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1 Introduction
The paper addresses the role and evaluation of rigorous and approximate esti-
mation methods.

The result of any method may be characterized by the following input-output
relation:

l
g(x,y)=0, σ2

0Σa
ll7−→ {σ̂2

0 , x̂,Σax̂x̂ , ŷ} with y = E(l) (1)

• The vector l collects the N observations.

• The method internally has a mathematical model, which is composed of
two parts.

1. The stochastical model: the method assumes, the observations are a
sample of a distribution M (E(l),D(l)) with first and second moments

y = E(l) and D(l) = σ2
0Σall (2)

We sometimes refer to the expected value y of the observations as
mean observations. The covariance matrix of the observations often is
assumed to be known up to an unknown variance factor σ2

0 , since the
methods often are invariant to a scaling of the covariance matrix Σall.
If the inital variance factor σ0 = 1 is chosen, the matrix Σall can be
interpreted as an approximate covariance matrix of the observations.

2. The functional model: the method assumes the observations are re-
lated to the U unknown parameters x by the K generally nonlinear
constraints

k(x,y) = 0 . (3)
Sometimes, a part of the constraints only refers to the parameters.
Then we partition the K constraints into G constraints g between
the parameters and the observations and H constraints h on the
parameters only:

k(x,y) =
[
g(x,y)
h(x)

]
=
[

0
0

]
. (4)

• The method, generally, provides three types of output

– A measure for the consistency of the observations and the parameters
with the model {g(y,x) = 0, σ2

0Σall}. This is an estimate σ̂2
0 for

the variance factor σ2
0 , which it the model holds is close to 1. Of

course, this factor is not available for minimal solutions, where the
number of constraints and the number of parameters is the same.
Not all methods provide this information, even not by ML-estimation
procedures, though they easily could be made available.



– All methods yield the estimated parameters x̂ as output.
– The covariance matrix Σ

x̂x̂
of the parameters. It may be derived also

for a large class of approximate values.
– Sometimes the method also provides estimates ŷ for the mean ob-

servations y. Most often they are given implicitly by the estimated
residuals

v̂ = ŷ − l (5)
useful for evaluating individual observations or groups of observa-
tions.

In all cases, these the variance factor and the covariance matrix of the pa-
rameters can be derived from repeatedly applying the estimation method
to samples of the observations.
Remark: Observe, we did not refer to the classical Gauss–Markov model E(l) =
f(x), since this is not general enough for many tasks in geometric computation.
But it may easily be rewritten as g(x,y) = E(l) − f(x) = 0. �

Hence, we focus on estimation methods, possibly with constraints, but not with
inequality constraints.

The goal of this note is to discuss the mutual evaluation of different methods
solving the same problem w.r.t. the accuracy of the derived parameters.

1.1 Maximum likelihood estimation for Gaussians
Maximum likelihood estimation takes that parameter vector x̂ as estimate for
which the likelihood

L(x) = p(x|l) (6)
is maximum, where the density function p takes into account the constraints be-
tween the uncertain observations and the parameters. For normally distributed
observations this can be formalized as follows. In order to simplify the notation,
and avoid statistical terms within the optimization procedure as far as possible,
we will also write the optimization problem as follows:1, see (Förstner, 2024, p.
6 ff.) For simplicity, we assume the model is linear in the observations and the
unknown parameters. Then, for given observations l, regular covariance matrix
Σll, and coefficient matrices A and B

GHM(Σ): minimize (y − l)TΣ−1
ll (y − l)

subject to g(x,y) = Ax+ BTy + b = 0 . (7)

w.r.t. the unknown parameters x and the mean observations y. For a compact
representation of the solution we use the substituted observations with their –
now different – covariance matrix

n = BTl+ b and D(n) = Σnn = BTΣllB . (8)
1This in the flavour of the problems discussed in Boyd and Vandenberghe (2004).



We obtain the estimated parameters and the fitted observations from

x̂ = −(ATΣ−1
nnA)−1 ATΣ−1

nn n(l)
ŷ = l− ΣllBΣ−1

nn g(x̂, l) . (9)

The theoretical covariance matrix of the estimated parameters can be derived Cramer-Rao
bound,
covariance
matrix of
estimated
parameters

from (9) by variance propagation, leading to the Cramer-Rao bound for the
uncertainty

Σ
x̂x̂

= (AT(BTΣllB)−1A)−1 . (10)

This expression can generally provide the covariance matrix for a specific case.
However, it also can be used to derive the uncertainty of the parameters as a
function of the experimental design, in the most simple case as an algebraic
function of number and the standard deviation of the observations, as for the
mean of a set of observations (see Sections 4.1.1 and 4.1.2, but also for the
uncertainty of 3D points from triangulation, see (Förstner, 2024, p. 112 ff.) and
(Förstner, 2024, p. 122 ff.).

If we only know an approximate covariance matrix Σall and we assume the
covariance matrix Σll differs from the approximation by an unknown variance
factor σ2

0
Σll = σ2

0Σall , (11)

then we can perform the estimation with Σall, instead of using Σll, which has no
effect onto the estimates. But then, with K = G+ U , we can find an estimate

σ̂2
0 =

(ŷ − l)TΣ−1
ll (ŷ − l)

K − U
. (12)

for the estimated variance factor. Then we obtain an estimate for the covariance
matrix of the estimated parameters

Σ̂
x̂x̂

= σ̂2
0Σa

x̂x̂
with Σa

x̂x̂
= (AT(BTΣallB)−1A)−1 . (13)

the attribute estimated only referring to use of the estimated variance factor.

Fig. 1 visualizes the principle. For a given pair l = [l1, l2]T of observations
and the constraint

E(l) = ax or g(x,y) = ax− y = 0 (14)

the task is to find the most probable point ŷ = l̂ on the straint line y = ax. The
result depends on the assumption about the uncertainty of the observations. We
consider the following two models:

1. [A] In case the observations are assumed to have the same standard devi-
ation, say σ2 and are uncorrelated, thus we use Σa,[A] = σ2I2 as approx-
imate covariance matrix, the best point is the footpoint on the straight



Figure 1: ML estimation for normally distributed observations. Model l ∼
N (y,Σ) with the constraint ax − y = 0, represented by the white line. If
Σ = σ2I2 (σ = r = 1.26) , indicated by the blue circular standard ellipse, the
optimal point ŷ lies on the footpoint ŷ = l̂ | I2 = ax̂ | I2 of l onto the line
E(l) = ax. If the covariance matrix Σ is a general matrix, represented by the
red standard ellipse (with semiaxes a = 2.48 and b = 0.78), then the optimal
point l̂ | Σ = ax̂ | Σ is the intersection of the (blue) line E(l) = ax passing
through O and the (red) line, defined by the direction from l to that point of
the ellipse, where the tangent (yellow) is parallel to a

line ax̂ | I2, independent on the standard deviation – the classical LS so-
lution. It is the most probable point, since all contours of the isotropic
Gaussian distribution are concentric circles. The smalles circle reaching
the line is the thin blue circle, which touches the line at the best esti-
mate, since all other points on the line would have a smaller likelihood
LA(x) = pA(ax | l).

2. [B] In case the observations are assumed to have different accuracy in
different directions, measured by the semiaxes (a, b) and and the direc-
tion of the largest semiaxes, collected in the covariance matrix thus we
use Σa,[B] = Σ as approximate covariance matrix, indicated by the red
standard ellipse, then we obtain a different estimate ax̂ | Σ. Also here,
the density function of the Gaussian has concentric and similar elliptic
contours. The smallest ellipse (thin red) touches the straight line at the
optimal estimate, again, since all other points on the line have smaller
likelihood LB(x) = pB(ax | l).

Besides the observation vector and the assumed covariance matrices, the figure
shows to further elements of the output of the estimation method:



• The uncertainty of the estimates, namely the blue and red segment on the
straight line. They are the projection of the standard ellipses onto the line
in the direction from l to l̂.

• The inconsistency of the assumed model, i.e., the common constraint and
the two alternative covariance matrices, with the given observation. The
standard ellipses of the assumed covariance matrices are given by

(l− y)TW a(l− y) = 1 with W a = σ−2I2 or W a = Σ−1 (15)

If we would take slightly larger covariance matrices, namely σ[A]
0

2
(σ2I2)

or σ[B]
0

2
Σa, specifically those represented by the thin blue circle or the

thin red ellipse, the uncertainty of the observations would be consistent
with the fitted observations l̂ = ŷ. The factor is nothing else than the
estimated variance factor

σ̂2
0 = (l− ŷ)TW a(l− ŷ)

(l− ŷ)TW (l− ŷ) with σ̂2
0 = (l− ŷ)TW a(l− ŷ)

K − U
(16)

where Σ = W−1 are represented by the thin blue circle and the thin
red ellipse. Of course, we can only use the right equation for calculating
the estimated variance factor. However, using the improved covariance
matrices

Σ = σ̂2
0 Σa , (17)

we have the guarantee that the estimated point, in this case ŷ = l̂ = ax̂,
lies on both the constraint line and the standard ellipse of the improved
covariance matrix.

The method can be generalized to nonlinear constraints and to cases where
some constraints only refer to the unknown parameters.

We will use this interpretation of the ML-estimation in the next sections.

1.2 Notion of an approximate method
What is an approximate method? A method which does not lead to an optimal
result. A method, leading to an optimal result, usually is called rigorous.

However, we often have a hierarchy of models, one being a special case of the
previous one. Let us take the four classical estimation principles, which differ
in the assumption abput the observational noise e = E(l)− l:

1. Maximum-likelihood (ML) estimation: It assumes the distribution of the
observational noise e is known, but arbitrary.

2. Generalized least squares (GLS) estimation: It can be derived from ML-
estimation, assuming the observational noise is normally distributed, thus
e ∼ N (0,Σll).



3. Weighted least squares (WLS) estimation: It can be derived from GLS-
estimation, assuming the observational noise elements are jointly normally
distributed but uncorrelated, thus e ∼ N (0,Diag([σ2

ln
]).

4. Simple least squares (LS) estimation: It can be derived fromWLS-estimation,
assuming the observational noise elements are jointly normally distributed,
uncorrelated, and have the same variance, thus e ∼ N (0, σ2

nIN ).

Then the result of all models may be called rigorous, if we assume – not si-
multaneously – the assumed covariance matrix is a good approximation for the
uncertainty of our data. However, models B can also be termed suboptimal or
approximate, in case we know that model A, is a good approximation for the
data’s uncertainty. The same holds for model C w.r.t. model B. Hence, model B
may be both, a reference for the estimation with model C, or an approximation
w.r.t. model A. This clearly shows, that the notion rigorous is only meaning-
ful in a well-defined context. The same holds when including model D in the
discussion.

We will call ML-estimates based on normally distributed observations with
an arbitrary covariance matrix as statistically optimal estimates if the assumed
type of the distribution, including the used constraints and the covariance ma-
trix, in an acceptable manner approximates the real situation. This on one hand
– in a first step – identifies all methods, which do not integrate the uncertainty
of the observations in some explicit way, as approximate methods. On the other
hand, it leaves enough freedom for classifying methods as statistically optimal,
though the method does not explicitly refers to some distribution of the obser-
vations, but the individual weighting of observations can be motivated by some
acceptable assumption about the variance covariance matrix of the observations.
As an example, LS estimates can be statistically optimal, if all observations can
be assumed to have the same standard deviation and are mutually uncorrelated.
In both cases, naturally the decision on the acceptability lies in the hand of the
user of the method.

Of course, there are other types of approximations, which cannot be included
in some hierarchy, some of which may be identified easily:

• The method optimizes some other optimization function. Example: In-
stead of minimizing the (RMSE) of the reprojection error using some –
possibly iterative – LS method, the method minimizes an algebraically mo-
tivated error, e.g., only the RMSE of some constraints, as many methods
for reconstructing geometric entities.

• The method is iterative, and the iteration is stopped before convergence.
Example: Only applying one iteration may be motivated by requiring a
method has a constant computing time, thus not depending on the quality
of some approximate values.

• The method, though optimizing the correct optimization function, does
not fulfil all constraints. Example: Estimating the essential matrix using



the 8-point algorithms – in a first step – does not lead to a matrix of rank
two.

• The method does not use all information provided by the data. Example:
RANSAC type procedures may provide the solution of the best smallest
tuple of observations, neglecting all other inliers.

• An iterative method uses approximations of the required Jacobians. Ex-
ample: (a) Minimizing the Sampson error in an iterative scheme uses the
Jacobian evaluated at the observations instead at the fitted observations,
(b) Using the Jacobian of the first iteration during the further iterations,
both cases meant to save computation time.

• Accepting a non-negligible bias in the estimate.

We now discuss the role of approximate and rigorous methods in the view
of users and authors of methods.

1.3 The user’s perspective on rigorous and approximate
Methods

Eventually, the user decides on whether to use a specific method. There are
various reasons why to choose or not to choose a specific method. We want to
collect some of these reasons.

Reasons for preferring an approximate method may be:

• The quality of the result of an approximate method is acceptable for the
application. Example: Some approximate methods may be – in a certain
scenario – a factor two or three worse (in standard deviation), but the high
accuracy of the given data leads to still acceptable results.

• The method allows to predict computation time, which is needed for real
time applications (robotics, methods used during user interaction). Ex-
ample: All methods which do not require iterations (direct methods) or
are guaranteed to succeed with a constant number of iterations fall into
this class.

• No approximate values for the parameters are available. Then direct so-
lutions2 are appropriate, but most of them are approximate. Example:
The 8-point algorithm for estimating the relative pose (R, t). Coun-
terexample: The best fitting line or plane through a set of points if their
uncertainty is isotropic.

Reasons for preferring a rigorous method may be:
2methods which do not require such approximate values



• They may lead to sufficient estimates, exploiting all information of the
given data. Example: Classical ML-estimates are sufficient, if the uncer-
tainty of the given data is taken into account.

• They provide adequate information about the quality of the result. This
may refer just to the uncertainty of the estimated parameters but also to
the diagnostic information, e.g., for outlier detection. Example: Classical
ML-estimates may provide a covariance matrix for the estimated param-
eters, the Cramer-Rao bound. ML-type robust estimators may be able to
cope with an acceptable large percentage of outliers.

• Usually their optimization principle is easy to explain. Example: LS,
GLS, ML are well established and well understood optimization criteria.

1.4 The author’s perspective on rigorous and approximate
Methods

Authors of methods either propose a new/refined method to solve a given prob-
lem aiming at a scientific publication, and/or aiming at solving a hitherto un-
solved/suboptimally solved class of problems encountered in a practical applica-
tion. Authors may or may not be aware of the user’s perspective on a method.
I only discuss the situation where an author of a method aims at a scientific
publication.

Motivations to publish a rigorous method may be:

• Establish a reference method for the solution of a hitherto unsolved prob-
lem. Example: Integrating camera/systems calibration into bundle ad-
justment leading to self-calibrating bundle adjustment, e.g., for a new type
of camera/camera system.

• Establishing a computational more efficient method compared with the
state of the art, possibly exploiting prior knowledge or reducing the need
for prior knowledge. Example: Transforming a batch solution to an in-
cremental (Kalman-filter type) solution, transforming/inventing a method
which works for 3D, instead of 2D, for continuous flow of data instead of
a sequence of data.

• Exploiting the potential of knowledge about the underlying optimization
principles. Example: ML-estimation allows predicting the performance
using the Cramer-Rao bound, and allows statistical testing of hypotheses
referring to the observations or parameters.

Motivations to publish an approximate method may be:

• Providing a direct solution of a problem for a smaller/larger number of
observation than previous methods: Examples: Providing a hitherto not
available minimal solution (such as Nister’s 5-point algorithm), providing a
hitherto not available redundant solution (such as a Khoshelham’s motion
estimation from multiple plane matches)



• Providing an approximate method with proven and acceptable loss in ac-
curacy w.r.t. a rigorous solution (such as a direct solution followed by a
one-iteration ML-solution)

There are also motivations why one should not publish a method:

• The new method does not lead to useful improvements. Examples: (1)
The decrease in standard deviation is less than a small amount, e.g., less
than 20%. The reason may be the following: the decrease in standard
deviation is too small to reduce the number of iterations of a subsequent
rigorous method. (2) The decrease in computation time is not really more
than 50% (wait a year! c.f. Moore’s law).

• The preconditions under which the method works are not made explicit.
Example: The required accuracy of approximate values for a rigorous
method is not analysed. – If the method still submitted for being reviewed,
the reviewer might reject the publication, due to the lack of clarity on the
conditions under which the method works well.

• The method does not provide any information about the quality of the
result. Example: (empirically nearly) all new direct methods fall into
this class, if they do not report on success rates, how the accuracy can be
evaluated, or how to detect/identify singularities.

The discussion clearly shows: the author of a (publication of a) method needs
to provide a data sheet characterizing the quality of the proposed method, which
allows a user/reader to decide, whether the proposed method may be acceptable
in his/her application area. This augments the neccessary, but not sufficient
experimental benchmarks.

1.5 Goals
We address the following questions:

• Can approximate methods be upgraded to provide uncertainty information
about their estimates? Yes, this is possible for a large class of methods
provided they only contain differentiable steps, see Sect. 2.

• Can direct methods be upgraded to methods which are rigorous but still
guarantee fixed computing time (for given number of data)? Yes, this is
possible in case a direct solution exists which leads to parameters, which
are close enough the optimal ones, such that a single iteration with a ML-
estimation leads to acceptable results. Example: We will show this for
the registration of point clouds using plane correspondences.

• How to characterize the loss in quality of approximate methods compared
to rigorous methods? We mainly discuss how to characterize accuracy
loss. Examples: Registration, and bundle adjustment will demonstrate
this.



We need some basic techniques:

• Implicit variance propagation for minimal and non-minimal direct solu-
tions

• Algebraically parametrized variances/covariances for understanding the
influence of the experimental design onto the accuracy.

• Different measures for comparing theoretical and empirical covariance ma-
trices.

1.6 Previous work
tbd.

2 Approximate methods and their accuracy
We assume we have given N observed values l, which generally are noisy thus
follow

y ∼M (E(l),Σll) with l+ v = E(l) . (18)

We discuss how to algebraically and numerically derive covariance matrices for
a large class of direct solutions, minimal and non-minimal ones. This allows to
replace simulation studies onto the accuracy of these methods by the analysis
of the predicted covariance matrices.

2.1 Minimal solutions
Minimal solutions for a set of U unknown parameters x are characterized by
a combination of G ≤ U constraints g(x, l) = 0 involving the observational
values l and, possibly, further U − G ≥ 0 constraints h(x) = 0 only referring
to the unknown parameters. Thus, the problem minimal solvers address is to
determine the parameters x from given observations l using the constaints:

g(x,y) = 0 and h(x) = 0 . (19)

Example 2.1: Minimal solution for the fundamental matrix. The funda-
mental matrix F has nine unknown parameters x := f = vecF. Since the matrix F is
homogeneous and is singular, we only need G = 7 correspondences (x′i, x′′i ), i = 1, ..., 7
collected in a 42-vector l fulfilling the epipolar constraint and – in addition – the length
constraint and the singularity constraint for the U = 9 vector x = f . With the the
vector f O = vecF of the cofactor matrix3 FO we therefore have the minimal problem

g
7×1

= [xi
′TFx′′i ] = [(xi

′′T ⊗ xT
i )f ] = 0 and h

2×1
=
[

f Tf − 1
f Tf O

]
= 0 (20)

3For a 3×3 matrix A = [a1,a2,a3] the cofactor matrix is AO = [a2×a3,a3×a1,a1×a2, ].
It fulfils AO = |A|A−T



for determining the vector f form the observed coordinates, see (Förstner and Wrobel,
2016, p. 572). �

The minimal solution x = x(l) usually is based on some algebraic derivation,
which might be highly complex. In case all steps in the solution are differen-
tiable, and the number of used constraints is minimal,4 we may easily derive
the covariance matrix of the parameter vector x.

Let the U constraints for the U parameters x – possibly out of several
solution vectors – be available. Following Barath et al. (2020, eq. (26)), we can
derive the covariance matrix of x by implicit variance propagation, see Förstner
and Wrobel (2016, Sect. 2.7.5). For this, we concatenate the constraints and
use their Jacobians

k(x,y)
U×1

=
[
g(x,y)
h(x)

]
with A

U×U
= ∂k

∂xT

∣∣∣∣
x,l

, BT
U×N

= ∂k

∂lT

∣∣∣∣
x,l

, (21)

we obtain
Σxx = A−1BTΣllBA−T . (22)

if no singularity exists. Observe, if we have multiple, say T , solutions xt, we
obtain a covariance matrix for each of the T solutions, since the Jacobians A
and B need to be evaluated at x = xt.

Summarizing: For minimal solutions, which do only contain differential al-
gebraic steps, we can derive the covariance matrix for each of several solutions,
exploiting the Jacobians of the used constraints, without following the algebraic
steps of the direct solution. Furthermore, we may numerically identify singular-
ities by analysing the condition number of the Jacobian A or of the covariance
matrix Σxx.

2.2 Models linear in homogeneous parameters
We assume the given N observations are related to the U unknown inhomoge-
neous parameter vector x by the G constraints, which are linear in x, and the
length constraint

g(x,y) = A(y)x = 0 and |x|2 = 1 . (23)

The matrix G × U matrix A(y) generally has rank U − 1 thus is singular with
a rank deficiency of 1.

We are interested in some estimate x̂ for the parameters. The classical
approach exploits the linearity of the constraints w.r.t. x and minimizes the
length of the residual of the constraints when applied to the noisy observations

|A(l) x|2 = xT AT(l) A(l) x with |x|2 = 1 . (24)
4Some solvers allow redundant constraints, and, depending on some criteria only use a

minimal set of constraints. Then, the following derivation applies ot the selected constraints.



w.r.t. the parameters x. This leads to the classical singular value solution

x̂ = vU with A = UDV T , V = [vu] , u = 1, ..., U and d1 ≥ d2 ≥ ...dU .
(25)

the matrices U and V being orthogonal with UTU = V TV = IU−1.
Accuracy. We interpret this optimization using a quasi-Gauss–Markov model,

and start from the linearization at the mean/true values, using x = x̃ + ∆x,

g = g(x, l) = A(l) x = A(y) x̃
=0

+ A(y) ∆x− BT(x̃,y)v
=vg

= A(y) ∆x− vg (26)

with the corrections
vg = BT(x̃,y)v (27)

of the values g and take into account the linearized length constraint to find an
estimate ∆̂x for ∆x of the linear quasi Gauss–Markov model with constraint

g + vg = A∆ x with xT∆x = 0 . (28)

This model is called a quasi-Gauss–Markov model, since its form is a Gauss–
Markov model, but the matrix A(l + v) depends on the unknown corrections
v and the vector x in the length constraint is unknown. While we can use the
estimate x̂ instead of x, we hhave no access to the corrections, but in case the
noise level is low, the approximation of of A(y) by A(l) will be acceptable. The
solution ∆̂x for the corrections of the parameters result from[

ATA x
xT 0

] [
∆̂x
0

]
=
[

ATg
0

]
. (29)

With the inverse of the 2× 2 block matrix[
ATA x
xT 0

]
=
[

(ATA)+ x
xT 0

]
(30)

see (Förstner and Wrobel, 2016, eq. (A.131)), we therefore can solve for the
unknown parameters,

∆̂x = (ATA)+ATg = A+g , (31)

since
(ATA)+A = (V DUTUDV T)+V DUT = V D+U . (32)

Hence the covariance matrix of the parameters results from

Σ
x̂x̂

= A+(y) Σgg A+T(y) . (33)

Since we do not have A(y), having rank U − 1, we use the rank (U − 1)-
approximation A1 of A(l) from

A1 = UD1V T with D1 = Diag([d1, ..., dU−1, 0]) (34)



which fulfills A1(l)x̂ = 0, and use it for determining the pseudo inverse A+ :=
A+

1 . The approximation will be acceptable if the smallest singular value du is
small, indicating the noise of the given data l is small. Due to (27) we have

Σgg = BT(x̃,y) Σll B(x̃,y) (35)

This finally leads to
Σ
x̂x̂

= A+BTΣllBA+T . (36)
Remark: In case we have additional constraints for the parameters, say h(x) =

0 with its linearized form HT∆x = 0, we can enforce these constraints onto the
covariance matrix Σ(1)

x̂x̂
from (36) by:

Σ(h)
x̂x̂

= J(h) Σ(1)
x̂x̂

JT(h) with J(h) = IU − H(HTH)−1HT . (37)

see Förstner and Wrobel (2016, eq. (4.224)). �

Summarizing, we observe: In spite of having a singular value based approx-
imate solution, we are able to predict the covariance matrix of the estimated
parameters in a simple manner. However, the solution contains an approxima-
tion, since the matrix A is evaluated at the given noisy observations instead of
at the estimates for the expectation of the observations.

3 Evaluating covariance matrices
When evaluating a covariance matrix Σ by comparing it to some other covariance
matrix, say C , we are confronted with at least the following questions:

1. Checking correctness of the covariance matrix of a given method.
The classical situation is to check, whether the covariance matrix Σ

x̂x̂
provided by a method actually is a useful prediction of the uncertainty of
the estimated parameters. Such a check should be always be applied for
a new method, in order to prove that the user of the method can take the
reported covariance matrix as a reliable predictor for the accuracy of the
method.

2. Checking superiority or acceptability of a new method compared to a
reference method or a reference covariance matrix w.r.t. accuracy of the
derived parameters.
Two classical situations require such a check:

(a) Given a new method, we want to know whether it is better than a
reference method. Such a reference method either may be a state of
the art method or – within the progress of a research activity – an
older version of the solution of a given task.

(b) Given a method, we want to know whether it is acceptable for some
application, which is specified by a lower bound for its accuracy.



In both cases, the idea is to check, whether functions of the parameters
have a smaller variance when using the covariance matrix Σ of a new
method C than when using the covariance matrix C of some reference
method. The evaluation may be based on the mean or the maximum loss
in accuracy.

3. Measuring the difference or the similarity of a method and a reference
method w.r.t. the accuracy of the derived parameters.
The classical situation is to check, whether a new method leading to esti-
mates with covariance matrix Σ leads to results of similar accuracy, when
compared to a given method leading to estimates with covariance matrix
C .

We only discuss measures for checking the superiority or the acceptability, case
2.

3.1 On ambiguities when comparing motions
Motions mostly are represented as a homogeneous motion matrix

M(R,T ) =
[

R T

0T 1

]
(38)

Based on this convention, determining the difference of two motions, say M1
and M2 still is ambiguous, since we need to collect the small differences in the
rotation and the translation, each with a 3-vector. This can be done in at least
two ways, both are quite common:

1. We may take the quotient of the two matrices

M2M−1
1 ≈ I + ∆Q with ∆Q(s) =

 0 −s3 s2 s4
s3 0 −s1 s5
−s2 s3 0 s6

 (39)

which should be close to a unit matrix. The 6-vector contains the joint
difference of the rotation and the translation difference

s =
[
r
t

]
(40)

2. Alternatively, we may apply the division scheme only to the rotation,

R2R−1
1 ≈ I + ∆R with ∆R(τ ) =

 0 −ρ3 ρ2
ρ3 0 −ρ1
−ρ2 ρ3 0

 (41)

and apply the classical difference scheme to the translation

T 2 − T 1 =

 τ1
τ2
τ3

 (42)



and collect the two 3-vectors in the 6-vector

ζ =
[
ρ
τ

]
(43)

As can be shown, the two vectors differ in the translation part, thus

r = ρ and τ 6= t . (44)

see ?, Mangelson et al. (2019), and (Förstner, 2024, p. 49 ff.). As a conse-
quence, empirically derived covariance matrices may differ, due to the scheme
of determining the 6-vectors characterizing motion differences.

In the following, we assume all motion parameters are evaluated using the
same scheme, and name the 6-vector characterizing motion differences s.

3.2 Maximum and mean loss in accuracy
When comparing two covariance matrices we need to take into account that in
many practical cases the units of the parameters involved are not homogeneous,
such as when evaluating the quality of a motion, where some parameters refer
to the rotations and others refer to the translation, thus the parameter vector
contains elements with unit radians and units m. Especially for motions, we
need to take care on the way, translations are compared. In addition, we need
to provide measures which are invariant to the chosen coordinate system.

If a covariance matrices Σ and a reference covariance matrix C differ to some
degree the quotient

ΣC−1 ≈ I + ∆Σ (45)

should be close to a unit matrix, or the eigenvalues of that quotient should be
close to 1

λu(ΣC−1) ≈ 1, for u = 1, ..., U . (46)

If the covariance matrices would be diagonal, the quotient would indicate the
ratios of the corresponding standard deviations

ru :=
√

(ΣC−1)uu =
σΣ
xu

σCxu

. (47)

This gives an intuition into the structure of the quotient of the two covariance
matrices.

There are several ways to come to an intuitive description of the accuracy
loss, in all cases discussing a maximum and a mean loss in accuracy.

• Using the ratios certainly is the first choice, since their interpretation is
easy to explain. We might report the vector

r = [r1, ..., ru, ..., rU ]T (48)



or the mean ratio, using the quadratic mean

r =
√

1/U
∑
u

r2
u = 1√

U
|r|2 (49)

or the maximum ratio
rmax = max

u
(ru) . (50)

All measures are interpreted as ratios of standard deviations.

• Since the correlations of the parameters are not taken into account we
might similarly us the eigenvalues instead of the ratios of the variances.
Let the eigenvalues be

λu = µ2
u (51)

such that the µu again can be interpreted as ratios of standard deviations
We might report the vector

µ = [µ1, ..., µu, ..., µU ]T (52)

or the mean loss, using the quadratic mean

µ =
√

1/U
∑
u

µ2
u = 1√

U
|µ|2 (53)

or the maximum loss
max
µ

= max
u

(µu) . (54)

Also here, all measures are interpreted as ratios of standard deviations,
namely in the direction of the eigenvectors.

The covariance matrix Σ to be evaluated, may either be the Cramer-Rao
bound, i.e., the uncertainty predicted by the method, or it may be derived
form a sample of estimates, say x̂j , j = 1, ..., J , derived from a sample of the
observations, say li, j = 1, ..., J . The we obtain the the empirical covariance
matrix from

Σ̂
x̂x̂

= 1
J − 1

∑
j

(x̂j − m̂)T(x̂j − m̂) with m̂ = 1
J

∑
j

x̂j (55)

If the number of parameters is large, we might not want to do sampling.
Alternatively, to determining the quotient ΣC−1 we may directly integrate this
division into a scalar measure which assumes we have some reference parameters,
say from a ML-estimate, via

F = 1
U

(x̂− x̃)TC−1(x̂− x̃) | H0 ∼ F (U,∞) (56)

which in case the zero-hypothesis holds, i.e., the method is optimal, the differ-
ences should be 0, is F -distributed with U and ∞ degrees of freedom. In case



the method to be evaluated is approximate, solution will be biased, and the
Fisher-test statistic will be larger than 1. Therefore, it might be meaningful to
report the loss in accuracy by the quadratic difference of F and 1:

∆F =
√
F − 1 = σb

σx
(57)

which tells how much the bias, say with standard deviation σb increases the
standard deviation σx of the estimated parameters on an average.

3.3 Effect of model errors
We discuss the effect of several types of errors in the method onto the result.

Since our topic is approximate methods we focus on typical simplifications
made for generating approximate methods. There essentially are three types of
simplifications:

1. Using a simplified covaraince matrix, e.g., (1) by neglecting mutual cor-
relations or (2) by replacing the inhomogeenous uncertainty by a more
homogeneous uncertainty,

Σ = [σmn] 7→ Diag([σ2
n]) or Diag([σ2

n]) 7→ σ2IN . (58)

Neglecting correlations usually is motivated by computational efficiency,
since the inversion of non-diagonal matrices generally leads to full co-
variance matrices, or requires the solution of equation systems with non-
diagonal entries. Sometimes the correlations of observations are not kn-
won. Replacing inhomogeneous uncertainty by a more homogeneous also
may be motivated by the lack of knowledge.

2. Replacing the Jacobians within an iteration process by matrices, which
are more simple to calculate, e.g., (1) evaluating the Jacobains not at the
fitted observations y, which might not be available for the method, but at
the given, noisy observation l, or – within an iteration process – (2) taken
the Jacobian, of the first iteration also in the following iterations:

A(l) 7→ A(y) or A(ν) 7→ A(1) (59)

Evaluating Jacobians at the observations is the classical idea of Sampson’s
proposal. Fixing the Jacobain corresponds to classical gradient descent
methods, in contrast to Gauss–Newton methods.

3. Stopping the iteration sequence before convergence.

We give some insight what effect to expect from the first type of approximation,
and refer to (Förstner, 2024, p. 44 ff.).

If the estimation is performed in a Gauss-Markov model E(l) = Ax with
Σll = Σ but the true covariance matrix of the observations is Σ̃ll = Σ̃, then the
covariance matrix of the estimated parameters is

Σ
x̂x̂

= (ATΣ−1A)−1ATΣ−1 Σ̃ Σ−1A(ATΣ−1A)−1 , (60)



which follows from x̂ = (ATΣ−1A)−1ATΣ−1(l − a). Observe, only if Σ = Σ̃ do
we obtain the classical result

Σ̃
x̂x̂

= (ATΣ̃−1A)−1 . (61)

The relation between both covariance matrices can be derived from the eigen-
values of the quotient

λ(Σ
x̂x̂

Σ̃−1
x̂x̂

) = λ
(

(ATΣ−1A)−1ATΣ−1 Σ̃ Σ−1A(ATΣ−1A)−1 ATΣ̃−1A
)
. (62)

Equations (60) and (62) can be used to investigate the effect of choosing a
simplified stochastical model, e.g., when using Σll = σ2IN instead of Σ̃.

For Σ = σ2I we would obtain

λ(Σ
x̂x̂

Σ̃−1
x̂x̂

) = λ
(

(ATA)−1AT Σ̃ A(ATA)−1 ATΣ̃−1A
)
, (63)

obviously, independent on the scaling of the covariance matrices.
With the hat matrix

H = A(ATA)−1 AT (64)

this is equivalent to analysing

λ(Σ
x̂x̂

Σ̃−1
x̂x̂

) = λ(HΣ̃HΣ̃−1) ≥ 1 , (65)

which is a unitless quantity. Due to the Gauss–Markov theorem his quantity
always is not smaller than 1, i.e., – as to be expected – the approximate solution
generally is less accurate than the optimal.

4 Examples
4.1 Example: mean of observations
4.1.1 1D: Neglecting common correlations

The first example is meant to show, that changes in the covariance matrix my
not influence the estimates at all.

We assume the N observations l = [ln] have joint covariance matrix

D(l) : σ2
dIN + b11T 7→ σ2

dIN . (66)

or in detail.

Σll = (σ2
d + b)



1 . . . ρ . . . ρ
...

. . .
...

. . .
...

ρ . . . 1 . . . ρ
...

. . .
...

. . .
...

ρ . . . ρ . . . 1

 and ρ = b

σ2
d + b

(67)



Then, neglecting the correlations has no effect onto the estimate µ̂, but only
onto its variance σ2

µ̂
:

σ2
m̂u

= σ2
d

N
+ b (68)

see (Förstner, 2024, p. 37 ff.).
Tis is a special case a Lemma by Rao (1967): If the covariance matrix of the

observations is changed in a specific manner, the resultant estimated parameters
are the same, but with a different covariance matrix, see (Förstner, 2024, p. 24)
and Fig. 2.

Figure 2: Visualization of Rao’s lemma: Least squares estimation with modified
covariance matrix. Model l ∼ N (ax,Σ). If Σ = σ2I+γaaT or if Σ = σ2I+θzzT,
with z ⊥ a, hence generally, if Σ = σ2I + γaaT + θzzT, the semi-axess of the
standard ellipse are parallel or orthogonal to a. Then, the least squares estimate
for the generalized covariance matrix is the same as for Σ = I2. However, the
covariance matrix of the estimate depends on the modification, namely the
factors σ2 and γ.

4.1.2 1D: Simplification of standard deviations

This example is meant to show the effect onto the weighted mean when replacing
varying weights by constant weights. In all cases the accuracy deteriorates,
essentially depending on the scatter of the weights, see (Förstner, 2024, p. 43
ff.).

Estimating the weighted mean of N observations may be simplified by ap-
proximating it by the arithmetic mean.

D(l) : Σ̃ = Diag([σ̃2
n]) 7→ IN . (69)

Effect onto estimate and onto variance by a factor

λ =
σ2
µ̂
| Σ̃

σ2
µ̂
| I =

µ
(a)
σ̃2

µ
(h)
σ̃2

≥ 1 (70)



being the ratio of the arithmetic mean and the harmonic mean of the variances,
always being not smaller than 1. E.g. ist the weights are taken from a Gamma-
distribution with mean weight µw and standard deviation

σw = cµw , c ≤ 1 (71)

of the weights, then the factor is

λ =
σ2
µ̂
| Σ̃

σ2
µ̂
| I = 1

1− c2 ≥ 1 . (72)

4.1.3 1D: Free choice of covariance matrix for finding estimate x

This example is meant to show, that for any estimated mean µ̂ there exists a
covariance matrix for two observations leading to this mean as optimal estimate.
This is an indication, that postulating a method is optimum is meaningless
without further specification.

Given are two observations. If we assume they are normally distributed,
with covariance matrix

D(l) = σ2
[

1 ρk
ρk k2

]
(73)

we may specify the estimated mean to be x̂ = x and the variance of the estimated
mean to be σ2

x̂
= v and derive algebraic expressions for ρ and k. In the special

case l = [1, 0]T and x = −1 we require, that the mean of the two observations
lies outside the interval between the two observations. We find

σ2 = 3
4k2 − 1v and ρ = 2k2 + 1

3k for k ∈ (0.5, 1) . (74)

As an example, for

l =
[

1
0

]
Σll = σ2

[
27 17
17 12

]
σl1
σl1

= 2
3 ρ = 17

18 ≈ 0.9444 (75)

we obtain x̂ = −1.

This confirms the — updated – intuition, that for any observation vector
l, any design matrix A, and specified estimate x there exists (at least one)
covariance matrix Σll, such that the solution to the Gauss-Markov model l+v =
Ax is x̂ = x.

4.1.4 2D: Simplification of covariance matrices of points

The previous example can be easily generalized and visualized in 2D: In case
we determine the statistically optimal mean of two 2D points with arbitrary
covariance matrix, the mean point generally does not lie on the straight segment
between the two points.



Figure 3: Simple mean xaC and weighted mean/centroid xwC of two uncertain
points x1 und x2 with highly anisotropic uncertainty (red standard ellipses).
The weighted centroid obviously lies not on the straight segment between the
two points

The Fig. 3 shows the simple and the weighted mean of two 2D points. Their
uncertainty is anisotropic, indicated by the red standard ellipses. The mean
values result from the two Gauß-Markov models[

x1
x1

]
∼ N

([
I2
I2

]
xaC , σ

2I4

)
(76)

and [
x1
x1

]
∼ N

([
I2
I2

]
xwC ,Diag({Σ11,Σ22})

)
. (77)

The variance σ2 in model (76) was chosen to be the mean of the variances in
model (77), see the blue circles.

Explicitly the centroids are

x̂aC = 1
2(x1 + x2) and x̂wC = (Σ−1

11 + Σ−1
22 )−1(Σ−1

11 x1 + Σ−1
22 x2) . (78)

The simple mean is the midpoint of the two given points, as expected in contrast
to the weighted mean. The anisotropic uncertainty of the two points allows the
mean to be shifted slightly in the direction of the two major semiaxes.

4.2 Motion from point and plane correspondences
Registration of point clouds is a standard problem in point cloud processing. It
may be based on corresponding points, the classical starting point, on approx-
imately corresponding point, as within the iterative closest point procedure,
or point to plane correspondences in order to avoid the effect of non-existing
point correspondences, or on corresponding plane segments, especially useful in
man-made environments.



4.2.1 Registration from point correspondences

The classical method for registration of corresponding points goes back to Arun
et al. (1987) and starts from the functional model

E(X′i) = MXi with Xi =
[
Xi

1

]
, X′i =

[
X ′i
1

]
, and M =

[
R T

0T 1

]
(79)

with the corresponding homogeneous coordinates (Xi,X′i), i = 1, ..., I and the
rigid motion matrix M, depending on the 3D rotation matrix R and the 3D
translation vector T . The method assumes the points to have the same isotropic
uncertainty, i.e., the covariance matrix Σll = I. Though the method easily can
be generalized to points with varying weight, but still isotropic uncertainty, the
points in real point clouds show a severe inhomogeneity and strong isotropies,
whether the points are derived from stereo pairs or directly observed by LiDAR
scanners, as shown in Fig. 4. Hence, we may cope with the uncertainty cases

Figure 4: Point accuracy obtained with stereo and LiDAR systems. In both
cases the uncertainty of the points is depending on the point coordinates and
highly inhomogeneous and anisotropic

in Fig. 5. Only for the two cases in the lower row, direct solutions exist. In
addition, the method assumes only the coordinates X ′i are uncertain, which
generally does not reflect real situations.

4.2.2 Registration from plane correspondences

Khoshelham (2016) proposed a direct solution for determining the rigid motion
between two point clouds based on plane correspondences using the model

E(A′i) = M(R, t)−TAi with Ai =
[
ni
−si

]
, A′i =

[
n′i
−s′i

]
(80)
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Figure 5: Uncertainty structure of point clouds Top: anisotropic, Bottom:
isotrop. Left: inhomogeneus. Right: homogeneous. The direct solution of
Arun et al. (1987) refers to the isotropic and homogeneous case, lower right,
and – via weighting – can easily be generalized to the isotropic inhomogeneous
case, lower left

with the homogeneous plane parameters Ai depending on the normalized normal
vectors N i and the distances Si of the plane from the origin. Rewriting the
constraints as

0 = Rn− n′ and 0 = nTt− s+ s′ (81)

shows both constraints are linear in the elements of R and t. For a statisti-
cally optimal procedure we need the accuracy of the planes, derived from the
point cloud, see (Förstner, 2024, p. 81 ff. and p. 100 ff). Some direct so-
lutions for deriving motion parameters from corresponding planes a given in
(Förstner, 2024, p. 106 ff.) Also this method is statistically suboptimal, but
leads to sufficiently accurate approximations, similar to the algorithm by Arun
et al. (1987). Förstner and Khoshelham (2017) proposed refinements of the al-
gorithm by Khoshelham (2016) and compared it with the statistically optimal
ML-estimate.

Here we augment these findings and report on the quality of approximate
registration methods based on point correspondences and based on plane corre-
spondences.

4.2.3 Approximating the stochastical model

We discuss the effect of simplifying the covariance matrix of the points in two
point clouds with known correspondences onto the accuracy of the, now seven,
parameters of a similarity transformation, thus including a scale parameter s.
We choose three different stochastical models:

Σ(W )
xixi

= Σ(xi) , Σ(w)
xixi

= σ2
xi

I3 , Σ(1)
xixi

= σ2I3 (82)

We consider two cases, which differ in the angle of the viewing directions.



1. In the first case we assume the point lie in a spatial corridor. We assume
I = 100 3D points, which are observed in a rectangular box of size 200×
20 × 900 [m]3 in an average distance of 550 m using a Leica RTC360
Scanner, positioned at a distance of 200 m.
The data sheet of the scanner mentions the following accuracy of the
instrument: The distance variance has a constant part of 1 [mm2], and
a distance dependent part of (10 [ppm])2, the directional uncertainty is
given with 18”. Thus, we use

σd =
√

(0.001 [m] )2 + (10−5d)2 and σα = 18′′ , (83)

Fig. 6, left and middle show the observed coordinates with the corre-
sponding viewing point and the corresponding standard ellipses (blown
up). The uncertainty pattern is highly inhomogeneous and anisotropic.
In Fig. 6, right we see the observed point together with the two viewing
points. The ellipses indicat the joint uncertainty of the points in the left
and the right point cloud. The ellipses indicate the uncertainty of the
difference of the coordinates in the two coordinate systems, technically
representing the covariance matrix Σnn = BTΣllB, see eq. (8). Since the
viewing points are quite close together, the ellipses only are a bit thicker
than in the individual point clouds, and will be used for determining the
similarity transformation.
The following table shows the ratios of the standard deviations for the
three solution pairs, based on the solution with constant weight (1), with
individually weighted circular uncertainty, and with the rigorous determi-
nation of the covariance matrices (W).

s r1 r2 r3 t1 t2 t3 max
1W 1.4 1.44 1.53 1.74 2.48 1.74 1.60 2.48
wW 1.65 1.01 1.00 1.14 1.30 1.39 1.01 1.65
1w 0.84 1.43 1.52 1.53 1.9 0 1.25 1.59 1.90

Table 1: Ratio of the standard deviations of the seven parameters (s, r, t) for
the three comparisons of the approximate methods (1, w) and the statistically
optimal solution (W ). Case with narrow basis 200 m

2. Now, we assume that the same points are observed from two mutually
far viewpoints, with a basis of 1000 m, such that the viewing directions
intersect nearly with 90◦.
Fig. 7, left and middle again show the observed coordinate with the indi-
vidual viewing point and the corresponding standard ellipses. The ellipses
in the right part again show the standard ellipses of the difference of the
coordinate in both systems. Now, since the viewing directions are nearly
perpendicular, taking differendes leads to nearly circular standard ellipses,
though still inhomogeneous. Therefore, we can expect, that the differences



Figure 6: Observed coordinates with (blown up) standard ellipses. Small basis
with 200 m

between the three methods will be smaller. This is confirmed by the values
in the following table 2. The maximal ratios of the standard deviations are
below 1.6D. The quadratic mean of the ratios of the standard deviations

s r1 r2 r3 t1 t2 t3 max
1W 1.02 1.10 1.12 1.49 1.02 1.58 1.12 1.58
wW 1.09 1.01 1.01 1.20 1.07 1.23 1.01 1.23
1w 0.94 1.10 1.11 1.24 0.95 1.28 1.11 1.28

Table 2: Ratio of the standard deviations of the seven parameters (s, r, t) for
the three comparisons of the approximate methods (1, w) and the statistically
optimal solution (W ). Case with wide basis 1000 m

are shown in Fig. 8 for the narrow and the wide basis. Obviously, the
mean ratios of the standard deviations a much smaller if the point cloud
is observed from different directions.

This type of analysis, can be made for any configuration, and used for planning
purposes, in this case also the decision on an adequate stochastical model.



Figure 7: Observed coordinates with (blown up) standard ellipses. Wide basis
with 1000 m

Figure 8: Mean relative standard deviations of parameters for the case with
narrow and wide basis

4.2.4 Approximating the algorithm

We now compare three approximate methods with the ML-estimation for de-
termining the rigid motion between two point clouds based on given plane cor-
respondences, see Förstner and Khoshelham (2017). We take the following
approximate methods

ALG the algebraic closed-form solution proposed by Khoshelham (2016). It
minimizes the residual of the constraints

E[ALG]) = |A(l)x|2 = (A(l)x)T A(l)x (84)

ALGw The algebraic solution with weighting the constraints. Since the con-
straints g = A(l)x have a covariance matrix of Σgg = BTΣllB, we mini-
mize the weighted residual of the algebraic error

E[ALGw]) = |A(l)x|2W gg
= (A(l)x)T Σ−1

gg A(l)x (85)



Since the matrix B is now known at the beginning, the methods is a two-
step method: (1) minimizing E[ALG]), (2) determining B and minimizing
E[ALGw]).

ML-1 Instead of refining the algebraic method, we apply a single iteration of
a ML-estimation, based on the result of the algebraic minimization, thus
also performing a two-step procedure.

We analyse compare the methods using simulated data, in order to be sure,
that the sampling of the observations follows the assumed covariance matrices.
The test refers to J = 50 plane pairs, randomly chosen in a cube [−1,+1]3
and covariance matrices chosen as ΣAiAi

= σ2
A(I + UUT) with random matrices

having standard normally distributed elements, for details see (Förstner and
Khoshelham, 2017, sect. 4.1). The average and the maximum loss in accuracy
µ and maxµ following (53) and (54) is shown in Fig. 9 as a function of the num-
ber of corresponding planes. Obviously, the two refined approximate methods

Figure 9: Loss in accuracy of the three direct solutions shown as a function
of the number of plane pairs, realistic configuration, J = 100 samples. Left:
Average loss µ. Right: Maximum loss maxµ. Zero-loss is achieved for values
1 = 100, the bottom line of the graphs. The single iteration ML solution (ML-1)
and the whitened algebraic solution (ALGw) have a significantly smaller loss of
accuracy as compared to the algebraic solution (ALG) in terms of both measures

(ALGw) and (ML-1) consistently show no severe loss in accuracy, in contrast
to the algebraic solution.

4.2.5 Comparison with ICP

Table 3 shows the result of the comparison between the direct plane-to-plane
methods and the ICP variants in terms of loss of accuracy with respect to the
optimal ML solution. While ICP-pl performs better than ICP-pt, both ICP
variants have a significantly larger loss of accuracy as compared to ML-1 and
ALGw which exploit the uncertainty of the planes. Using the purely algebraic
solution also shows large losses in accuracy, being a factor 45 worse in standard
deviation, compared to the ML-solution.



Method Average loss Maximum loss
ML-1 1.24 2.04
ALGw 1.61 2.76
ALG 45.15 104.80
ICP-pl 3.66 6.09
ICP-pt 5.82 12.11

Table 3: Comparison of direct plane-to-plane methods with the point-to-point
ICP (ICP-pt) and point-to-plane ICP (ICP-pl) in terms of loss of accuracy
with respect to the optimal ML solution (realistic configuration, 57 plane pairs,
J = 100 iterations)

4.2.6 Computing times

Tab. 4 shows the computing times for a small and a large example. The
computation times for 1000 (randomly generated) plane pairs shows that the
estimation methods can be scaled up to larger scenes with more planes and
perform in real time. The approximate methods ML-1 and ALGw, are signifi-
cantly faster than the ML method. Especially, the ML-1 method, with a single
addition ML-iteration appears to be the best choice.

However, this is only a tiny fraction of the CPU time for establishing the
correspondences, as to be expected.

# pairs ML ML-1 ALGw ALG
57 0.085 0.012 0.021 0.010

1000 1.6247 0.1331 0.3088 0.0653

Table 4: CPU times (in seconds) for the optimal and direct motion estimation
methods for 57 and 1000 plane pairs

4.3 Bundle adjustment with trilinear constraints
The last example shows the effect of different approximations possibly used in
bundle adjustment and is taken from Schneider et al. (2017).

Instead of using collinearity equation, we use two epipolar and one trifocal
constraint. The advantage is: the methods allows for points which are very far
without leading to singularities. In detail we have

g1(xi,xj ,mi,mj) = 0 , g2(xj ,xk,mj ,mk) = 0 , g3(xi,xj ,xk,mi,mj ,mk) = 0 ,
(86)

with 6D vectors mi representing the camera poses. Hence, the constraints
between the images lead to non-zeros in the off diagonal terms of the Jacobian
B of the constraints w.r.t. observations.



Figure 10: Two epipolar and one trifocal constraint per 3D point

The structure of normal equation system is the following:

N∆x = n with N = AT(BTΣllB)−1A︸ ︷︷ ︸
=C

, and n = AT(BTΣllB)−1∆l︸ ︷︷ ︸
=c

. (87)

Both matrices, B and N are sparse, but not diagonal. We need to avoid the in-
version of BTΣllB, since the inverse of a non-diagonal matrix usually is full. We
may circumvent this by solving two sparse equation systems, first determining
[C , c] from

BTΣllB [C , c] = [A,∆l] and ATC ∆x = ATc . (88)

and then solving the generally sparse normal equation system.
We report on the effect of the following approximations, all referring to the

weight matrix
W nn = BTΣllB (89)

of the constraints.

A Approximating the Jacobians, by evaluating them at the observations in-
stead of at the fitted observations. The result will depend on the noise
level of the observations.

B Neglecting the correlations between the constraints, i.e., by using

W [B]
nn = Diag(W nn) . (90)

C Applying both approximations A and B.

D Using the weight matrix W nn from the first iteration. The result will
depend on the quality of the approximate values.



name image size focel length distance
BUILDING 5 MPixel 1589 pixel approx 15 m - 60 m

FIELD 12 MPixel 2347 pixel 100 m

Table 5: Datasets with some characteristics

Figure 11: Data sets BUILDING and FIELD

The following experiments were performed with two data sets, taken with a
UAV. The layout is shown in Fig. 11 Reference data are obtained from a ML
estimation from which the estimated parameters x̂ and the fitted observations
l̂ = ŷ are taken as true values. The experiments are repeated 100 times, each
time contaminating the observations with varying noise of level σ0l. For case
D, where the Jacobian is fixed after the first iteration, the approximate values
are randomly distorted within a range of 0.1 % to 10 % of the relative precision
σ0x of the pose parameters.

Fig. 12 shows the loss in accuracy measured by the difference ∆F from
(57) of the Mahalanobis distance of the four cases of the approximated bundle
adjustments, when compared to the statistically rigorous solution. We provide
the loss for different moderate noise levels, from 0.1 mrad to 3.0 mrad directional
standard deviation, for focal lengths of 2000 pixel this corresponds to standard
deviations of 0.2 pixel to 6 pixel in the image.

In all cases the effect of the approximation increases linearly with the noise
level. Obviously, the approximation of the Jacobian (case A, blue lines) by
evaluating them at the observations instead of at the fitted observations leads
to the smallest loss in accuracy. The effect of neglecting the correlations (case
B, red lines) is larger. Hence, the combined effect (case C, green lines) shows
an increase up to more than 40 %. The effect of fixing the Jacobian (case D,
black line) is even larger.

The effect of the variation of the approximate values onto the result when
fixing the Jacobian after the first iteration is shown in Tab. 6. The variation of
the approximation is also shown in degrees: they indicate the variation of the
relative poses of neighbouring cameras. Also here, the effect onto the accuracy
reaches values up to 25 %.

The accuracy loss in these experiments are mostly below 30 %. This might
be acceptable, if computing time is essential.



Figure 12: The loss in accuracy ∆FCase in percent of estimated pose parame-
ters induced by the individual approximations of Case A-D at different noise
levels σ0l in radian. Cases A: approximate Jacobian, Cases B: neglecting corre-
lations, Cases C: cases A and B, Cases D: fixing Jacobian of first iteration

σ0x [mrad] 1.0 3.0 10.0 30.0 100.0
σ0x [◦] 0.06 0.17 0.57 1.72 5.73

Building
Case D 9.82 10.52 17.16 20.97 31.44

Field
Case D 11.50 13.28 14.52 16.94 25.36

Table 6: The loss in accuracy in percent of estimated pose parameters at noise
level σ0l = 0.1 mrad and different relative precision σ0x of approximate values,
the variation of the approximation also given in degrees

5 Closure
We discussed several aspects of approximate and rigorous methods for parameter
estimation:

• Since the notion of a rigorous method is linked to some specified optimiza-
tion measure, characterizing a method as rigorous is not unique.

• Statistically optimal estimation methods often refer to maximum likeli-
hood estimation, mostly including the assumption of normally distributed
observations. This of course is not valid for robust methods, which we did
not discuss.

• A large class of approximate methods may be upgraded (1) by providing
a reliable prediction about the covariance matrix of the (suboptimally)



estimated parameters, and (2) by adding a single second algorithmic step
to obtain a statistically nearly optimal method, making the CPU time
predictable.

• The decision on which method to be applied, be it approximate or rigorous,
lies in the hand of the user, since it depends on the criteria for accepting
a possibly approximate solution in a specific application area.

• The author of (a paper on) a method, again be it approximate or rigorous,
needs to provide some data sheet on the performance of the proposed
method, which allows the user to evaluate, whether in his/her application
area the method might be appropriate.

• We discussed several estimation problems which are regularly solved with
approximate or statistically optimal methods. The range of effects of ap-
proximations onto the estimated parameters varies between 0 and infinite,
thus needs to be investigated for each type of estimation problem and each
class of application scenario. In many practical cases the effect is com-
parably small, sometimes leading to accuracy losses up to a factor 100,
however, often below a factor 2.

The presented examples may stimulate further investigations into the charac-
teristics of approximate methods.

The transfer of the discussed ideas on specifying and evaluating approximate
and rigorous methods into the area of deep learning is difficult, since short cuts,
such als algebraic derivations of covariance matrices, for evaluating the result not
yet exist. The lack of a closed world assumption, which exists when estimating
geometric entities, represents a real challenge.
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