M(s;) Ml)_lM(§2) M.,
The mean of the relative rotations is
E(*M) = E(°M,) " E(°M,).

The differential ds;s of the rotation vector of the relative rotation is

dSlg = M-lr(dSQ — dSl) .

see Appendix 5.8.10

5.5.4 The motion in partially exponential representation

The uncertain motion is defined as

R(p)R Z+r1
CM: 0) ) , ]D(g) =2¢c,

We also can write this as a multiplication of a motion with a small random motion

‘M=M()M with
with the small motion

M(¢) = Réf) (IS_R(’;))Z+T} and M[(ﬁ f}
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5.5.4.1 The adjoint motion for the partially exponential representation

Since the adjoint motion transfers small motions, we also can define an adjoint motion in
case of the partially exponential representation. It is defined as the motion depending on
the adjoint twist vector ¢,q

M(Cpq) =M M(G) M. (5.91)

Thus we have the form which can be used in proofs

M(¢, ) M =M M(C). (5.92)

Interestingly, also here we have a linear relationship between the differential adjoint
twistvector d¢,4 and the differential original twist vector d¢:

d¢,q = “Maq d¢ (5.93)

with the adjoint motion matrix

(5.94)

Observe, that the two adjoint matrices *M,q in (5.73) and *M,q in (5.94) are identical.
This results from the fact, that the adjoint motion for a differential twist has translation
component zero, hence the two adjoint twist vectors do not differ if the original twist
vectors are the same: The Jacobians in (5.68) then are unit matrices. This is the reason,
why we did not indicate the difference in the naming of the adjoint matrices in Table 5.1
in row 5, columns 3 and 4.

5.5.4.2 The inverse motion in partially exponential representation

The uncertain inverse in partially exponential representation is defined as

_ )\RT  _RT (-1
<M1:[R(p0 )R Rzl+1 } (5.95)
and depends on the stochastic twist vector
B (-1
v = { 5(_1) } _ (5.96)

As we saw in the last section, the differential adjunct twists are related to their twists via
the adjoint motion matrix, which is identical for both cases. Therefore also the differential
of the inverse twist vector in the partially exponential representation is given by

[ jﬁ:i } B _[ —RTRSTT(Z) R(’)T } [ gf ] » (5.97)

see Appendix 5.8.7. Observe, this is not the negative inverse of the adjunct motion matrix,
since we have

Ad(M) Ad(M)™" = [ 5(5) R g ] [ Rf;(z) R(’)T } = [ 'g’ ,Z } ;o (5.98)

and the second factor differs in the sign of the (2,1)-submatrix.
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5.5.4.3 The concatenated motion in partially exponential representation

Let a possibly correlated motion pair be given by

(<at, <at,} - {[Ml,MQ],Dq & D} (5.99)

22

The concatenated motion is
M =M M M= M, M, . (5.100)
We find the mean values of the concatenated motion is
E(M) = E (‘My) B (‘M) . (5.101)

The differentials of the twist vectors also are linearly related by

dp = dpy + Rodp; and dr = dry + Redry — S(R>Z1)dp, | (5.102)

Observe, the rotation component transforms as for the exponential represenation and
the translation component has a different term with the skew matrix. Moreover, and much
more important: this matrix depends on both motions via Z; and Rs, which complicates
multiple concatenations.

5.5.4.4 The relative motion in partially exponential representation

Let a possibly correlated motion pair be given by

R O (£3))

Then the relative pose can be determined by

-1 ‘R, °Z R(p, )R Zyy+T1
My =M; M, = [ o 1 ] = { (*(1)22 oo } . (5.104)
or from . .
‘Riy=°R,‘R, and °Z,,=°R,(°Z,-°Z)). (5.105)
We obtain the mean relative motion as
E(‘My,) = E(*M,) "' E(°M,) (5.106)

Using the result from the uncertain relative rotation the differentials of the rotation and
the translation vector are related by

dpyy = RI(dPQ —dp,) (5.107)

and by variance propagation from (5.105)

dri = RIS(ZQ — Z1)d101 + R—lrd(TQ — T1) . (5108)

5.5.5 Evaluating the covariance matrix of estimated motions

We now discuss how to evaluate whether a theoretical covariance matrix is consistent with
an empirical one.
Evaluating whether the theoretical covariance matrix 3 55 of estimated parameters 6

is trustworthy, it can be compared with the empirical covariance matrix i@g derived from
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a sample of {@k, k=1,..., K}, when knowing the true value 0, e.g., when using simulated
data

K
Z (0r — 0)(6, — )7 . (5.109)

In our context we, instead of the differences Hk 0 of the estimated and the true parameters
we use the estimated twist vectors my, since their means are zero.

When evaluating the covariance matrix of estimated motions from a sample M k=
1, ..., K and a given true motion M we need to distinguish how we determine the empirical
covariance matrix of the twist vector.

e In the case of the exponential representation we use the small matrices

Ly, = MyM~! (5.110)
— [ 5{? 21k ] [ ’g: *RlTT } (5.111)

[ R’STR Z’“”fkR Z ] (5.112)

~ I+ [ SETT’C) ?f ] . (5.113)

and derive the small twist vectors sy = (?k,?k) from

Lias (’:?kRT)% R L4 A
$k = Lklg = (Rk;RT)12 and tk = Lk24 = Zk — RkRTZ (5114)
Lz (ReRT)s1 Li3a

This also could be written compactly as

~ " 1 v

35, = log (MkM_ ) , (5.115)
the operator ¥ (read: “vee”) being the inverse of the operator *, thus, if X = 2" we

have x = XV.

Then the empirical covariance matrix of 3 is
~ 1 -
— Ezk:s’“s’“' (5.116)

e In the case of the partially multiplicative model we use
Gk:kkRT%I:j-i-S(pk) and hkzzk—Z:Tk (5117)

This leads to the elements of the small twist vector ¢, = (px, Tk)

Gras (RkR )23 R
pr.=1| Griz | = (RkR )12 and Ty,=h,=2Z,—-Z. (5.118)
Gk31 (RkRT)gl

Then the empirical covariance matrix of 3 is
EE ZCka (5.119)

As a result, linearizing the given model and deriving the empirical deviations of the esti-
mated motions from the true motion need to be consistent.

In both cases we use a statistical test to check whether the expectation of the covariance
matrix from the sample is identical to the theoretical covariance matrix, see (Forstner and
Wrobel, 2016, Sect. 4.6.8.2).
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5.6 Examples

We discuss two applications:

e Estimating motion parameters,

e Comparing absolute and relative poses.

5.6.1 Estimating motion parameters

Let us assume we have given I corresponding 3D points {X,Y };,¢ = 1,..., I, where the
coordinates X; are fixed given values, and the coordinates Y; are noisy observations
of the corresponding moved points X ;, having covariance matrices ¥;;. We assume the
correspondences are mutually independent, hence ¥;;; = 0. Then, with the homogeneous
coordinates

X, = { )i ] and Y; = [ lq } (5.120)
we have the non-linear Gauss-Markov model (stochastical variables are underscored)
E(Y,)=MX; and D(Y,) = [ %-? g ] with i=1,...,1. (5.121)
or, with the residuals (corrections),
Y. +vi=MX,. (5.122)

We assume we have an approximate motion matrix M?. The model needs to be linearized,
which depends on the type of representation.

5.6.1.1 Linearization with the exponential representation
With the exponential representation we have
Y; 4+ vi =M(s) M* X; = M(s) X¢ (5.123)
with the approximately moved coordinates
X =M*X;. (5.124)

The goal is to estimate the twist vector s form the I correspondences. Linearization leads
to
Yi +v; = (14 + A(S)) SX? (5125)

where v; are the residuals of (corrections to) the coordinates Y,;. With the linearized
observations

Ay =Y; — °X¢ (5.126)
this can be rewritten as
Ay, +vi = A(s)) *X7 (5.127)
s - 5("") t SX’C;’
Ay, +vi = { oT 0 ] { 1 } (5.128)
Ay, +v; = S(r)*X{+t (5.129)
(5.130)
thus finally
*Ay; +vi = [-SCXT) | 15] [ i } (5.131)
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or the linear substitute model

with the design matrix for each point and the unknown parameters
X, =[-SCX{)|1l5] and A0 =s. (5.133)

The update of the parameters within the v-th iteration is

A (v ~(v)

s _ | exp(SEY) T | o) (5.134)
o’ 1

5.6.1.2 Linearization with the partially exponential representation

With the exponential representation we have

R(p)R Z :
Y¢+vi_CMXi_[ %’T) TT] {"f] (5.135)

Linerization leads to

Y, 4y, — { (I3+5(Tp)) R Z°+T ] { X; } (5.136)
0 1 1
Y, v, = {R Xi+5(p)f§ Xi+Z +T] (5.137)
With the approximately rotated coordinates
‘X! =R"X; (5.138)
and the linearized observations
‘Ay=Y,; - (R* X; +Z%) (5.139)
we have the linearized model
Ay + ‘v, =S(p)°X; +7 (5.140)
or finally
Ay +Cv; =X, A (5.141)
with
X; =[-SCEX;)|1s] and AO=C. (5.142)
The update of the parameters within the v-th iteration is
@t _ [ REV)RY Z®) 42 (5.143)

o’ 1

5.6.1.3 Comparison

The design matrices differ in the argument of the skew matrix. For the exponential model

we have explicitly
*Xi=[-S(R*X; + Z) | I3] (5.144)

while for the partially exponential model we have
X; =[-S(R*X;) | 1] (5.145)
Hence, the normal equation matrices

N= XTI E X, and N =D0X] £t X, (5.146)
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are differing in the rotation component and therefore also the inverse normal equation
matrices, i.e., the covariance matrices of the estimated parameters.

Observe, in an extended Kalman filter for the motion parametrized by & with inno-
vation of measurement residual y, = zj — h(Zy,—1) the Jacobian H = 0h/0x depends
on the representation of the motion in the function h, which may use one of the repre-
sentations discussed in this note. The resulting covariance matrices will of course differ,
depending on the choice of the representation.

5.6.2 Example for comparing absolute and relative poses in multi-
view analysis

Let aus assume a free bundle block adjustment with two cameras at Z;,t = 1,2 and 6
scene points X ;,7 = 1..6, as shown in Fig 5.1. The basis points towards the scene points,
mimicking a docking situation. We are interested in precision of the relative motion.

Zl Z2 = a— -]

Figure 5.1: Relative motion from free bundle adjustment. The basis is 1 m. The distance
D to the scene points is 2 m. The distance difference of the scene points is 0.3 m. The
uncertainty of the image rays is 0.1 mrad

The free bundle adjustment with the software package BACS” (Schneider and Forstner,
2013) yields the covariance matrix of all pose parameters fixing the gauge in the centroid
of the given scene points. The covariance matrix of the 12 parameters of the two twists is
given by

Zﬁﬁ:ID(|: gl ]) = SRS (5.147)
22

where the diagonal matrix S = Diag([o,,]) contains the standard deviations, and the
matrix R = [py] the correlations between the parameters. As an example we obtain the
standard deviations for the rotations in [rad] and for the translations in [m]

Ops Oriy Opyr O 0.0141 0.0425 0.0137 0.0278
Opis Ory Opay Omy | = | 0.0141 0.0425 0.0137 0.0278 (5.148)
Opis Ors Opus  Ora 0.0004 0.0121 0.0003 0.0078

The correlation matrix R is given by

1000 0 0 0 —1000 0 995 0 0 0 —995 0
0 1000 0 1000 0 0 0 995 0 995 0 0
0 0 1000 0 0 0 0 0 7 0 0 0
0 1000 0 1000 0 0 0 995 0 995 0 0
—1000 0 0 0 1000 0 —995 0 0 0 995 0
1 0 0 0 0 0 1000 0 0 0 0 0 992
1000 995 0 0 0 —995 0 1000 0 0 0 —1000 0
0 995 0 995 0 0 0 1000 0 1000 0 0
0 0 7 0 0 0 0 0 1000 0 0 0
0 995 0 995 0 0 0 1000 0 1000 0 0
—995 0 0 0 995 0 —1000 0 0 0 1000 0
0 0 0 0 0 992 0 0 0 0 0 1000

For symmetry reasons the rotations around and the translations along the X- and the
Y -axes have the same standard deviation. Observe the position of the cameras w.r.t. scene
is only 3 to 4 cm. Also, the rotation angles around the Y-and the Y-axis are 0.014 [rad] or
appr. 0.8°. Also there are very high correlations between the two sets of pose parameters,
some numerically nearly 1.

"pundle adjustment for cameras systems
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If we now determine the relative pose M := M5 = MflMg we obtain the following set
of standard deviations of the twist vector of the relative pose using (5.107) and (5.108)

0y Om 0.0014 0.0028
0py O | = | 0.0014 0.0028 (5.149)
Tpy Ory 0.0005 0.0045

The precision of the rotations around and the translations along the X- and Y-axes are
approximately 10-times more precise, which is cause by the high correlations of the corre-
sponding pose parameters of the two cameras. The correlation matrix of the relative pose
parameters is

1.0000 0 0 0 —0.4963 0
0 1.0000 0 0.4963 0 0
0 0 1.0000 0 0 0
0 0.4963 0 1.0000 0 0 (5.150)
—0.4963 0 0 0 1.0000 0
0 0 0 0 0 1.0000

showing no correlations above 50 %.

5.7 MATLAB Software

The main routines are available as MATLAB-functions.

1 || calc_A_from_s.m A= 5(:) ¢
0 0

2 || calc_concatenated_M_s.m | M(s) = M(s,) - M(s;)

4 || calc_concatenated_M_z.m | M(¢) = M(¢,) - M(¢,)

5 || calc_concatenated_R.m R(r) = Ra(rs) - R(ry)

6 || calc_inverse_M_s.m M(s=1D) = M(s)

7 || calc_inverse_M_z.m M(C(fl)) =M(¢)

8 || calc_inverse_R.m R(E(_l)) = R(B

9 || calc_relative_M_s.m M(s) = M~ 1(s;) - M(s,)

10 || calc_relative_M_z.m M(¢) = Mfl(il) -M(¢,)

11 || calc_relative_R.m M(r) = R"(r,) - R(r,)

12 || calc_s_from_A.m A= \‘ 5<17-‘) ¢ | —+ 8= \‘ " |
0 0 t

13 || calc_z_from_M_MO.m M=M() My—¢

Table 5.3: MATLAB routines for rotations and motions in exponential and partially expo-
nential representation

The variables for rotations and motions are structs:

{R.R, R.C} {M.Ms, M.Cs} {M.Mz, M.Cz}. (5.151)
with the covariance matrices *.C* having the sizes 3 X 3, 6 x 6, and 6 x 6. For the input of
the concatenated and relative rotations and motions we have structs for the transformation
pairs:

{Rp.Rp, Rp.Cp} {Mp.Msp, Mp.Csp} {Mp.Mzp, Mp.Czp} . (5.152)
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Here the transformations are concatenated leading to

Rp.Rp = [R1.R,R2.R] (5.153)
Msp.Msp = [Mls.Ms,M2s.Ms] (5.154)
Mzp.Mzp = [M1z.Mz,M2z.Mz]. (5.155)

The covariance matrices of the pairs allow for correlated transformation parameters, i.e.,

P— ZT‘l’r’l ZT1T2
Rp.Cp := S T (5.156)

Msp.Csp = Tos  Tois (5.157)

25251 ZSQ S92 i

Mzp.Czp = gzl? é?? . (5.158)

In addition we have two routines for each representation to check the implementation:

e check_basics_rotations.m and check_simulated_rotation.m,
e check_basics_motion_s.m and check_simulated_motion_s.m, and

e check_basics_motion_z.m and check_simulated_motion_z.m.
One checks the basic relations:

e vector of adjoint transformtion,

e vector of inverse transformtion,

function for inverse transformtion,
e vector of concatenated transformtion,
e vector of relative transformtion,

o difference transformation 77, as concatenation of ‘Zi_l and 75, hence Ty5 = ‘Tl_l oTy.

The output are differences between entities derived in two different manners, which there-
fore should be numerically small. If no relation fails the numerical test, the transformation
is classified as ok.

The other checks the whether the mean parameters and their covariance matrix de-
rived from a sample is identical to the given (theoretical) mean and covariance matrix.
The output provides the test statistics for the covariance matrix and the mean and the
corresponding critical region. E.g. for the exponentially represented motion we obtain:

Checks for motions s
Number U of unknown parameters = 6

Redundancy R =6

Number K of samples = 100

covariance matrix C_xx ok: lambda = 23.9562 in [5.8957,49.0108]
mean of parameters x ok: mean(dx) = 6.2880 in [0.2994,24.1028]

If the prespecified noise standard deviation sigma_n is small, generally no test fails. If
it is set to sigma_n= 0., it is likely that the tests fail due to neglected second order effects.
Also, if the number K of samples is large, the statistical test becomes more sensitive, such
that test statistics may lie outside the critical region.

Finally, the covariance matrices derived with the partially exponential and the expo-
nential representations are compared assuming the motions have been generated with the
partially exponential representation. The comparison shows, that the rotations together
with their covariance matrix do not significantly differ, but the mean values do:
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Checks for rotations s|z
Number U of unknown parameters = 3

Redundancy R =3

Number K of samples = 100

covariance matrix C_xx ok: lambda = 11.8448 in [0.2994,24.1028]
mean of parameters x ok: mean(dx) = 1.6323 in [0.0153,17.7300]

L e
Checks for translations slz
Number U of unknown parameters = 3

Redundancy R =3

Number K of samples = 100

covariance matrix C_xx not ok: lambda = 108.5578 not in [0.2994,24.1028] ****x*
mean of parameters x ok: mean(dx) = 0.5210 in [0.0153,17.7300]

5.8 Appendix
5.8.1 Epipolar constraint using motion matrices
If the two images can be modelled as (see Forstuer and Wrobel (2016, Eq. (12.34)), PCV)
x' = [K; |0JM;'X and x"=[Ky|0M;'X
the projection rays are (see PCV (12.76))
l,=Q L and L. =Q,L
with the projection matrices for lines
Q =[0|K{IML} and Qu=[0|K} Mg}
The motion matrix for lines and its inverse are given by (see PCV (12.75))

_ R 0 1 RT 0
My = [ S(Z)R R ] and My~ = [ RTST(Z) R'

and identical to the adjoint motion matrix, see Table row 5:
My = Ad(M) (5.159)
Hence we have the line projection matrices
Q= 1[0]Kj] M;dl,l and Qy = [0 | K3] M;dl,z

Two lines L;,i = 1,2 intersect if L]DLy = 0 (see PCV (7.100)), which is the basis for the
definition of the fundamental matrix (see PCV (13.70))

o To 171+ 0
F:QIDQT:[0|K]Mad1,1|:I 0:|MadT2|:KOT:|

which specializes to the essential matrix assuming the coordinate system in the left image
and the motion M from the left to the right camera

0

E=[l3 | OIM, [ Iy

] = S(Z)R. (5.160)
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5.8.2 Differential relation between Euler angles and the exponen-

tial representation

A rotation can be represented by Euler angles with the vector

aq
o = (6%}
a3

e.g., as
R(a) = R3(az)Ra(a2)Ri(aq)

and by a multiplicative representation with a small vector

as

The task is to derive the Jacobian 9
r

Jra = —.
T aa
We start from the identity of the total derivative

dR = dR(a) = dR(r, R") .

(5.161)

(5.162)

(5.163)

(5.164)

(5.165)

(5.166)

and aim at finding a relation between da and dr under the assumption R = R?, i.e.,

differential vectors da and dr. We first obtain

dR(a) = d(Rs(a3)Ra(a2)Ri(n))

(5.167)

= dR3(a3) (Rz(az)Ri(a1)) + Rs(as) dRz(az) Ri(a1) + (Ra(as)Rz(az)) dRi(az)

Now we observe, e.g., for ag

1 0 0
dRi(ay) = d| 0 cosay —sinm
0 sinag CoS (1
[0 0 0
= 0 —sina; —cosay | dag
I 0 COS (i1 —sin oy
[0 0 0 1 0
= 0 0 -1 0 cosa; —sinog
L 0 +1 0 0 sinog
= 5(61)R1(Q1)d0&1 s

or generally
de(Oé) = S(Cz)RZ(OZ)dOzZ .

Similarly we thus have

dRQ(OéQ) = S(eQ)RQ(OZQ) dO[Q and ng(O&3) = 5(63)R3(O¢3) dOég

This leads to

dR(a) = 5(63) R3(OL3) RQ(OLQ) Rl(Oél) dOé3 +
R3(Oé3) 5(62) Rg(ag) Rl(al) dOéQ +
R3(0¢3) Rg(ag) 5(61) Rl(al) dOél
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We now use the relation R(a x b) = Ra x Rb which is valid for all b in the form

RS(a)=S(Ra)R or RS(a)R" = S(Ra). (5.177)
Then we obtain
dR(a) = S(e3)Rdasz+ (5.178)
S(Rg(ag)eg)R das + (5179)
S(Rg(ag)Rg(ag)el)R da1 (5180)

or the skew symmetric matrix

dR(c)RT = S(esdas) + (5.181)
5(R3(&3)€2d042) + (5.182)
S(Rg(ag)Rg(ag)eldal) (5183)

Now the total differential of R(r; R®) is given by
dR(r,R") = S(dr)R* (5.184)

Hence we have
dR(r,R*)R*T = S(dr) (5.185)

Since the approximate rotation matrix is the point of linearization, we have the constraint
dR(a)R" = dR(r,R*)R" (5.186)

Therefore the two skew symmetric matrices (5.181) and (5.185) need to be identical. From
this we follow

esdas + R3(O[3)€2d0[2 + Rg(Oz3)R2(OZ2)€1dOZ1 =dr (5187)
or
dr = J, da (5.188)
with the Jacobian
Jra = [Rs(as)Ra(as)er | Rs(as)es | es]] (5.189)

The determinant of the Jacobian is
|Jra| = cosag. (5.190)

This is why for cosay = 0 or for as = +90° there is no unique relation between dr and
da, which is known as the Gimbal lock.

5.8.3 Adjoint motion matrix in exponential representation
We prove (5.73):

S(Z)R R (5.191)

For this, we express the differential ds,q of the small motion vector s,qdirectly as a function
of the differential ds. We start from (5.71)

Ad(M):[ R 0].

dM(saa) M = M dM(s) (5.192)
with its differential
A(dsaq) M = MA(ds) (5.193)
With the vector
dspq = | 4Tad (5.194)
ad — dtad .
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this explicitly yields

{ S(d_:“ad)

[ S(d:;aTd) R

[ S(dgaTd) R

dtad
0

S(d’l’ad) Z +dtyg

I

0

0

OT
S(d’!‘ad) Z +dtyg

R Z
1

hence by comparing the upper left submatrices

and therefore

Compound this reads as

dr,q = Rdr,

[ R

[ S(Rdr) R Rdt }

o’ f ] { SgiTT)
[ RS(dr) Rdt
o' 0 ]

o’ 0

dtad =Rdt + S(Z)d’l"ad.

dsaq = Ad(M) ds  with Ad(M) = {

S(ZR)R H :

with the adjoint motion matrix Ad(

M).

dt } (5.195)

(5.196)

(5.197)

(5.198)

(5.199)

(5.200)

5.8.4 Adjoint motion in partially exponential representation

We prove (5.94)

d¢,q = ‘Maq d¢  with “Myq = {

with the vector

We have start from

The differential reads

S(dpad)
OT

dTad :|

0

dCad = |:

5(§)R Ig]

dpad :| .

M(d¢,q) = M M(d¢) M~

R Z S(dp) dr RT
o" 1 o' 0 o’
R S(dr) Rdr R" —-R'Z
o' 0 o’ 1
RS(dp)RT —RS(dp)R"Z + Rdr
o’ 0
S(Rdp) —S(Rdp)Z + RdT
o’ 0
S(Rdp) S(Z)Rdp+ Rdr
o’ 0

From the upper left sub-matrix we conclude

dp,q = R dp.

With this relation we obtain from the upper right part

drea =RdT+S(Z)R dp.
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Joined this can be written as

R0 ] . (5.210)

dCad = qMad dc Wlth CI\/Ia,d = |: S(Z) R R

with the adjoint motion matrix ¢M,q, which is the same as for the exponential represen-
tation.

5.8.5 Uncertain inverse rotation

We prove (5.36). We have the relation

RrCYVYR™ = (R(xr) Ry "' =R"R"(r). (5.211)
Taking the total differential we obtain
S(drVY R = RTST(dr). (5.212)
This yields
S(dr1)=RTST(dr)R = S(—R"dr). (5.213)
Thus we obtain the Jacobian
Jrny = 8T(9(;1) = -R'. (5.214)

Remark: If we would have defined the uncertain rotation with a noisy rotation from the right
R = RR(r), we would have obtained:

R Rx")=(RR(x) " =R"(r)R", (5.215)
thus the differential
S(@rYy =R S"(dr) R" = ST(Rdr), (5.216)
thus
dr™Y = —R,g dr = —R dr. (5.217)
This relation is slightly more intuitive than (5.214). o

5.8.6 Uncertain inverse motion in exponential representation

We prove (5.78)
dsY = —Ad(M) " ds. (5.218)
We have the basic relation
exp(A(s1)) - M7 = (exp(A(s)) - M)~t = M~ (exp(A(s)) . (5.219)

Taking the total differential, and using the first order approximation of (exp(X))~! =
| — X 4+1/2X? — ... we obtain by taking the total differential

A (ds<*1>) M= M~ A(ds). (5.220)
This yields
A (ds(—”) — M~ A(ds)M, (5.221)
or
MA (dsH)) M~ = —A(ds) (5.222)
thus using (5.75)
A (Ad(M)ds(‘l)) = —A(ds) (5.223)
Therefore, we obtain the Jacobian
9s=1) _
Jyeng=—— = -M_}, (5.224)
which yields
dst1) = —Ad(M) ' ds. (5.225)
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5.8.7 TUncertain inverse motion in partially exponential represen-
tation

We prove (5.97)
dp=1 1 RT 0 dp
{ drY | T 7| ZRTsT(z) RT || dr |- (5.226)

It should hold

[ R(%)R ZJlrz } { R(B(;))RT —RTZ;rz(’l) } e (5.227)
or
[ R(g)RRég(‘”)RT R(B)R(—RTZﬂLlI(_”) tZ+r } — 1. (5.228)
The differential of the upper left submatrix is
S(dp) + RR(dp""V)RT = S(dp) + R(Rdp™1) = 0. (5.229)
Therefore we obtain
dp=Y = —RT dp. (5.230)
The differential of the upper right matrix is
—S(dp)Z + RdT"Y +dr =0 (5.231)
This yields
dr"Y = RTS(dp)Z — R"dr = —R"S(Z)dp — R"dT. (5.232)
This can be written as
—1 T
[ j’r)i—li } T [ RTI;(Z) R?T } [ gf ] (5:233)
5.8.8 Uncertain concatenated motions in exponential representa-
tion
We prove (5.82)
ds = Mads; +dss. (5.234)
We start from the total differential of M = M;M;:
A(s)M = A(s5)M + M2A(s;)M; (5.235)
or multiplying with M~! = MflMgl from the right
A(s) = MaA(s )My ! + A(s,) . (5.236)
With (5.75) we thus obtain
A(s) = A(Maaq 81) +A(ss) - (5.237)
This allows to express the differential motion parameters as
ds = Maaadsy + dss. (5.238)
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5.8.9 Uncertain concatenated motions in partially exponential rep-
resentation

We prove (5.244)
dp = dp2 + dR2p1 and d7 =dro + Rod7m — S(Rzzl)dpz . (5239)
We explicitly have

m = | R@R Z+z ] = [ Rig) (I = R(@)Z } [ (ﬁ f } (5.240)

and similarly

R(p)R: Zi+T,
Mi = |: BZI' 1 ]
Therefore
M — [ R(%zr)Rg 22‘11'12 } [ R(%]T)Rl Z1—1|'I1 } (5.241)
_ {R(pz)Réf(pl)ih R(p,)R2(Z1 +1T1)+Z2+7'2} (5.242)

We now linearize, multiplicatively for R, additively for Z:

[ (S(apo) + RaS(Ap)RY) R (RoZr + Z2) + S(Apy)R2Z1 + Rodry + drs 1

o' 1
- |: (5(dp2+¢2dp1)) R Z+5(dp2)R221+R2dT1 +dTo :| (5 243)
o 0 1 '
By comparison with (5.240) we find
dp=dp, +dR2p; and dr =dry+ Radr; — S(R2Z4)dp, (5.244)

Relation to the concatenated motion with exponential representation. We can
write (5.244) as

d¢ = Mcon1 dC1 + MCOHQdCQ, (5245)
with
_ R2 0 _ 13 0
Mconl = |: 0 R2 :| and Mc0n2 = |: _S(R2Z1) I3 :l . (5246)

Using the Jacobians J,. for switching between the representations, see (5.67) we can show,
that this leads to the form

_ . . R 0
ds = Mgad d81 + dCZ with Mgad = |: 5(Z2)R2 R2 :| . (5247)
In detail we have
dC = Mconl dC1 + MCOHQdCQ (5248)
J(sds = Mconl Jl,(sdsl + Mcon2-l2,(sd32 (5249)
ds = JgslMconl Jl,(sdsl + JE;MCOHQJQ’CSdSQ (5250)
Now we use
B I 0 T 0
I =1 s(Ryzy +25) 1y | B Jies = [ ~-5(Z;) s }
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and first obtain

. T R» 0
J(s Mconl Jl,(s - I 5(R2Z1 + ZQ)RQ R2 :| Jl,(s (5.251)
[ Ro 0
= 5.252
| S(RuZy + Za)Ry — RS(Z1)  Ra ] (5.252)
r R, 0
= | S(Z2)Ry+S(RaZ1)Ry — RoS(Z1) Ry (5.253)
L =0
[ Ro 0
= . 5.254
| S(Z2)Ry  R. } (5.254)
Similarly we have
-1 _ 13 0 _ 13 0
JCS Mcon2J2,Cs - S(R2Z1 + ZQ) . S(RQZl) I3 :| J27Cs - |: 0 I3 :| )
which yields
ds = Mayaq ds; + dss . (5.255)

5.8.10 Uncertain relative motion in exponential representation

We prove (5.87)

dsia = My ,q (dsy —dsq). (5.256)
The uncertain relative motion is
M(s12) M12 = (M(s,) Ml)_lM(éz) My ., (5.257)
or
M(dsi2) Mz = M7t M~ (ds;)M(dsz) My . (5.258)
Taking the total differential, we obtain
A(ds1z2) Mg = M7 A(=ds;) My + M7 ! A(dsy) M. (5.259)
or
A(ds1z) = M A(dsy — ds;) M,y (5.260)
or
MiA(ds1o)M; ! = A(dsy — dsy) (5.261)
Hence, with
MiA(ds o)M= A(Ad(M;) dsy2) (5.262)

Therefore we finally have the relation

dsio = My 4 (dsy — dsy). (5.263)

Check using the inverse and the concatenation We start from the concatenation

M = MyM; | (5.264)
use (5.78) and (5.238)
ds=Y = —M_] ds and ds = Ad(My) ds; + dss, (5.265)
and apply this to
My = MM, . (5.266)
This yields
dsio = M g dsy — M 44 dsy = M,y (dsy —ds1). (5.267)
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5.8.11 TUncertain relative motion in partially exponential repre-
sentation

We prove (5.107) and (5.108)
dpy, = R{d(py — p;) and d7io = R{S(Zy — Z1)dp, + Rid(To —71).  (5.268)

We start from

M, = { R(%z‘r)Ri ZZTL' } (5.269)
and obtain
My, = Mi'M, (5.270)
r -1
_ [Fegm nrn ][ Regn Ztn] -
RIR™(p,) —(RIRT(p))(Z1+T)) } { R(Bzr)Rz Zy+ 1y }
| o’ 1 0 1
_ RIRT(Bl)TR(BQ)Rz RIR™(p,)(Zs+15) — (RIRT(p))(Z1 + 1) ]
L 0 1

Linearizing the rotation multiplicatively and the translation additively we have

My, { RI(S™(dpy) +5(dpy))Rs R1S'(dp1)Z> + RidTs) — R{S'(dpy))Z1 — RidT) ]

0 1
_ [ RIS(dpQT— dpy)  R{S(Z>— Z1)dp,(Z2+d7s) + R{ (dT2 — d71) ] (5.272)
0 1 '
Check using the inverse and the concatenation We start from the concatenation
M = M;M,. , (5.273)
use (5.97) and (5.244)
=1 —RT 0 d
-y _ | dp _ p
¢ { dr(-D } [ “R"S(Z) —RT ] { dr ] (5:274)
and d Rid d
P _ 14p, + P
[ dr } = [ Ridr, +dr, — S(R1Z,)dp, } : (5:275)
and apply this to
RIR: R{(Zy—Z
1 RI —R-erl Ro Z %1/—3 &/—12
My := My My = T T = R Z
—— —— 0 1 0 1 %_2 12
M, M.. 0 1
(5.276)
We obtain
R R V4
M, = | Fep)Rie Zitr, (5.277)
0 1
We use
dp’r R dp2
[4n ][ 422] s
and

dr; | 7 | =R1S(Z)) -R{ dry —R{S(Z,)dp, — Rld™, '
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Now, we have

|

dplr
dTlT

|

dply"
dT(lgl)

Ridp, — Ridp,

R-lr(dpz —dpy)

| RI(dTy —d71) + R{S(—Z, + Z5)dp,
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| Rid7s — Rid71 — R{S(Z1)dp, — S(R{ Zs)(—R{dp;)

|

|

(5.280)

(5.281)



6 Centroid Form of an Uncertain Plane

A plane can be represented in various manners. We especially discuss the centroid
form of an uncertain plane, which naturally results from estimating a plane from a
given point set. We discuss the representation, its recursive estimation assuming
isotropic point uncertainty and optimal estimation.

6.1 Problem . . . . . . . . .. 81
6.2 Centroid Representation of a Plane . . . . . . .. .. ... ... ... .. 82
6.2.1 The Representation . . . . . . .. .. .. ... ... ... 82
6.2.2 Covariance Matrix of the Plane Parameters . . . . . . . . ... ... 83
6.3 Uncertain Plane from 3D Points . . . . . . .. .. ... ... .. ...... 84
6.3.1 Fitting a plane through 3D points with isotropic uncertainty . ... 84
6.3.2 Fitting a plane through a set of 3D points with arbitrary covariance
mMatrixX . . . . .. e e e 86
6.3.3 Checking a Set of Points for Planarity . . ... ... ... ... ... 90
6.4 Estimating a Mean Plane . . . . .. .. .. ... .. 0L 90
6.4.1 Estimating the mean plane using moments . . . ... ... ... .. 91
6.4.2 Approximate estimating the mean plane using plane parameters . . 92
6.4.3 An optimal solution based on the centroid representation . . . . . . 93
6.5 Motion from Plane to Plane correspondences . . . . . ... ... ... ... 95
6.5.1 Problem Statement . . . . . . ... ... Lo 95
6.5.2 Minimal Solution for the Motion from Three Plane Correspondences 96
6.5.3 An Iterative Solution . . . . . . . .. .. .. oL 96
6.5.4 Theoretical Accuracy of the Motion . . . . ... ... ... .. ... 97

6.1 Problem

This note (2020) collects methods for representing and estimating uncertain planes. It
focusses on the geometrically intuitive centroid representation, naturally resulting from
fitting a plane through a point cloud. We collect methods for estimating a plane from
scene points, for averaging uncertain planes and for estimating a motion for plane corre-
spondences.

The statistically rigorous estimation, discussed here in Sect. 6.3.2, has the advantage
of giving insight into the uncertainty structure, whereas the solution based on spherically
normalized homogeneous plane coordinates in Note 7 is technically more elegant, and
easily generalizes to the estimation of multiple planes.

A natural representation of an uncertain plane is its centroid form

A: {X07Q;UQ7U¢7U¢)} ) (61)

see Fig. 6.1. This representation can directly be derived from a set of 3D points X;,i =
1,...,I with isotropic uncertainty ¥ x,x, = o2/3.
This note addresses three problems, namely

1. the estimation of a plane from uncertain points,
2. the estimation of a spatial motion from plane-to-point correspondences, and

3. the estimation of a spatial motion from plane-to-plane correspondences.

81



6.2 Centroid Representation of a Plane

6.2.1 The Representation

The centroid representation of a plane is given by (see Fig. 6.1)

’/‘4: {Xo0,Q;04,04,04} ‘ (6.2)

Figure 6.1: Uncertain plane 4. Its center is Xp; the center is that point of the plane where
the uncertainty across the (perpendicular to the) plane is smallest; it is uncertain along the
normal by o4. Its normal is IN; its rotational uncertainty is composed of two independent
uncertain rotations around £; and L, which are mutually perpendicular. The standard
deviations o4 and o are the uncertainties of the X’- and Y’-components of the normal V.
The three directions form an orthonormal tripod Q = [g;, g5, V]|

Here we have:

e the coordinates of the centroid Z;

e the rotation matrix
Q= [ql,q2,q3] (6-3)

with its normal

N =q; = Qes (6.4)

and the local coordinate system [g;,gs] in the plane, where g, is the major axis,
and g, is the minor axis of the moment matrix point cloud, when projected into the
plane.

e the variance o] across the plane;

o the variances o of the normal around g, and o7, around gq;.
The point Zy(Zj) closest to the origin is given by
Z,—= DN. (6.5)

We will represent the coordinates X of the centroid X as the sum of two orthogonal
vectors Zy and M

Xo=Zo+M = Q(DN" + M"). (6.6)

see Fig. 6.2, and — represented in the rotated coordinate system (see Fig. 6.2 right) —

0 MY
N'=N'=]0|=es M'=| M/ |. (6.7)
1 0
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DN g XO\\‘

\\X})

Y

Figure 6.2: Representation of uncertain plane. Left: Relation between global frame
(XY Z) and the local frame (X'Y’Z’). Right: Relation between the global system rotated

by Q (X"Y"”Z") and the local frame (X'Y’Z’), which are parallel

6.2.2 Covariance Matrix of the Plane Parameters

The standard deviations can be derived by transforming the points into the coordinate
system (XY’ Z") of their weighted centroid. Then we only have three uncertain parameters

collected in the 3-vector
AY

We have

e the uncertain Z’-coordinate A$ of the centroid, and

o the uncertain X’- and Y’-coordinates (A3, A3) of the normal.

Hence we represent the uncertainty of the plane by

D(A®) = o3 ,
Ty

The three parameters are related to the centroid and the normal by

0
Q 0
« | AXo | AAS _ o
AA" = { AN } = AA3 =J.(Q)AA
Q| AAS
0
with
0 0 O
0 0 O
Q 1 00 g; O 0 }
JT f— p—
ﬁ(xg) [ Q} 0 10 [ 0 g q
0 0 1
0 0 O

(6.8)

(6.10)

(6.11)

The covariance matrices of the centroid and the normal then can be given directly. The

centroid and the normal are statistically uncorrelated.

The centroid X, is only uncertain across the plane, hence in the direction of the normal

0
Yxox, = @ 0 Q" = agNNT.
oy
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The uncertainty of the normal N is

2
g
@
Yanv=Q o3 Q" = 03a1q] + 079243 - (6.13)

0

Hence the direction of the major uncertainty of the normal of the plane is coded in the
covariance matrix. Eqs. (6.12) and (6.13) clarify, why we only need the rotation matrix Q
and the three standard deviations o4, 04, and oy for representing the uncertainty of the
plane. The rotation matrix @ this is responsible for both, the normal and the covariance
matrix of the plane.

The inverse relation is

001000 T qg; OF
AA°=]0 00 1 0 0 {Q QTHAA)]@}_ N [AAf\;’]_;JI(Q)AA*.
000010 0" ql
(6.14)
which has covariance matrix
g
ZAOAO = 0'35 . (615)
&

Hence, if a point X; lies on the plane A4, then the point X/ ([X/,Y/,0]) lies on the plane

REaE 2]

A’, which is the X'Y’-plane. The points X; and X/ are related by
X, =QX,+ X, or X,=Q"(X,—Xy). (6.16)

6.3 Uncertain Plane from 3D Points

6.3.1 Fitting a plane through 3D points with isotropic uncertainty
Given are I uncertain 3D points X;,i = 1,..., I, with {X;,02/3}.
1. We can show that the best fitting plane 4(A) with
N
A= [ e } (6.17)

passes through the weighted centroid X, that its normal N is the eigenvector of
the (unweighted) moment matrix belonging to the smallest eigenvalue, and that it
is given by NT(X — X¢) = 0.

The moment matrix is

M= Zw'L(Xz —X0)(X:— Xo)" = QAQ" = \ig1q] + \2q2q5 + \3q3q5 (6.18)

with
and the rotation matrix,

Q = [qlv q2, qS] ’ (620)
and the diagonal matrix

M
A= A2 , (6.21)
A3

where the eigenvalues are sorted in decreasing order. The normal is

N=gqg,=¢€lQ. (6.22)
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2. (Exercise) Show the theoretical variances of the parameters of a plane through I
equally weighted (w; = 1) 3D points X; with standard deviation o for all coordinates
can be determined from

o5 =— 0'3, = — afp = — (6.23)

where o2 is the variance of the position of the plane in the direction of the normal
and 0(275 and ai are the variances of rotations around the two principle axes of the
point set.

Hint: Translate the point cloud into the origin and rotate it such that the two major
axes of the moment matrix fall into the X- and the Y-coordinate axes. Then apply
the reasoning from the chapter on the best fitting 2D line.

Using the weighted moment matrix, for general weights this generalizes to

ol = — a;:— oi,z— (6.24)

3. (Exercise) Show that the estimated variance of the plane’s position ¢ perpendicular
to the plane and the two principle normal directions are given by

1 A
o2=—222 2= 2= _" 2 (6.25)

Using the weighted moment matrix, for general weights this generalizes to

» 1 A o, 1 A, 1 A

— - = - = — .2
9T T 3Tw 0T T—3x v T-3X (6.26)

6.3.1.1 Relation to moments and recursive estimation

Now we observe, that the parameters specifying an uncertain plane can be uniquely derived
from the non-central moments. They allow a simple and possibly recursive estimation of
the mean of several planes.

The non-central moments are

Mpm = Y wiXFY}Z' with k+1+n € {0,1,2} (6.27)
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namely

mooo = ,wi
mio = Y, wiX;
Moo = Z w;Y;

i
mon = Y. wiZi
i

2

magp = ZwiXi
i

mig = D wiX;Y;
i

mo = Y wiX;Z

2
moo = Y wY;
i
mo11 = ZiniZi
i

2
Moo2 = ZwiZi
B

together with the number of points

Especially we have

Iw

Xo
Y,

H200
H110
H101
H020
Ho11
Ho02

M

I:ZL
1

mMo00

= Mioo / mMooo
mo10/Mo0o
moo1 / mMoo0

2
M200/Moo0 — X

= mii0/Mooo — XoYo

mio1/mooo — XoZo

2
mo20/Moo0 — Y5

mo11 /mooo - Yo%,

2
= mooz/Mooo0 — Z

M200  M110  HM101
= MH110  Ho20  HMo1l
M101  Mo11  M002

(6.28)
(6.29)
(6.30)
(6.31)
(6.32)
(6.33)
(6.34)
(6.35)
(6.36)

(6.37)

The eigenvalues of the moment matrix yield the variances of the position and the normal
via (6.26). Hence we have a mapping from the moments m (including the number of
points I) to the centroid form ¢ of the plane

m—c: c=c(m) or {XO,Q;ag,ai,ai}<—{m000,...,m002,l}.

(6.50)

6.3.2 Fitting a plane through a set of 3D points with arbitrary
covariance matrix

We can assume to have approximate values, thus only need to update these using an

iterative scheme, where often only one iteration is necessary.
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6.3.2.1 An iterative solution

We start from the nonlinear constraints
e~ o~ A ~T ~ ~
gi(Xi;N,D):N XZ‘—DZO (651)

where D is the distance of the plane to the origin. We will later find the centroid X on
the plane. In addition, we have the length constraint for the normal

h(N) = % (|Kr|2 - 1) =0 (6.52)

Starting from approximate values for the unknown parameters and the fitted observa-
tions we thus have the linearized model

—~aT —~a ~

~ ~ A ~aT — ~aT —— —
(XN, D)=N"X! D'+ N"AX, +X. AN+AD=0  (6.53)

or
(XN, D)= g:(X;:N",D*) + al A0 + b] Ay = 0 (6.54)

with the corrections to the unknown parameters, collected in a 4-vector

—~

AG :=

o~

A/J\V , Ayi::ﬁ(i, ai:—{)ii}, and b; ;= N*. (6.55)

Therefore we have the normal equations

A7 N H AO n

MAp=m or {HT O}{ \ }:{c;} (6.56)
with
N = Ywgaia], (6.57)
no= Y wg(ai(—g;+b (X; - X)), (6.58)
H = N, (6.59)
¢g = —(N[P-1) (6.60)
1 1
wy, = = (6.61)
bi qu?hbl N* inXiNa

We use the following update for the normal
N =N{N"+AN) (6.62)

The covariance matrix of the parameters results from the inverse of the normal equation
matrix, or, when eliminating the Lagrangian parameter from the 4 x 4 matrix

x>

T55=(N+HH)' — HHT = [ NN CND ] , (6.63)

PN LHb

which has rank 3, and generally is a full matrix.

6.3.2.2 Choosing the Local Coordinate System

We now choose the points reduced to some reference frame with center Xy and axes Q

X, =QX,+X, or X,=Q"(X;-Xy), (6.64)

87



In homogeneous coordinates this is

GRERIIE]
The plane therefore transforms as
][8 S
or explicitly /
)=l se T 057
The normal N = Aj, therefore is transformed as
N=QN' o N =Q'N. (6.68)
The distance D = — Ay to the origin is transferred as
D=D'+XJQN' =D +XJN or D'=D-N"X,. (6.69)

The covariance matrices transform as

by - (B ] o
[ Q o0][Zww O Q" Q'X,
- xo VI RS ] em
] CT?):N'N/QTT . QZN/N’QTXO } (6.72)
| X Qv Q' XoQInnQ X+ 0%,
and
D(A) — ég;gj Z;%?'} (6.73)
roAT T
SR S
_ ] QTENNQ ;QTZNNXO ] (6.75)
L _XOZNNQ XOZNNX()-FO'%
We first choose @ such that the covariance matrix
%
Yir=QpmQ =@ 0% QT (6.76)

of the normal is diagonal, which can be achieved by an eigenvalue decomposition of ¥ .
Then the normal is (6.4)

_ Ny
N =N &’Y :N<
1

Kl’/r D =Q'N. (6.77)

After the diagonalization we obtain the covariance matrix, where the distance D" is in
the rotated and not yet translated system:

o

0 (6.78)

2
Ohu

o~/ Diag([o#%,o?;]) 0 Z]/V\;ﬁ”
0 0
0

zﬁ//ﬁ/
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with

N iae(lo2. 02 al
D{| a7 |)=Dlagllog oz =1 o1 | 55 a1 4] (6.79)
and
Ny 1 p TRy D [ aj ]
C ==X ,D” = X _ Lol yen 6.80
ov <|: 7IY :l > [ O-J/V\;,[A)” ] q;— ND ( )

Next we choose X such that the uncertainty of a point across the plane is minimum.
An arbitrary point X(X) has the distance

Dy=N"X-D=[X",—1] l % ] . (6.81)
Its variance is
ohy = X T X — 25 55X +0%. (6.82)
From its derivative w.r.t. dX
o
8XX =2 55X —2X 5% (6.83)
In the rotated system we have
da2,, 02 00 M
it I B B ) T
0 0 0 0

from which we obtain
2 -1 2 -1
Mg . O-$ O 0']/\7/ B,, . 0';5 O q-lr
[ My } T l 0 03 aﬁzf),, 10 012? al *sp  (6.85)

Finally, we have the centroid

R o2 0 07"
Xo=N-Q| 0 o2 0| QZgp. (6.86)
0 0 0
or
Xo=N-YL Y55, (6.87)

Remark: This is in full analogy to the centroid of the 2D line when using the covariance
matrix of the normal

2 1T 2 11T . sin o 1 cos
Yhn=oyn and Z;[ﬁza¢nn with n:{ } and n :{ }

cos & —sina
(6.88)
and the covariance with the distance
Y.i= Opan (6.89)
since
2o = [ cosa sin o } { mo } (6.90)
—sina  cosa d
_ [ sin o ]d—l—{ cos }mo (6.91)
Cos « —sin o
_ B cos & I
= n { Csino } (=04 0gd) (6.92)
= n-X,T.;. (6.93)
S
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6.3.3 Checking a Set of Points for Planarity

6.3.3.1 Assuming the uncertainty of the points is known

We test whether the surface consisting of I points is planar, testing the null hypothesis

Ho: 062=1 (6.94)

versus the alternative hypothesis
Hy: 62>1 (6.95)

using the chi-square test statistic
X|Ho1 = Q|Hop ~ x%- (6.96)

which is X%—distributed under the null hypothesis. If the test is rejected, this may be
caused

e by a too small standard deviation of the given points, or

e by a significant deviation of the surface from a plane, or

e both.

Remark: The degrees of freedom R should not be taken too large, since otherwise the null-

hypothesis always will be rejected, see the discussion in Forstner and Wrobel (2016), around Eq.
(4.88). o

6.3.3.2 Assuming an estimate of the uncertainty of the points of the plane is
not known

We assume, the variance factor 2, of all given points may be taken from a robust estimate
of all variance factors. Its degrees of freedom is assumed to be Ry.
We test the null hypothesis for the current plane

Hyy: 62=052, (6.97)
against the alternative hypothesis
Huyo: 63 >053, (6.98)
using the Fisher test statistic
~2
99
F|Hoy = —~[Ho2 ~ FRr R, (6.99)
90q

which is Fg g,-distributed under the null hypothesis.

6.4 Estimating a Mean Plane

Given are I planes 4;, the task is to find the best estimate for the mean plane A.
We discuss three solutions:

1. A solution based on moments of the point cloud, assuming isotropic uncertainty.
2. A statistically suboptimal solution for the.

3. A statistically optimal solution based on the centroid representation.
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6.4.1 Estimating the mean plane using moments

Let us assume we have J patches, represented by their moment vector m;.
Obviously, it is simple to derive the mean plane. We just need to add all non-central
moments. Hence:

m=>Y m;. (6.100)

The parameters of the uncertain mean plane can then be derived from ¢(m), see (6.50).
We need to observe:

1. Eq. (6.100) allows a recursive estimation of the plane. Let the mean plane derived
from the first j patches be

i
m) =" my. (6.101)
k=1

Then adding the (j + 1)-th patch leads to

mUt) =m0 £ m,,,. (6.102)

2. In a similar manner a patch k can be deleted if k € {1,...,5}:
mU\WW) =m0 —m,, (6.103)

3. Before inserting a patch into the list of patches, a statistical test could be performed.
This can be based on the difference vector of the new patch A4;,; and the current
mean plane 4)

d=J](na)(Aj1 — AY) (6.104)

and its covariance matrix

Yaa = JI(HA) (ZA]‘+1AJ‘+1 + ZA(J'>A(J'>) JT(H‘A) (6105)

leading to the test statistic

T=d'Y,/d~x3. (6.106)
Observe, the vector d in (6.104) is the difference A ;, — Agj ) of the reduced plane
coordinates assuming the common tangent plane is given by p 4. The argument p 4
of J(p ) best is chosen as the current mean plane p 4 := AW,
Here we assume, the planes are Euclideanly normalized, see (6.17), i.e., the normal
has length 1. Then the projection matrix J,.(A) is given by

J.(N) o0
JT(A)zl 3%2 ] with  J.(N) =null(NT). (6.107)
4x3 o' 1

4. All moments need to refer to the same coordinate system. Therefore, it might be
useful to condition all coordinates before determining and fusing all patches.

5. There is no non-linearity involved in the recursive estimation involved, if we only
consider the moments. The non-linearity only refers to deriving the centroid or
other parameters of the planes. Especially no directions or angles are involved. A
recursive determination of the variances would be difficult, without going back to
the moments.

6. Eq. (6.102) can also be specialized to including a single point.

7. The whole procedure could once be repeated with modified weights. If the weights
are reduced to 0, this is equivalent to deleting previously included patches, which
can be done using (6.103).

Hence, the moments, the 11 parameters including the number of points, can be interpreted
as the memory generating the current version of the plane. In statistical terms, the
moments are sufficient test statistics, i.e., no other information is necessary to perform the
estimation.
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6.4.2 Approximate estimating the mean plane using plane param-
eters
Let us assume we have J patches, represented by their homogeneous vector A; = [N JT, —Dj]T
together with the covariance matrix of the reduced vector, namely {(Aj, 24, A].T) }
The constraint, that the individual patch is identical to the mean plane is given by

0 —Nz Ny 0
Nz 0 —Nx 0

TT(A;)A = -TT(A)A; =0 with TT(A) = —z\g Z\gX 8 ]% ,
- —4iVX
0 -D 0 —Ny
0 0 —-D —Ngz

(6.108)
see Forstner and Wrobel (2016, Eq. (7.41)). Since a plane has only three degrees of
freedom, we need to select three constraints from the six constraints in (6.108). If the co-
ordinate system is chosen such that all distances D; are non-zero, the last three constraints
may be used. leading to

CITTI(Aj))A=—C;TT(A)A; =0 with C] =[03]/3], (6.109)
or

g(A],A):XjA:Z]AJZO with X;r:[ijI3|7N]] and ZJ:[D13|N]
(6.110)
Observe, the Jacobians of the constraint g(A;, A) w.r.t. the unknown parameters and the
observations are X; and Z;, the last matrix is not depending on j.
For estimating the plane, we concatenate all 3J constraints in the following form

g({A;} A)= X A=0. (6.111)

The right singular vector of X belonging to the smallest singular value is the algebraically
optimal mean plane, and can be determined using the SVD of X:

A=V., with X=USVT. (6.112)

For deriving the covariance matrix of this solution, we start with the differential of g:

dg(y,A) = XJ,(A)dA, +_ Z d 6.113
g(y ) %/—/( ) 3x ¥ 3J:'>{1 ( )
with
Alr
y=1| A; |, A;,=JI(A)A; and Z=Diag({Z; J.(A)}). (6.114)
4x3 3x4
AJT

With the reduced coefficient matrix
X, = XJ.(A) (6.115)
we thus obtain the differential estimates
dA, = - X Zdy = —(XIX,)"'XTZ dy . (6.116)

Hence, we have the covariance matrix of the estimated reduced plane parameters

rzy,, Z" X/ T. (6.117)




where

¥,y = Diag ({¥y,y,}) = Diag ({JT(A)Ta,4,0n(A) }) . (6.118)
Observe, the solution is suboptimal, since the pseudo inverse X ;f is taken instead of the
weighted pseudo inverse (X,.w, )" = (X} W, X,)"'X]W,,. Finally, we obtain the co-
variance matrix of the estimated mean plane

Tai=J(A) T4 4 JI(A), (6.119)

which has rank 3.

6.4.3 An optimal solution based on the centroid representation

We assume we have given the planes in centroid form,
A {Xo0i, Qi;04,,0¢,,0p, ), (6.120)
and want to determine the mean plane, also in centroid form
A: {Xo0,Q;04,00,04}. (6.121)
We use the following nonlinear constraints:
NxN;=0, (6.122)

which represents two degrees of freedom. We select two independent constraints:

MPS(N)N; =0 (6.123)
and the translational constraint
~T ~ —~
N (Xo; — X)) =0, (6.124)

which represents the third degree of freedom. For proofs we will use

.
M = MO (N;) = M®) (g,5) = [ 9 ] with M MET =y (6.125)
12
hence T T
WS = | % | sa)=| O (6.126)
qi2 q;

Hence the nonlinear constraints are

~T —~ —~
N (X —2(\0)

gi ]/V\-i7/X-\0i;J/v\-7/X-\O): s —
( M S(N)N;

]:O, i=1,...,1. (6.127)
6.4.3.1 The Iterative Solution

We also can assume approximate values, thus can update them using an iterative scheme.
Linearization of the constraints yields

9.(Ni Xoi; N.Xo) = g(N;, XN, Xy) (6.128)
| Xoi— XO)@iﬁTm;@/E (6.129)
~M®S(N,)AN + M®S(N)AN;
This can be written as
9:(Ni, X0i; N, Xo) = g,(N;, X s N', X) + X, 80 + Z[ Ay, (6.130)

93



with

= AX 0 — AXo; —0
_ T 0| _ T 0i | _ :
A =J, { AN } =AA and Ay, =J, { AN, ] AA,; (6.131)
and, since J/\\fZ = ]/\\7,
~T —~ —~ ~T
o T T T
X, = —-N (Xo0: X/Q\) J, and ZiT: N 0 R JT:{l 0 }
Osxs —MBPS(N) O2x3 MES(N) 0 I
(6.132)
The weight matrix of the residuals therefore is
Weeo = (BiEyyBi) ™" = Wasas. (6.133)
The normal equation matrix thus is
N = Y AW A
o~ ~T —~ o~
-N 032 -N  (Xoi—Xo)"
= JI ~ — — W 40 40 ~ Jr
; [ (Xoi — Xo)  S(N)M©®T } a [ 023 —MYS(N)
r T OT g g g e
_ 2 g% q’ . *NA £3><2 W 40 40 -N' (Xoi — Xo)" |: qs
=1 o q-zlr (Xoi — Xo) S(N)M®T O 0axs —MBIS(N) 0
10 0 [ wy R A R
= > | Xg;-X¢ 1 0 W, 0 1 0
I I S 7 (I wy, 0 0 1
[ -1 0 0 —wq,  we, (Xo; — X¢)  wg, (Y5i — Y5')
= | X6-Xxg 1 0 wa;
| Yoi-Yy 0 1 Wap,
[ Wgq; —Wgq; (X(/J/z - X(/)) —Wgq; (Yolz/ - YON)
= | —wa (X6 — X0 wo, +wq, (X0 — X¢)?  we, (Xo; — Xo)(Yoi — Yo')
v we, (Yo = YG) we, (X6 — XO)(Yoi = Y) w4+ we, (Yoi — Y4')?
The normal equation matrix is diagonal, if!
S g, (X0~ X0) = Y (v~ V) = 0. (6.139)
i i
Then we obtain
Wy, 0 0
N=> 1 0wy +w,X( : (6.140)
i 0 Wy, + W, YO/zQ

Hence, all entities have to be taken at their estimates. If we use the centroid of the fitted
centroids

/!
wg, X o;
xy = 2% Ko (6.141)
2@' Wg,

and the individual centroids reduced to the common centroid
Xo; = X0 — Xg- (6.142)
The right hand side of the normal equation system is

n = ZAzT WC’iCi(_g’L(a YY)+ Bi(9; — y,) - (6.143)

!The original note said >}, we, (X{, — X{) = 3, wy, (Ygi — Y§') = 0. But due to (6.141), this appears
to be incorrect.
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6.4.3.2 The Theoretical Precision

We obtain the variances for the three entities

11
2
o: = - — (6.144)
1 I w,
1 1
J% = - — (6.145)
I g+ wy X5,
1 1
"12& = - — . (6.146)
T g + Y,
If the I planes would have the same precision we would obtain
1 1 o202 1 ojo]
og + Oqu()i og + Ulem'

This is a plausible result: The precision of the normal of the average plane increases with
the number I of the planes and with increasing scatter of the individual planes. Observe,
if the standard deviation o, is 0, then the directions will also have standard deviation 0.

6.5 Motion from Plane to Plane correspondences

6.5.1 Problem Statement

Given are I correspondences {4;, 4;} which are related by
M:A;— 4 A =M(A) forall (ij) € C. (6.148)
There are two options to establish the correspondences:

1. The planes (4;, 4;) refer to the planar patches derived from some segmentation of
two point clouds. Then each of the planes 4; or }le( may have several correspondences,
namely if there are coplanar planes one or both of the point clouds. The Jacobian
B of the Gauss-Helmert model is block diagonal, each block Bj referring to the
correspondence of coplanar planes {ix} and {j;.} in the two point clouds.

2. The planes (4, ﬂlj’) refer to aggregated coplanar planes in each point cloud. Then
there is a one-to-one correspondence, and we may refer to the same index, thus refer
to (Ak, A4;,). In this case the partitioning of the point cloud has a final merge-step
to find sets of coplanar points and to determine the average (ML-estimates) plane
parameters.

We do not distinguish the two cases until we discuss the solution of the nonlinear Gauss—
Helmert model.
We explicitly have
A : {X07Q502"7§57U?/}}7; (6.149)

The constraint implies an unknown motion M
M: {T,R} (6.150)
which transforms the 3D points X; into the coordinate system
X=RX'+T. (6.151)
The corresponding transformation of the plane parameters is

X0 =RXy; +T (6.152)
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and
Qi = RQ}. (6.153)

We need three constraints for the identity of two planes. These can be the following
rotational constraint

N;=RN, (6.154)

which represents two degrees of freedom, and the translational constraint

N/(RX(;+T — X¢;) =0, (6.155)

which represents the third degree of freedom.

From a counting argument we would need only two planes. However, then the trans-
lation along the intersecting 3D line is not determined. Therefore, we need at least three
planes in general position for being able to determine the motion.

6.5.2 Minimal Solution for the Motion from Three Plane Corre-
spondences

The three planes need to intersect in a 3D point 9 not at infinity. Otherwise the translation
in this direction is not determined.

Then the translation can be determined from the two intersection points Y and Y,
and the rotation from the three normals.

If enough plane-plane correspondences are available the rotation may be derived from
(6.154) in the form

N = RN’ (6.156)
Hence we have
H=NTN=UAVT (6.157)
and thus
R=UV". (6.158)
Using this rotation the translation then can be determined from (6.155) in the form
NT(RX}; — Xo;)) = -N]T (6.159)
which leads to the linear equation system
B"BT =B™b (6.160)
with
B=-N=-[N]] and b=[N](RX(, — Xq,)]. (6.161)

Weighting is possible.

6.5.3 An Iterative Solution

We use the three constraints for each correspondence
~T A~ —~1t ~ o~
j Xoi, Ny Xy, Ny = | IV (R(f){‘)ji T-Xoi) | _y. (6.162)
3x1 M;”S(N;)RN
Where MES)S(]/\\U) € null" (N]) is a orthonormal 2 x 3 matrix which is achieved by selecting
two independent rows of the skew symmetric matrix S(IN;).
The linearized model reads as
A A A — —_  —/ —/ I
9:;(T,R(0); Xoi, Ni, X, IN;) = g;;(0 ,y")(6.163)
A~ A~ —~ — ~T A~ — AT A —— ~T — ~T — a
(RXy, +T — Xoi)TAN; — N, S(RX))A0 + N, RAX,, + N, AT — N, AX;

+ A~ ——— — A~~~/ —~ —~ A —/
(s) (s) (s)
—M; S(RNj)ANi—Mi S(Ni)S(RNj)AH—FMZ. S(Ni)RANj
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Hence we have

9i; = gij(aaa 7)) + Xij@ + ZZT]@ =0 (6.164)
with A
AT 0
6Ax01 = [ AQ } and é}{ = [ AAS ] (6.165)
The Jacobians are
—~T ~~1 ~T a
dg,; R | !
X, = ZH - Ve S(RXo;) , - N (6.166)
3x6 00 ~M;”’S(N;)S(RN;) 0
and
g, ;
2, = 6.167
35 oAl AT (6.167)
oa. . 6A>}<T,A/l*TT
- Tg”/ T | T fT] (6.168)
O[A] AT 0[A;, AT
~T ~ 1 ~ — ~T A~ a a
_ | Ni (RXy+T-Xo)" N;R o' [ J(Q))
- A~ —~ A~ A
Ors  ~MOSRN,)  0sxs MPISN)R 7:(Q%)
3x12

If each plane only is present in one constraint, hence we have ¢ = j, the normal
equations for the six unknown parameters read as

NAO =n (6.169)
with
N = > A (B] Diag({Tacas,Tarar}) B) Al (6.170)
6x6 7 6X3 3x6 - iy L' 6x3  3x6
6%6
= D, A (B Diag({Tagas. Tapar}) )7 (=907, 50)) + Bi(§f — yfB)171)
x1 p 6X3 3%6 _ 6x3 ~ -

66 3x1
The update of the translation and the rotation then is

~ (v+1 A~ (Vv ——
lT(+)]_[T()+AT

RUHY R(A6)R"

(6.172)

6.5.4 Theoretical Accuracy of the Motion

We assume the rotation and translation is an identity. We also assume the corresponding

planes to have the same mean parameters and the same covariance matrix. This simplifies

the expressions and allows us to derive the covariance matrix as a function of the planes.
We use the relations

D, = =rr' (6.173)

S*(r) = —(I3—-D,) (6.174)

S(r)R = RS(R™r) (6.175)

N = Qe; or e3=Q'N. (6.176)

The Jacobians are (omitting the hats and assuming we always refer to the fitted values)
. NS x! T , AT T

xT - %9 _ CNiS(Xoy) o Ne (Ko x No)™ N6 177y

00 ~M;¥S(N)S(NY) 0 M:’(l3—Dn,) 0
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and

g,
7zl = —__ 6.178
AT AT (647%)
q3 0 0 0
_ _NiT o' NzT o' 0 gy gy
Osxs —MPIS(NGY)  02xs MPIS(N) 0 { s 0 0
0 qi 4ap
T T
—€ €1 }
s s 6.179
[ _M'E )[07‘11‘27_%1] Mz(' )[07%2,—%1] ( )
We now assume the covariance matrices of all planes to be identical and isotropic
og
zAgA;? = ZAvo = 035 (6180)
%
Remark: Better do not do this! o
Then we have
I —e] el 1T om0 —e]
BlYaca0B; = D i ana } { D
Y L _ME )[quﬂ?_qil] Mz(' )[O’qi27_qi1] It Lo a0 _Mz(' )[ani27_qi1]
_ oT
) - T . —ZAvo €3 —onAo qsz MZ(-S)T
_ —e; e, *ngl
L _MES)[Ov%zy—Qu] MES)[qui%_qil] i 0 ()T
Y pon0e€3 Yacae | gl | M;
I =
[ 02 0
= S S T
|0 202 M (q,q] + 4,005 M)
= 2ZAOAO
Hence the normal equation matrix is
o= L[ Xoix Ny (5= Dy)MPIT ] [ wg (X0 x N7 NJ
24| N, 0 wely | | M (15— Dy) 0
_ Iy Xeix Ny (I3 - Dy, M wy(Xoi x Ni)T - w,N{ (6.184)
24| N, 0 weM® (13— Dy,) 0 '
_ 1 [ weD(Xoi x Ny) +we(ls — Dy )M ™M (13— Dyy,)  (Xoi x N)NT
2 Z Nz(XOz XNZ')T ’qu(N,)
— 1 [ qu(XOi X Nl) + wtﬁ(quq;rl + quq;rQ) Wq S(X()l)D(NZ) (6 185)
! (Xoi X Ni)(Xo; x N)T (X0 x N;)N; 41195 + 9295 0
2 ;wq [ Ni(Xoi x N;)T N,;NT + W 0 0

or generally

N; 0 0

2 ?

1 X1XN1 i i
N=qu,[ 0 }[meNmNm@[ql}[qa7oT]+ww[q2}[q;70W

(6.186)
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Reducing the parameters to the translation yields the reduced normal equation matrix

— 1
Nrr = 5 Z (inD(XOi X N;) + wd)i(%l‘IiTl + Qiqu‘Tz)) (6.187)

- (Z w,, D(N)S(XOZ-)> (Z wqiD(NZ-)> (Z w,, S(XOZ-)D(NZ-O(>188)
which can be determined if

Dlwe, D(N;) = > 1wy, N;NJ (6.189)

is regular: Therefore at least three planes with non-coplanar normals are necessary for a
solution.
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7 Planes from Points

We describe the statistically optimal estimation of a single and of multiple planes
from a point cloud, where the full covariance matrix of all scene coordinates is
available, e.g., from bundle adjustment. This procedure might be used to derive
ground truth data for plane extraction or for homography estimation.

7.1 Preface . . . . . o 100
7.2 TheProblem . . . . . . . . ... 100
7.3 Formalization . . . . . . . . ... e 101
7.3.1 The incidence constraint . . . . . . . .. ... Lo 101
7.3.2 The optimization problem . . . . . . .. ... ... ... L. 101
7.3.3 Conditioning and approximate values . . . ... .. ... ... ... 101
7.3.4 The algorithm for estimating the parameters . . .. ... ... ... 102
7.4 Multiple planes . . . . . . . .. 103
7.5 Outlier detection . . . . . . .. . 105

7.1 Preface

The note (2023) describes the statistically optimal estimation of a single and of multiple
planes from a point cloud, where the full covariance matrix of the scene coordinates is
available, e.g., from bundle adjustment. The solution for single planes differs from that of
Sect. 6.3.2 in Ch. 6: There the plane is Euclideanly normalized, here they are spherically
normalized, which leads to simpler expressions.

7.2 The Problem

Given are K sets {{X;},i =1,...,I},,k = 1,..., K of 3D points together with their complete
covariance matrix ¥ = [¥;; ;] the task is to finde the best fitting planes A;. We start
with the derivation for a single plane and then generalize to multiple planes.

The motivation is to derive reference data for homographies for identified planes being
seen in pairs of images, whose poses and scene points have been determined by bundle
adjustment. Instead of including the plane constraints into the bundle adjustment, we
propose to use the coordinates of the estimated scene points together with their full co-
variance matrix and determine the best fitting plane parameters. This can be seen as
an estimation in steps (Kalman filtering) where in the second step the plane constraints
are used to improve the estimates of the scene points, which in the first step have been
determined without these constraints.

Though it is possible to estimate the planes individually, the resulting parameters are
not optimal, since the mutual correlations between the scene points belonging to different
planes are not taken into account.

We therefore just assume, the coordinates of the relevant scene points together with
their full covariance matrix is available, e.g., when using the Ceres solver.
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7.3 Formalization

We start with the case K = 1 and omit all indices referring tho the plane of interest.

7.3.1 The incidence constraint

We assume the points are given with their homogeneous coordinates X,z = 1, ..., and
their joint covariance matrix

Y =[Txx,] = H Z)S*TXJ' g ” . with 4,j=1,...1. (7.1)

and the plane 4 is represented by its spherically normalized homogeneous coordinates A
with
Al =1. (7.2)

The a point X; lies on the plane 4 if
XTA =0. (7.3)

7.3.2 The optimization problem

We now want to optimally estimate the plane parameters. The observations and unknown
parameters in a Gauss-Helmert model with constraints are

y =[X,, 6 :=A and Y = E(y) (7.4)
Nx1 4x1 Nx1=4Ix1 -

For achieving a ML-estimation we want minimize the residuals y —I squared and weighted
with the full weight matrix W

: Yyy. O
00.9) = - Wy win w=[[ T 0] (75)
subject to the constraints
0=g(0,y):= [y;0].
0=h(6):= (6]~ 1) (7.6)

7.3.3 Conditioning and approximate values

We assume the following:

e We have conditioned the given coordinates

L, —ip
Xi{=MX; with M= [ ?)T 51 X } ) (7.7)

1 1
s = wgtr(Cov(Xi), and py = TZZ_:Xi (7.8)

since in non-homogeneous coordinates we have X§ = (X; — py)/s. Hence, we have
the conditioned covariance matrix

¥¢ = [MXZ;;MT] (7.9)

and

Since we determine the plane parameters 8° = A° in the conditioned coordinate
system where we can uncondition the estimated plane parameters

6=M8° since A°=M'A. (7.10)
together with their covariance matrix
T
2g5 = M2p.5.M (7.11)
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final estimates

e We have an approximate solution 8% := A% based on the conditioned 3D points
assuming all have the same covariance matrix /3.

7.3.4 The algorithm for estimating the parameters

We refer to PCV Sect. 8.3.2 and the note on the Gauss-Helmert model, Sect. 4.1 aug-
mented by the constraints between the parameters. We omit all superscripts indicating
that we have conditioned the data.

We start from the correlated observed I scene points in homogeneous coordinates
{y,Z,,} = {[Xi],[Z4;]}, the constraints g(0,y) := [y] A] = 0 and h(8) = 1/2(|0*> — 1),
and the approximate values 8 := A® for the unknowns and y® := [X;] for the mean
observations. We obtain the following algorithm for an iterative solution:

1. Tterate until convergence

(a)

Determine the Jacobians X and Z at the current approximate values (8%, y®).
Here we have

09 La . aT T Og ~aT T _ Oh .7
Xo=ag =Y =T, Z =5 =108 and pl=i=0nT
(7.12)
In the first iteration we have
"] = [Xi]. (7.13)

Determine the contradictions ¢, and ¢y, of the negative constraints at the ap-
proximate values 8 and gy of the unknown parameters together with their
weight matrix !

—1
cg =—[1]10%, Wy =(Z"2£2)"' = (|0"T%;;6° 7.14
I><gl [le 4x1 I><gIg ( ) ([ ! }) ( )
and 1
cn = =(10% —1). (7.15)
1x1 2

Solve the normal equation system for the corrections A8 and Ay of the param-
eters

XWX h][ A6 XTWy, c,
= . .1
R e e 729
N m

Update the approximate parameters

0% :=N(0" + A@) with N(z)= m (7.17)
Determine the corrections for the mean observations
Ay=y—y" —Z(I; 0T )Wy,g(0 y). (7.18)
Update the approximate mean observations
a e : e X
y® =[Ny, + Ay;)] with N¢X) = X (7.19)
4

2. Set the final estimates of the unknown parameters and of the mean observations,
sometimes called the fitted observation y := gy

6:=6% and §=y". (7.20)
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timated variance
ctor

3. Determine the estimated variance factor

-
o CgWeye, ey
== 7.21

90 T_14 ( )
If the model holds its expectation is equal to 1.
Observe: Instead of minimizing the squared residuals y —I weighted with W in (7.5),
thus minimize ||y —y||w, we equivalently may minimize the weighted residuals of the
squared constraints ¢, = —g(0,y) weighted with their weight matrix W, ., thus

minimizing ||g(6, y)||w.,.,, in both cases taking the constraints (7.6) into account.

4. Determine the covariance matrix of the estimated parameters
-1
XTWyX h Y5 -
= . 7.22
e i (722

Remark: If the observational noise is small and an approximate solution is acceptable, the steps
1.(e—f) can be omitted. Then the Jacobians X and Z are to be determined at (6%, y) instead of

at (0%, y%). S

The complete procedure is given in the algorithm below.

Algorithm 2: Plane from correlated points, assuming conditioned values.

[A,X ;4,05, R| = CorrelatedPoints2Plane_D([X;],[X;;], A®, Ty, maxiter)
Input: observed values y = [y;] := [X;], full covariance matrix ¥ = [¥;;]
approximate values A%,

parameters Ty, maxiter for controlling convergence.

Output: estimated parameters A, ¥ ; 7 for plane, variance factor 52, redundancy
R.

1 Redundancy R=1—-3;

2 if R < 0 then stop, not enough constraints;

~

3 Iteration v = 0, approx. values 0" = A,y := [X,], stopping variable: s = 0;
4 repeat

5 Jacobians: : A= [y"'], h = @a;

Constraints: ¢, = —[y]]0%, c;, = —1/2(]6%|? — 1);

6

7 Weight matrix of constraints: W,, = [8%T%;;60]~1;

8 Build normal equation system: [N, m], see (7.16);

9 if N is singular then stop: normal equation matrix is singular;
10 Updates of parameter vector 8% := N(6% + A6);

11 Corrections for fitted observations: Ay, see (7.18);

12 Update fitted observations y* = [N®(y? 4+ Ay,)], see (7.19);
13 Set iteration: v :=v + 1;

14 if maxu(|£\9u|/a‘§‘ ) <Tp or v = maxiter then s=2;

15 until s = 2;

16 Estimated parameters A := 8" and covariance matrix : Y 34, see (7.22);
17 if R > 0 then variance factor 53 = ¢] Wy, ¢,/ R;

18 else 62 = 1;

7.4 Multiple planes

We generalize the solution to the case of simultaneously estimating a set of K planes, in
order to exploit all information for one bundle adjustment. This will yield different results
due to the correlation between the scene points.

1We do not indicate, that ¢y depends on approximate values thus omit a superscript .
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We consider K planes Iy, k = 1,..., K with their I} points X, (ik) € Z;,. We assume
the point sets for different planes are disjunct. We collect the I, homogeneous coordinates
of the observed scene points and their expectation for plane k in the I x 4 matrices

Xp =[X}] and Yy =EX;). (7.23)

IK x4
Then we have the following
G=>1I (7.24)
k

constraints

1
9= 9] = [E(Xp)Ag] = [E(X],)Ax] =0, hy = 5(|A,€|2 -1)=0 k=1,..,K.
X
(7.25)
Witht the 4K unknown parameters, the 4G observations and their expectations

z_=lml=[A, _y =lysl=Xu] and and y=vec(Y') = [E(Xi)]

4K x1 S T
(7.26)
the Jacobians X and Z are the following using the approximate values for 8 and Y

X = % — Diag([Xy]) := Diag([Y1]) and ZT = Diag([Z}]) := Diag([8, )  (7.27)

The Jacobian for the constraints is

A,
Ay H
AB
A6,
éi i _E:E:E:L_L : zT i
__EEI ________ ____‘_:_'::;______:_l:__i_k____Jl _____________________
il el T
r (== : T FEEICC]
[ | V4 ! ==
:X: | ; __l::l::l::L_
Figure 7.1: linearized constraints
H = Diag([0% 7.28
H = Diag((07]) (7.28)
Hence, with the approximate residuals
vi=9y"—y (7.29)
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we have the linearized optimization problem: Minimize

Y 0
Q(A0, Ay) = (y* + Ay)TWT(y* + Ay) with W = H )(;iTXf 0 H (7.30)

subject to the constraints

0=g(A8,Ay) == XAO+Z Ay —g(6° y"),

31
0 = h(AB) = HTAG — h(A0%). (7:31)
The full weight matrix of the constraints is
-1
W,, = ([oj,fzik,i,klegk,}) with (ik) € Lo k=1,.., K (7.32)
GxG
hence, with the residual constraints
cg =—9g(0% y) =—[X]0" and cp,=—h(0?) (7.33)
the normal equation system is
T ABO
XTWooX  H || dia | _ [ XTWyee ] (7.34)
HT 0 M Cp
~ v Kx1 S—_——
m
5K X5K

which, except for the block off-diagonal matrix H, is full. The algorithm above requires
transparent adaptions.

Observe, the resulting plane parameters will be mutually correlated. But their in-
dividual 4 x 4 covariance matrix D(A) may be reported as uncertainty of the ground
truth.

7.5 Outlier detection

It may be useful to eliminate individual scene points before a final plane estimation. The
following test statistic can be used for outlier detection
X =c! W g, = X' 6 (7.35)
ik i 7V gir,9ik Cgin = Wyir,gir. ik Uk - .
hence we explicitly need the weight matrix W, in (7.32). If the given model is correct,
especially if the covariance matrix of the scene points is correct, then the test statistic Xz
follows a y3-distribution.

In case, we normalize the test statistic by some estimate for the variance factor, its
distribution is not known.
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8 Direct Solutions for the Similarity from
Plane Pairs

We collect some direct solutions for determining the similarity (or motion) from
corresponding plane pairs, representing point clouds. Some of the solutions are
able to handle the case, where the sign of the normals are not consistent.

81 Problem . . . . . ... 106
8.2 Minimal solutions . . . . . . . . .. .. L 106
8.2.1 A one-step direct solution of a similarity from four plane pairs . . . 107
8.2.2 A two-step solution for a motion from three planes . . . . . ... .. 107
8.3 Direct solutions the similarity from I > 4 plane pairs . . . . . . . ... ... 108
8.3.1 Omestep procedure. . . . . . . . . . ... 108
8.3.2 Two step procedure . . . . . . .. ... .o 108
8.4 Stability of the solution . . . . . . . .. ... ... o 110

8.1 Problem

Given are plane pairs {A;, A’}; = 1,..., I which are assumed to be related by the similarity
Al =HTTA,. (8.1)

determine a good estimate of H

SEHEEEA] =

We assume the planes to be Euclideanly normalized

[ N

A= S] . with  |N|=1 (8.3)

In addition, we assume the coordinates to be conditioned, i. e. the distances of the
planes to the origin should be less than 1. This can be achieved by a proper similarity
transformation of coordinate system, such that the origin is in the center of all points and
the distances S; have absolute coordinates less than 1.

As the normals may not be consistent, as A and —A represent the same plane, we can
distinguish two types of solutions, one which assumes the normals to be consistent, the
other assuming they are not consistent.

In the following we first discuss solutions which do not exploit the full covariance
structure or even do not refer to a statistical description of the uncertainty.

8.2 Minimal solutions

We discuss minimal a minimal solution for spatial similarity and for spatial motion.
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Sect. | No. I of planes normals reflection

8.2.1 I=4 consistent allowed
8.2.2 I=3 consistent allowed
83.1 I1>4 not consistent allowed
8.3.2 I1>4 consistent allowed

not consistent not allowed
Table 8.1: Direct solution for the similarity from plane pairs

8.2.1 A one-step direct solution of a similarity from four plane
pairs

The direct solution can be obtained from HT A, = A; or A,/ H = AT, or

-
AT A’%
AT | A R T/XN|
A= Al | = A’g or 1/ | A'H (8.4)
T T
Ay Ay
Thus we directly obtain
H=(A)"'A (8.5)

The matrix would be the correct result, if the data were noiseless. This is valid for both,
a similarity and a motion.

Therefore, in general we enforce the matrix to be a similarity by enforcing the upper
left 3 x 3-matrix to be a rotation and the lack of a projective component. With

H(1:3,1:3)=UDVT (8.6)
we therefore have the best estimate for a similarity

IDIY3UVT  H(1:3,4)

H= o7 H(4,4)

(8.7)
This solution assumes the normals of the planes to be consistent. It allows for a mirroring.

8.2.2 A two-step solution for a motion from three planes

The two-step solution first determines the rotation from the three normals and then the
translation from the intersection point.

Rotation. The rotation directly can be determined from the normals using
B' = [N},N,, N3] = R[N, Ny, N3] = RB (8.8)
from
R=B'B (8.9)

which in case the data are noisy is no rotation. The best rotation is again obtained from
the SVD of R = UDV" from .
R=uvT" (8.10)

~

If the data are related by a reflection, then det(R) = —1.

Translation. The translation can easily be determined from the intersection point of
the three planes.

Also, this solution assumes the normals of the planes to be consistent. The result
allows the data to contain a reflection.

107



8.3 Direct solutions the similarity from [ > 4 plane pairs

8.3.1 One step procedure

The basic constraint for each plane can be written as (see Heuel 2004, eq. (3.29) and sect.
3.3.1.6, tables 3.5 and 3.9)

4,=4: A;n(HTA) =TI(A)HTA, =0, (8.11)
or
(TT(A;) ® AT )vecH = 0 (8.12)
with the matrix
- [ %]

containing the skew matrix S(IV) of the 3-vector IN. Observe, this constraint is indepen-
dent on the sign of the plane vectors.
This gives rise to the direct solution

ﬁ(Aﬂ & A—lr

T(A;)®AT |h=0 (8.14)
T(A;) ® AT

B

6Ix16

The best estimate for h is the right singular vector of the 6/ x 16-matrix B belonging to
the smallest singular value.

As each plane gives rise to three constraints, we need at least five planes. As we know
that the elements Hy 1.3 are zero, we can cancel the corresponding columns in the matrix
B, then being of size 61 x 12 and can do with four planes minimum.

The result is an affinity
A T
H= [ o s ] (8.15)
which needs to be enforced to become a similarity, with
A=UDVT (8.16)

leading to

(8.17)

q_ [ o1 /suvt T/
B o' I

Since only the deviation from the O-constraints (8.14) is minimized, this solution allows
the normals to be inconsistent. Again, if the data contain a reflection, the solution will be
a reflection.

8.3.2 Two step procedure

We first determine the rotation, then rotate the planes and then determine translation
and scale. Thus we assume the similarity to be

S| R OT/A 15 T [[R o
lo 1//\] [OT ﬁHoT 1} (8.18)
with . R
T=T/i, X=1/§ (8.19)
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8.3.2.1 Determining the rotation

Assuming consistency of the normals. For finding the optimal rotation we minimize
the optimization function

ZPJN; — RN;|? (8.20)
which is equivalent to maximize

i i

The weights p; can be approximated by

1 NINB

~ = . 8.22
2 o2 SN NP (8.22)

pi =

The approximation is valid in case the planes have been determined from N; and N/ points,
assuming the normals to have isotropic uncertainty. The solution can be found by using
the SVD (or equivalently using quaternions)

H=uUDVT (8.23)

leading to the rotation
R=VvU". (8.24)

If the data contain a reflection, then det R = —1.

Not assuming consistency of the normals. From the constraints
Al = R(N;): N x RN; = S(N))RN; = (NT ® S(N}))vecR = 0 (8.25)
we obtain the joint constraints
Ni @ S(NY)
NTes(N) |rto (8.26)
NT ®S(N})

This yields an approximation for a rotation matrix, except for the sign. Hence, we are not
able to allow for reflections. From R = UDVT we obtain an estimate for the rotation

R = UV Tsign(|UV)) (8.27)
with det R = 1.

8.3.2.2 Rotating the planes

We now rotate the planes, which just needs to be applied to the normals, therefore

— N, RN, — N, RN
Ai:{—Si]:[Si]’ A;:[_Sﬂ:[sg} (8.28)

These planes only differ by scale and translation.
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8.3.2.3 Estimating translation and scale

Transforming planes by translation T' and scale y is performed by

— I3 0 |—
sl 0x .

thus only refers to the distances S; and S;. We have the constraint

T | T |0
C; — Sz - [Ni - Sl] M =0 (830)
with an approximate weight

1 N N; N/
o +a2, ~ N, + N/

(8.31)

w; ~

for the uncertainty of the position across the planar patches (but see the critics below).
Therefore, we can determine the scale and the translation from

S A']
,
S=1|5 |=|aT “:, ] (8.32)
Sr A’}
—_——

Ix4

The least squares solution for the translation and the scale is

~/
[ T 1 = (B"WB)'BW'S, W = Diag([wy, ..., w;, ..., wy]) . (8.33)

!

!

which in the case of four planes reduces to

[ oy ] =B'S (8.34)

o~

m

The procedure cannot be based on some statistical model.

8.4 Stability of the solution

In case all planes are parallel the rotation cannot be determined.

In case the normals Ajy; of the planes are coplanar, the translation cannot be deter-
mined.

In case the four planes intersect in one point the four plane vectors are linearly depen-
dent and the matrices A and A" in (8.4) are singular or - in case of noise - close to singular.
Then the scale cannot be determined.

In case the normals are well distributed the condition numbers

jy — Jmax (8.35)
Amin

of A and A’ should be significantly less than the inverse standard deviation of the directions
measured in radiants.
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9 Rule of Thumb for Precision of Points
from Multiview Triangulation

For planning bundle adjustment configurations, the expected accuracy of triangu-
lated points is an essential ingredient. We derive rules of thumb for the accuracy
of multi-view triangulating by providing simple expressions for the depth and
lateral accuracy of 3D points, for images arranged in a line, in a planar region
and in a spherical region, covering the case of omnidirectional cameras.

9.1 Preface . . . . . . 112
9.2 Problem . . .. . . .. 112
9.3 Formal statement . . . . . . . . ... Lo 113
9.4 Linearization . . . . . . . . . . . . e 113
9.5 Special configurations . . . .. ... oL 114
9.5.1 Projection centers are on a straight line . . . . ... ... ... ... 114
9.5.2 Projection centers are on a regular grid . ... ... ... ... ... 115
9.5.3 Projection centers on a sphericalcap . . . . . . ... ... ... .. 116

9.1 Preface

The note (2013) provides explicit expressions (rules of thumb) for the depth accuracy
obtained from multi-view triangulation for three cases: (1) the projection centers lie in
a line, (2) the projection centers lie in square, and (3) the projection centers are equally
spaced on a spherical cap. The note is the basis for Forstner and Wrobel (2016, Sect.
15.7.1).

9.2 Problem

Given T images of a 3D point determine the precision of its position.
The standard deviation depends on

1. on whether the projection centers are in a row, in a rectangular grid, or on a spherical
cap

2. the coordinate precision o,/ or the directional precision o,
3. the principal distance c,

4. the baseline B or the diameter D of the set of projection centers, on the spherical
cap 0 measured in radiants, and

5. the common height Z above the unknown point or the radius Z of the spherical cap.

If the T projection centers are in a row we have for large T

(1D) 12 Z2 oy 12 Z2 o4
w T3/2 B ¢ T D ¢
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Figure 9.1: Ideal configuration for triangulation. Alternatively, the projection centers are

on a sphere with radius Z regularly spaced in a spherical cap with diameter 6.

If the T projection centers are in a rectangular grid we have for large T

(9.2)

(9.3)

o0 _N6Z 0w _ 1222 0u
w T B c TD ¢ |
If the T projection centers are evenly distributed on a spherical cap with diameter § we
have
lean) _ V3 4 .
w VT2 —cos$ —cos? $ o

9.3 Formal statement

Without loss of generality the scene coordinate system sits close to the unknown scene
point X ([U,V,W]). It is observed in T cameras, which for simplicity are assumed to be
identical and are nadir views with R = /3. Their common principal distance is ¢. Their

projection centers Zy are at Z;,t = 1,...,T. The projection matrices therefore are

P: = Diag([e, ¢, 1))[I3| — Z4] .

We observe the T image points

e =c| Ut | =¢ ! V-X
e | U2, | WY |

The task is to estimate the unknown parameters X.

9.4 Linearization

Using X® = 0, the linearized model reads as

-%= 0 % AU
Az, = ' ' AV
T, =c Ly
0 -z z AW
With weights w; for each point we obtain the normal equation matrix
Zt %5 0 - Zt Wtz)g
N = c? 0 Zt%é -2 wéft
wy X w, X wi (X7+Y7)
_Zt wégt _Zt wtzgt Zt ‘ éf ‘
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If we assume the projection centers have the same Z-coordinate we obtain

2 Zt th2 0 _Zt thtZ
O Zt ’UJtZt2 - Zt wth (98)
—YwXeZ =X, wiXeZ Y, wi(XE 4 YR

C

N:ﬁ

If we now assume the X- and Y-coordinates are centred with

X = thtXt Vv — thtyt

9.9
R S (9.9)
and the weights are constant
1
g
the normal equation matrix is diagonal
2 TZ? 0 0
N = o, TZ? 0 . (9.11)
O 2
0 0 X7 +Y?)
If we use the average distance of the projection center from its centroid
X?+Y?
g = | 2XE YY) (9.12)
T
of the projection centers it reads as
9 TZ? 0 0
¢ 2
Tar2 0 0 ST
Thus the variances of the 3D point are
7 Oy 22 Oy 7

9.5 Special configurations

9.5.1 Projection centers are on a straight line

If the T projection centers are on a straight line with basis B in X-direction, their X-
coordinates are

T+1 T-1
X, = (t — ;r) B t=1,.,T with —X;=Xr= ——B. (9.15)
Then we have

5% = 1—12(T2 - 1)B?. (9.16)

Thus we obtain the standard deviation

V12 Z2% oy
o = S e B (9.17)
A/ T(T2—-1) B ¢
For large T' we can use the approximation
V12 Z2 o,
gUP) - N2 2 T (9.18)
w T3/2 B ¢
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If we use as reference the diameter D of the projection centers
D=(T-1)B

the average distance is

127 -1

o 1T+1.,

and the standard deviation is

12(T = 1) Z° o

w T(T+1) D ¢’
which for large T simplifies to
12 72
(1D) 14 Ox!
“w “NTD

9.5.2 Projection centers are on a regular grid

(9.19)

(9.20)

(9.21)

(9.22)

If the T = M N projection centers are on a regular grid with basis Bx in X- and By in

Y direction, their coordinates are

M+1
Xm<m ; >BX m=1,....M and Y,,,<n2

Then we have 1

2 Q2 2
§* =55+ 5% =33

We now assume the grid is quadratic with Bx = By and T = N2, Then we obtain

1

S§?=8% + 5% = é(NZ ~1)B? = U 1)B2.

Then the standard deviation is
_ N6 Zoy
W JT(T-1)B ¢

For large T we can use the approximation

g

U(2D) - @272%,

w T B c

Using the diameter
D=+2(N—-1)B

we have the average distance squared
2 — i T—1 D2
12T —1

which yields the standard deviation

O'(QD) - 12(\/T— 1) Z720'1./

w T-1 D c
which for large T' simplifies to
12 22
O_(/%D) _ Lla o Ty
w T D ¢/

((M? —1)B% + (N* = 1)B}).

(9.23)

(9.24)

(9.25)

(9.26)

(9.27)

(9.28)

(9.29)

(9.30)

(9.31)

which is identical to the standard deviation if the projection centers are on a straight line.
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9.5.3 Projection centers on a spherical cap

If the T projection centers are evenly distributed on a spherical cap with radius Z and
angular diameter § we use a slightly different model. We assume the uncertainty of the
rays to be uniform in all directions with standard deviation o, which corresponds to o,/ /c
if the observed point is close to the principal point. Then the uncertainty of the ray at
the observed image point is 0, = Zo,. The direction of the ray is

cos Asin ¢
d=| sinAsing | . (9.32)

cos @

The normal equation matrix is (see PCV-A Sect. 9.5.3.2)
N=> w(ls—didy). (9.33)
t

We again assume w; = 1/07.
We now replace the sum by an integral

I3 — dyd]) cosp dAde
cos pdAd¢

1SA, cl
N:th(lg—dtdtT);:ﬁT? €

(9.34)
t q S/\,qﬁeC

For symmetry reason the normal equation matrix is diagonal:

) ) 1 0 0
Nij = Nag = 73 (4+cos22 +C082) T and Nz3= @ <2—C0822 —0052> T,
(9.35)
the second expression proving (9.3).
Observe for d = 27 due to cos ¢ = —1 we obtain the fully isotropic configuration
Nip = Nag = N33 = 2 (9.36)
11 = Nog = 337303 .
Thus the standard deviation for the ZW-coordinate is
ca; \/§ Z
O'l(//‘? L Al 5 53 0o (9.37)
\/72—0055 —cos® 5
For small 0 we obtain the approximation
(can) _ N8 Z
on = JT 500 (9.38)
Taking into account that then 6 = D/Z and o, = 0,/ /c we obtain
w NT D ¢ '

The difference of the constants (v/12 versus v/8) result from the different roundness of the
two figures (square versus circle).
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10 Multi-View Triangulation with Di-
rections

We provide simple solution to the optimal triangulation of a scene point from
multiple views assuming isotropic uncertainty of the directions. As a special case
we provide a simple expression for the distance of the triangulated point in case of
homogeneous directional uncertainty and small basis, expressed as a function of
the effective base line, the viewing angle and the resolution of an omnidirectional
camera and the matching accuracy in pixels.

10.1 Preface . . . . . o 117
10.2 The Problem . . . . . . . . . . . . . 117
10.3 The approximate Solution . . . . . . . . . .. ... oo 118
10.4 The Solution with Different Uncertainties of the Distances . . . . . . . . .. 119
10.5 The Solution for Directional Observations with Different Uncertainty . . . . 120
10.6 Assuming Correlations between the Directions due to Least Squares Matching120

10.6.1 The 2D Model . . . . . . . . . e 120

10.6.2 The 3D Model . . . . . . .. . e 121
10.7 Uncertainty of binocular triangulation with omnidirectional cameras . . . . 122

10.1 Preface

This note from 2007, and extended 2023, provides a simple solution to the optimal tri-
angulation of a scene point from multiple views. It also provides a simple expression for
the distance of the triangulated point in case of homogeneous directional uncertainty and
small basis, expressed as a function of the effective base line, the viewing angle and the
resolution of an omnidirectional camera and the matching accuracy in pixels.

10.2 The Problem

Given are K projection matrices Py, k =1, ..., K and corresponding image points xy, k =
1, ..., K. Triangulate a good 3D-point.k The idea is the following: The projection matrices
together with the image point determine N projection rays, see Fig. 10.1. The optimal
point X is the one closest to all these rays, where the notion distance needs to be specified
and leads to different solutions.

We extend the approximate solution in three ways:

1. We handle the case where the distances are weighted individually.
2. We handle the case of isotropic and homogeneous uncertainty of the directions.

3. We handle the case of homogeneous mutual correlations between the directions.

In all cases we provide a rigorous solution.
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Figure 10.1: Optimal multi-view triangulation for directions. The problem is nonlinear
in general, since the effect of directional uncertainties onto the 3D point depends on the

unknown distances of the point to the given projection centers

10.3 The approximate Solution

The first solution just minimizes the sum of the squares of the distances of the rays to the

3D point.
The projection centers are
Z, =—H, h
with

The projection lines have normalized direction

dy =N (H, L xy)

noo

The 3D projection lines have Pliicker coordinates

Tl Lo |, | Zkxdy

The squared distances of the unknown point X to the lines are

d%(Lk = |Loi + S(Lhi)X|2
(Z1, x di, 4+ S(d) X)T(Z), x dy, + S(dp)X)
|Z), x di|?> +2(Z), x dg)TS(dp) X + XTS(dg)TS(dp) X

The sum of the squared distances therefore is

QO = >ldip,
k

= M 1Zp x dil* +2))(Zi x di)) S(d) X + X7 Y S(dy)"S(di) X
k k

k
The necessary condition for the minimum is

100

5% = ZS(dk)T(Zk x dy) +25(dk)T5(dk)X =0
2

k

Thus, the optimal point is given by

X = (Z 5<dk>T5<dk>> S 5(d)TS(d) 2,

k
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or

X = (Zk: Wk> _ Zk: WiZs (10.12)

with
Wy =I5 — dpd] (10.13)

in case dj is normalized. Obviously, this is a weighted mean of the projection centers
Z, where the weight matrix is 0 in the direction of d; and 1 otherwise. Thus, Wy is
representing a cylindrical covariance matrix, with infinite uncertainty in the direction of
the projection lines and standard deviation 1 perpendicular to the viewing direction.

The estimated variance of the distances of the fitted points to the projection lines can
be obtained from

—~ 2
0 dl(X — Zy)
62=__""_ with Q= 2(X. L) = k- TR 10.14
01 =57 Wit Zk:d(X, ) ;( Xz, (10.14)

The theoretical covariance matrix of the estimated points is

Yo =03 (X, Wi (10.15)

with some prior assumption about the standard deviation o4 of the distances.

10.4 The Solution with Different Uncertainties of the
Distances

Instead of (10.8) we optimize

d2
0=> 5, (10.16)
0'
k dy,

where the standard deviations of the distances are o4,. We obtain the same solution
(10.12) however instead of the weight-matrices in (10.13) we use

1
Wi = — (I3 — dpd}) , (10.17)
oq,
see PCV Eq. (10.174).
If the solution (10.12) is written with the normal equation matrix and the right-hand

sides
N=>W; and n=>) W2 (10.18)
k k

(using the weights eq : W — WLS, assuming o9 = 1) we have the theoretical covariance
matrix

Yoo =0oN . (10.19)

XX

Similarly, we obtain an estimate for the variance factor

2
Q (X - Z))
62 = —— with Q= 2N 10.2
00 = 57 3 wit Z( |X | (10.20)
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10.5 The Solution for Directional Observations with Dif-
ferent Uncertainty

In case directions §; are observed, the uncertainty of the distances d; of the unknown
point to the given rays depend on the distances sj of the point @ to the projection centers
Zk:
Od;, = SkOg,, with Sk — ‘X - Zk| (1021)
We cannot optimize (10.16) since the distances s, depend on the unknown point.
However, see Fig. 10.2, we can iteratively update X by using (10.21) after an initializa-
tion with s; = 1 in the first iteration. For not too large directional errors, say below 0.01
[rad] or 1 °, only a second iteration is necessary. This procedure can replace Algorithm 21

/)
2% 4
% 7/

// / /
/4 a4
7 #

, }/
linear linear

Figure 10.2: Optimal triangulation with isotropic directional uncertainties.

in PCV, in case it is clear that the 3D point is at finity and the rays do not diverge, or if
some sufficiently good approximate value for X is known.

10.6 Assuming Correlations between the Directions due
to Least Squares Matching

10.6.1 The 2D Model

We assume the position of the keypoint in one image is determined by some keypoint de-
tector and the coordinate differences, i.e., parallaxes, to the other images are determined
by least squares matching, like the Kanade-Lucas-Tracker. The reason simply is: the coor-
dinates x1 of the detection usually is less accurate, say with standard deviation o, whereas
the determination of the parallaxes p;, = x), — xo, k = 2, ..., K is highly accurate, say op,.
Assuming a homogeneous configuration and enforcing the mean coordinate, derived from
the parallaxes is 0 the uncertainty of the final coordinates x; can be derived from

x, E(z,) Az, Ap,
z= |z, | =| E(xg) |+ | Azg | + | Apg (10.22)
Ly E(zy) Az Apg

with the covariance matrices for the detection Az, and the parallaxes Ap = [Ap, |:
D(Azg) = Y,00, and D(Ap) = (Ix —Jx/K)®%,, with J=1x1]  (10.23)

see Forstner (1998). In the isotropic case we have

I and X, =o02ls. (10.24)

_ 2
Zwowo - U:rg
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This yields the following covariance matrix for the K points
Yoo = (02, Jx+0. (Ixk —Ik/K)) @1, (10.25)
We have the extreme case where the parallaxes are perfect: o, = 0:
Yow = 02,117 @15 (10.26)

Then all points are 100% correlated.

10.6.2 The 3D Model

We now want to extend the model to observed directions, namely assuming they are
correlated. This extension is non-trivial, why we provide an approximate solution.

The reason is that the basic model (10.22) implicitely assumes the projection centers
are coplanar, the viewing directions are parallel, the scene is fronto-parallel, and the image
coordinates refer to a perspective model. Then a surface patch is mapped to identical image
patches, allowing to use the result of Forstuner (1998). As soon as the surface element is
observed from different directions, this model does not hold anymore. This not only holds
for tilted cameras but also for spherical cameras, where the addition in (10.22) cannot be
easily replaced.

We therefore exploit the result of Forstner (1998) by modelling the situation is two
steps:

1. In the first step, we assume the surface patch is seen along its normal, however,
allowing the distance of the projection centers may vary. Then the setup of a simul-
taneous homogeneous least squares matching is possible. The resulting accuracies
refer to the image coordinates (Ap,,) refer to the scene, and, using the distances sy, to
the projection centers can be transformed into individual directional uncertainties,
which, due to the isotropy assumption, lead to isotropic directional uncertainties.

2. In the second step, we assume the directional accuracy approximately transfers to
directions not being parallel to the normal. This is a valuable approximation if
the deviation from the normal is not too large, since the deviation increases with
1/ cos(ay), where ay, is the angle between the observed direction and the normal of
the surface patch. Neglecting this factor simulates the situation where the scene is
assumed to consist of small spheres, whose relative direction is determined by least
squares matching, which is an unlikely but not invalid assumption.

10.6.2.1 Observed Directions parallel to the Normal of a Surface Patch

The result of the previous subsection can directly be used for expressing the lateral uncer-
tainty of the spatial deviations across the direction. Using (10.21) we find the directional
uncertainty from

where the standard deviations o4, correspond to the o, in the left bracket of (10.25).
Hence we assume the directional errors d = [d,] |are isotropic with

de:JgO JK+O'Z (IKfJK/K) (1028)

Since we need the factors )
P — 10.29
Wdy,= U?lk ( )

in the weight matrices, which now are not independent we use the weight matrix

Wag =51 = [wpw] = —1 Koo, — oy (10.30)
dd = Xy = |Wkrr] = o2 K K2020% K .
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Since the individual weight matrix (10.17) for one direction can be written as
Wy, = S(dy) (wa,13)S" (dk)
we obtain the full weight matrix as
W = [W ] = Diag(S(dx)) [wyw /5] Diag" (S(d))

or more explicit
Wik = wiir S(dg) S(dy)

Therefore, the solution for the 3D point reads as

i = N_ln with N = [Nlj] = Z Wkk/ and n = [TLJ] = Z Wkk’Zk’~

k,k’ K,k

(10.31)

(10.32)

(10.33)

(10.34)

10.7 Uncertainty of binocular triangulation with omni-

directional cameras

Given is the configuration

e Distance D
e Basis B

Angular range «

Effective image diameter/width W

Matching accuracy os referring to the direction

Figure 10.3: Configuration

Then we have for small §

e The parallactic angle

b
y=—= or Dy=b and dDy+Ddy=0 and 9 _ 9D
thus
D D?
op ;0—7 TO—’Y
e The pixel size corresponding to direction elements A in [rad] is

!

A= —
w

(10.35)

(10.36)

(10.37)

assuming a pixel distance corresponds to the same directional difference, which is an

approximation.

e the uncertainty of the measured parallactic angle, as difference of two directions

UA/:\/50'5
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Hence, we finally have the distance accuracy
D
op = \/5;05 (10.39)

Since we usually describe the matching accuracy, i.e., the accuracy o, of the parallax in
pixels, we need to take the resolution into account. Then we have

o5 = — %o (10.40)

Then we obtain for the distance

D « D? «
If we refer to the inverse depth
1 E
s=— with sD=1 and dsD+sdD=0 and 25=22 (10.42)
D s D
we obtain e
s s a 1l «
DD W T W (10:43)
from which we may derive the matching accuracy
w
op=b— o0, (10.44)
«

if we know the camera, i.e., the viewing angle «, how its image is used (possibly reduced
in resolution), i.e., the diameter of the image in pixels, and how large the effective baseline
b is.
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