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Vegetation Height Model settings and Higher Spatial Data 
Resolution Improve Deadwood Detection 

from Aerial Imagery 

KATARZYNA ZIELEWSKA-BÜTTNER1, JOHANNES KROMER1,
SELINA GANZ2, PETRA ADLER2 & VERONIKA BRAUNISCH1,3 

Abstract: Large-scale mapping of standing deadwood can widely support forest manage-
ment. We evaluated the effect of spatial resolution of the input data (orthophotos and 
Vegetation Height Models (VHMs)) and different VHM settings on the accuracy of an 
existing two-stage deadwood mapping approach based on random forest (RF) classifica-
tion combined with an uncertainty model (UNC). The model was developed based on 
orthophotos of 0.5 m and a VHM of 1 m spatial resolution generated from aerial imagery 
of 0.2 m resolution. Higher spatial resolution of orthophotos (0.2 vs. 0.5 m) and VHM 
(0.5 vs. 1 m) both improved model accuracy. In addition, modifying VHM settings from 
the highest (VHM-H) to the lowest (VHM-L) point per pixel allowed better discrimination 
of deadwood from bare ground. Our results highlight the importance of thoroughly se-
lecting spectral and structural input data settings in line with the mapping goal. 

1 Introduction and motivation 

Deadwood is considered an important natural forest element on which about 30 % of the forest 
species depend (BAUHUS & HERRMANN 2010), e.g.: bats (HENDEL et al. 2023; KORTMANN et 
al. 2018; Bouvet et al. 2016), saproxylic beetles (LASSAUCE et al. 2011; SEIBOLD et al. 2014 ) 
or birds (ZIELEWSKA-BÜTTNER et al. 2018; BALASSO 2016). Knowing the distribution and char-
acteristics of deadwood is thus crucial for informed biodiversity conservation (STIGHÄLL et al. 
2011; BRAUNISCH 2008; VÍTKOVÁ et al. 2018). In addition, the accumulating effects of climate-
change-induced forest disturbance in Central Europe (RAKOVEC et al. 2022) have exacerbated 
the need for accurate deadwood information across large spatial scales. Tree dieback due to 
drought stress and insects’ outbreaks (SCHULDT et al. 2020), especially of norway spruce (Picea 
abies) (SENF & SEIDL 2021), has dramatically changed the patterns of deadwood occurrence 
from small patches of targeted deadwood retention to the uncontrolled development of larger 
deadwood areas. Research questions regarding traffic and work safety (STEREŃCZAK et al. 
2017), forest mortality (NOWAKOWSKA et al. 2020; KAMIŃSKA et al. 2020), disturbance dynam-
ics (SENF & SEIDL 2017) and responses of forest biodiversity to disturbances (KEBRLE et al. 
2022; THORN et al. 2017) have become more pressing, with serious implications for future for-
est management (MÜLLER et al. 2018; KUULUVAINEN et al. 2021; THOM & KEETON 2020).  
In recent years, numerous remote sensing methods have been developed to map standing dead-
wood on various spatial scales. Studies focusing on European (SEIDL et al. 2016) or National 
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(SCHIEFER et al. 2023) scales use satellite data due to their large spatial coverage, primarily 
Sentinel 2 data of the Copernicus Mission (ESA 2020) with a spatial resolution of 10 m. Meth-
ods utilizing higher-resolution satellite data of 1 m or higher, as provided by e.g. WorldView-
3 (EUROPEAN-SPACE-IMAGING 2018), offer a viable alternative for single tree detection (LIU et 
al. 2021). In contrast, methods based on unmanned aerial vehicles (UAV) and aerial imagery 
are able to detect deadwood at the tree level (JUTRAS-PERREAULT et al. 2023; NÄSI et al. 2018), 
which is of great importance for some applications, such as habitat analysis for deadwood-
dependent species or traffic safety operations.  
Whereas flight coverage of UAV based approaches are limited to small areas, aerial imagery 
are suitable for applications on local and regional scales (KRZYSTEK et al. 2020). Flight cam-
paigns and programs of the state surveys often cover entire geographical regions or states with 
high spatial resolution aerial imagery including red, green, blue and near-infrared (RGBI) spec-
tral bands (ZIELEWSKA-BÜTTNER 2020), the latter being particularly advantageous for differen-
tiating between live, declining and dead vegetation (HILDEBRANDT 1996; ZIELEWSKA-BÜTTNER 
2020). Historically, aerial images were the first remote sensing data used for visual interpreta-
tion and also deadwood detection. Established protocols exist for the recognition and manual 
delineation of dead trees and forest areas (AFL 2003; AHRENS et al. 2004). More recently, au-
tomated deadwood detection methods were developed utilizing digital aerial imagery solely 
(ZIELEWSKA-BÜTTNER et al. 2020; SCHWARZ et al. 2023) or in combination with Aerial Laser 
Scanning (ALS) (KRZYSTEK et al. 2020; KAMIŃSKA et al. 2018; HEURICH et al. 2015). Yet, 
while the costs of acquiring ALS data providing valuable information on vertical tree structure 
still limits its operational use, aerial imagery data has been often acquired at regular intervals 
by state mapping agencies, their quality is continuously improving and they are increasingly 
accessible for free (FASSNACHT et al. 2023), making them suitable for the development of re-
mote sensing-based monitoring.  
Digital RGBI aerial imagery data bear a great potential for deadwood mapping due to its wide-
spread availability, suitable spectral resolution and defined standards. However, similar spectral 
signatures of bare ground and deadwood pixels often cause a misclassification of the two 
(FASSNACHT 2013; ZIELEWSKA-BÜTTNER et al. 2020; MEDDENS et al. 2011). Vegetation height 
information is therefore an important parameter that aids identification of bare ground and low 
vegetation areas. VHMs based on image matching are not as accurate as VHMs from ALS 
(GANZ et al. 2019, WHITE et al. 2018). However, higher overlap and resolution of aerial imagery 
improve the quality of the VHMs (ZIELEWSKA-BÜTTNER et al. 2016) which - coupled with more 
detailed spectral information from higher resolution data - can facilitate more accurate dead-
wood detection (KAMIŃSKA et al. 2018).  
In this study, we evaluated the influence of (1) an increased spatial resolution and (2) alternated 
resampling methods of the input data: digital orthophotos and Vegetation Height Models 
(VHMs) on a two-stage deadwood mapping approach based on random forest (RF) classifica-
tion combined with a deadwood uncertainty model (UNC) (ZIELEWSKA-BÜTTNER et al. 2020). 
In addition, we tested (3) alternative VHM-settings, comparing VHMs reflecting the highest 
(VHM-H) or lowest (VHM-L) point per pixel, hypothesizing an improved discrimination be-
tween bare ground and deadwood with the latter approach. We focused on improvements that 
can be achieved using only widely available publicly acquired stereo aerial imagery data. Map-
ping results were evaluated for both stages (RF and UNC) to test if altered input data would 
improve the accuracy of the RF to an extent that would allow dropping the UNC stage of the 
algorithm.  
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2 Material and Method 

2.1 Study Area  

The study area of 600 ha is located around the strictly protected forest reserve “Feldseewald” 
of 102 ha on the northern slopes of Feldberg (1493 m a.s.l.), the highest mountain in the Black 
Forest (South Western Germany) (Fig. 1). In the center of the area, the mountain glacier lake 
“Feldsee” is located at 1100 m a.s.l. Steep slopes with bare rock formations rise from the lake 
to the south, west and north-west whereas the elevations to the east and north-east rise smoothly.  

 

Fig. 1:  Location of the study area in Germany and Black Forest region (1) with the borders of the 
study area, including the “Feldseewald” forest reserve, with training data polygons used for 
calibration of the RF models (2), examples of deadwood in the area (3, 4), Vegetation Height 
Model (VHM) (5), Digital Terrain Model (ALS-DTM) of the area (6). Color-infrared (CIR) or-
thophotos are used according to the licence agreement with the State Mapping Agency 
(LGL) 

The unmanaged forests of the strict reserve are surrounded by large, managed forest stands with 
openings of mountain meadows. The montane and subalpine conifer and mixed forests is dom-
inated by Norway spruce (Picea abies), accompanied by Silver fir (Abies alba) and European 
beech (Fagus sylvatica). Strict protection policy in the forest nature reserve, created in 1993, 
allowing natural disturbances and natural tree mortality as a part of the natural processes led to 
abundant retention of deadwood in different stages. Severe droughts in 2018 and 2019 
(SPIECKER & KAHLE 2023), followed by bark beetle infestations, contributed to the formation 
of new deadwood, making the study area very suitable for studying deadwood detection and 
mortality. 
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2.2 Deadwood detection method 

In this study, we evaluate the changes in input data on the performance of the deadwood detec-
tion method developed by ZIELEWSKA-BÜTTNER et al. (2020). It detects standing deadwood (h 
> 5 m) using orthophotos (0.5 m resolution) and VHMs (1 m resolution), derived from stereo 
aerial imagery of 0.5 m resolution and 60/30 % overlap (end/side lap) (Fig. 2). A two-stage 
algorithm classifies the input data into four model classes: bare ground, live, declining and dead 
trees. It includes a random forest (RF) classification followed by a “deadwood-uncertainty” 
filtering model (UNC), which quantifies the probability of a “deadwood”-pixel to be correctly 
classified as a function of the environmental and spectral conditions in its neighborhood. Before 
the UNC, a “slope filter” and “deep shadow mask” is applied.  

 

Fig. 2:  Graphical representation of the workflow of the model developed by ZIELEWSKA-BÜTTNER et 
al. (2020) for the automated detection of standing deadwood, along with living and declining 
trees and bare ground. Input data, training data, as well as the predictor variables used in 
the random forest (RF) and deadwood uncertainty model (UNC) are illustrated in vertical 
sections in different shades of grey, additional filters and masks are shown in light grey 
boxes without frames.  

2.3 Remote sensing data 

The original input data for this study, including orthophotos, vegetation height model (VHM), 
the original aerial imagery, photogrammetric point clouds and the information on flight date 
and time, were provided by the state agency of spatial information and rural development of 
Baden-Württemberg (LGL 2022). The pan sharpened stereo aerial images contained four chan-
nels (red, green, blue and near infrared (RGBI)) with a radiometric resolution of 16 bit (Tab. 
1). In line with our goal of using only publicly available data, we limited the additional data 
used in the study to products of LGL (Digital Terrain Model from ALS (ALS-DTM (LGL 
2023b), standing water polygon layer) and internal data of the forestry administration (forest 
road network dataset).   
The original deadwood mapping results of (ZIELEWSKA-BÜTTNER et al. 2020), which served as 
a reference here, were based on orthophotos of 0.5 m spatial resolution and a VHM of 1 m 
spatial resolution and highest point value selection per pixel. Orthophotos and VHM were de-
rived from aerial imagery of 0.2 m resolution and 60/30 % end/side overlap generated in 2016. 
Between 2016 and 2019, the aerial imagery overlap changed from 60/30 % to 80/30 % end/side 
lap. Subsequently, the spatial resolution of orthophotos changed from 0.5 m to 0.2 m. Standard 
raster VHMs (LGL) retained the spatial resolution of 1 m as in 2016. However, the VHMs 
based on higher overlap aerial imagery data (2019) were expected to provide more accurate 
vegetation heights (ZIELEWSKA-BÜTTNER et al. 2016) than VHMs based on the same resolution 
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aerial imagery with lower overlap (2016). VHMs included the potential vegetation points of 
height between -1 and 55 m vs. the ALS-DTM 2000-2015.  

Tab. 1: Technical characteristics of the aerial imagery data and products used for the method develop-
ment (2016) (ZIELEWSKA-BÜTTNER et al. 2020) and for the comparison with data of higher resolution 

and overlap (2019)  

Data type Parameters 2016 2019 
Aerial  
imagery 

Camera UltraCam Eagle UltraCam Eagle 
Pixel size 0.2 m 0.2 m  
Overlap (end/side lap) 60/30 % 80/30 % 

Image type 
Digital color infrared, 

RGBI 
Digital color infrared, 

RGBI 
Flight date 08.08.2016 29.06.2019 

 Flight time 07:33 - 07:39 09:25 - 09:26 
 Pixel depth 16 bit 16 bit 
 Coordinate System DHDN GK3 ETRS89 UTM 32N 
Orthophotos Pixel size original data (LGL) 

Pixel size (Test) 
0.5 m 
0.5 m 

0.2 m 
0.2 m / 0.5 m 

 Bands 4 (RGBI) 4 (RGBI) 
Vegetation 
Height Model 

Pixel size original data (LGL) 
Pixel size (Test) 

1 m 
1 m 

1 m 
0.5 m / 1 m 

Reference point value (LGL) 
Reference point value (Test) 

Highest (H) 
Highest (H) 

Highest (H 
Highest (H) / Lowest (L) 

2.4 Tested spatial resolutions and VHM settings 

Based on the data from 2019, we tested two different settings of orthophotos (with spatial res-
olution of 0.2 m and resampled to 0.5 m with method “bilinear” using the R package “Raster” 
(HIJMANS 2020). They were combined with four settings of VHMs (Fig. 3): alternative VHMs 
with spatial resolution of 1 m and 0.5 m were calculated, using either the highest (VHM-H) or 
the lowest (VHM-L) point per pixel based on the digital point clouds Digital Surface Models 
(DSMs) derived from the stereoscopic aerial imagery using two image matching algorithms 
(SCHUMACHER et al. 2019; LGL 2023a). Based on photogrammetric point clouds generated by 
the Software SURE (NFRAMES GMBH 2024), Digital Surface models (DSMs) were generated 
using a combination of lasgrid and las2tin from LASTools (RAPIDLASSO GMBH 2022). Lasgrid 
returned the Z-value of the highest (VHM-H) or lowest (VHM-L) point per pixel. Voids were 
filled with a square search radius of three pixels. Remaining voids were interpolated using the 
las2tin algorithm. The geometric resolution was set to 0.5 m or 1 m, respectively. To obtain 
vegetation heights, the difference between the DSM value and the corresponding terrain height 
was calculated. For this purpose, we used the raster ALS-DTM of the LGL with spatial resolu-
tion of 1 m. 
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Fig. 3:  Four settings of Vegetation Height Models (VHMs) characterised by different point selection 
value per pixel (H = highest, L = lowest) and resolution (1m or 0.5 m) with RGB and CIR or-
thophotos of the same area presented for a reference 

Six datasets representing different combinations of spatial resolution and alternative VHMs 
were tested (Fehler! Verweisquelle konnte nicht gefunden werden.): Orthophotos of 0.2 m 
resolution were combined with VHMs of 1 and 0.5 m resolution as VHM-H and VHM-L, re-
spectively. In addition orthophotos of 0.5 m resolution were combined with VHM-H and VHM-
L of 0.5 m to evaluate the performance of the algorithm with the same orthophoto-resolution as 
in the reference model (0.5 m).   

Tab. 2: Technical characteristics of the aerial imagery data and products used for method develop-
ment (Reference) (ZIELEWSKA-BÜTTNER et al. 2020), for the comparison with data of higher resolution 
and overlap (Test) and for selection of validation pixels (Validation). The version code consists of the 
year – the orthophoto resolution in m (05 = 0.5 m) – the VHM resolution in m and the point per pixel 

selection value for vegetation height (H=highest, L=lowest) 

Status Version 
Pixel size  

orthophoto (m) 
Pixel size  
VHM (m) 

VHM  
reference point 

Reference 2016-05-1H 0.5 1 H 

Test 2019-02-1H 
0.2 1 

H 
Test 2019-02-1L L 
Test 2019-02-05H 

0.2 0.5 
H 

Test 2019-02-05L L 
Test 2019-05-05H 

0.5 0.5 
H 

Test 2019-05-05L L 

Validation 2019-02-04L 0.2 0.4 L 

 
To compare the different VHMs (Fig. 3) with each other and to evaluate their influence on the 
deadwood mapping results we analyzed the distribution of vegetation heights in the test da-
tasets. Expecting the biggest differences in the low and high forest areas, we calculated the 
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amount of pixels in following height classes: < 1 m, ≥ 1 m & < 2 m, ≥ 2 m & < 5 m, ≥ 5 m & 
< 20 m, ≥ 20 m. 
As an additional, independent dataset for selecting the validation sample, we used an orthophoto 
of 0.2 m and a VHM-L of 0.4 m resolution.  

2.5 Validation 
Deadwood mapping results of all data combinations were validated based on visual interpretation of 

orthophotos in the corresponding resolutions of 0.2 m and 0.5 m. Two validation datasets of 0.2 m and 
0.5 m were acquired based on a stratified random sampling of 500 pixels per model class drawn from 
the RF mapping results of an independent dataset (2019_02_04L) (Fehler! Verweisquelle konnte 

nicht gefunden werden.Tab. 2, Appendix 1). Different masking and mapping results per dataset re-
sulted in slightly different numbers of pixels in each model class (Appendix 2,  

Appendix 3). The two sets of validation pixels were visually interpreted according to the fol-
lowing keys: bare ground, live, declining, dead, building (construction element), orthophoto 
artefact and deep shadow.   
For all test datasets, the mapping results of both model steps (RF and UNC model) were vali-
dated against the validation sample with the same resolution as the included orthophoto (0.2 m 
or 0.5 m). User’s accuracy (UA), producer’s accuracy (PA) and F1-score (Equation 1) for the 
class “deadwood” and overall accuracy (OA) and Kappa across all model classes were calcu-
lated using the package “Caret” version 6.0-94 (KUHN et al. 2023) in R- 4.2.3 (R-CORE TEAM 

2023) and R-Studio (RSTUDIO 2023).  
Equation 1: F1score = 2 * Precision * Recall / Precision + Recall 

3 Results 

3.1 Vegetation height models  

By changing the settings for the rasterization of the point cloud, four different VHMs (Fehler! 
Verweisquelle konnte nicht gefunden werden., Fig. 3) with slightly differently distributed 
height values were generated for the study area. The biggest differences between the VHM 
pixel distributions were observed for heights below 1 m and above 20 m (Fig. 4). For both tested 
resolutions, the point selection value resulted in more pixels with low heights (< 1 m) in the 
VHM-L and more pixels in the highest category (≥ 20 m) in the VHM-H. This pattern was 
stronger in the settings including the lower resolution VHMs (1 m). The percentage of pixels 
was stable for the height range from 2 m to 20 m, with variation of 1 % or less between the 
different VHM datasets.  
 



K. Zielewska-Büttner, J. Kromer, S. Ganz, P. Adler & V. Braunisch 

417 

 

Fig. 4:  Percentage of pixels in different height classes (m) obtained with different settings of the 
vegetation height model (VHM). VHMs with the highest point value per pixel are presented in 
blue and with the lowest point value per pixel in yellow-orange. Lighter colors mark higher 
resolution VHMs. Datasets are specified in Table 2 

3.2 Mapping results  

For each dataset more than half (56 – 63 %) of the study area was masked out from the further 
analyses (Tab. 3), i.e. as lake, meadow, low vegetation or non-forest area with a height of less 
than 5 m (see also Fig. 4:  Percentage of pixels in different height classes (m) obtained with differ-

ent settings of the vegetation height model (VHM)Fig. 4) or deep shadow. The largest area was 
masked out for the VHM-L settings: 2019-02-1L (63 %), 2019_02_05L and 2019_05_05L 
(both 60 %) and the smallest for datasets with VHM-H: 2019-02-1H (56 %), 2019-05-05H and 
2019-02-02H (both 57 %). The area with heights of less than 5 m contributed most significantly 
to the masked areas, especially for VHM-L settings: 2019-1L (50 %) and 2019-05L (47 %), 
and less for VHM-H settings 2019-1H (39 %) and 2019-05H (42 %).  

Tab. 3: Mapping results for the reference (2016-05_1H) and six test datasets at two stages of the 
mapping algorithm (Random Forest model – RF, Uncertainty model – UNC), expressed in area 

mapped (ha). Masked area (ha) and mapped area per model class: „bare ground“, „live“, „declining“ 
and „dead“ (vegetation), as well as the total study area are presented. Note that only the results for the 

classes „bare ground“ and „dead“ change between RF and UNC. Datasets are specified in Table 2  

Dataset 
Masked 
area (ha) 

Model class area (ha) 
Sum 

area (ha) 
Bare ground Live Declining Dead 

RF UNC RF = UNC RF UNC 
2016_05_1H 323,3 0,9 1,3 233,5 31,9 3,0 2,6 592,6 

2019_02_1H 333,2 0,6 0,8 192,5 60,9 5,0 4,8 592,2 
2019_02_1L 372,1 0,1 0,2 164,7 52,2 3,0 2,9 592,2 

2019_02_05H 339,2 0,4 0,7 187,5 60,4 4,6 4,4 592,2 
2019_02_05L 354,3 0,2 0,3 176,0 58,1 3,7 3,5 592,2 
2019_05_05H 336,1 0,3 1,3 192,4 58,8 4,5 3,4 592,2 
2019_05_05L 352,4 0,2 1,1 181,1 54,4 4,1 3,1 592,2 

 
In the deadwood mapping process two outputs corresponding to two-stages of the method (RF 
and UNC) were generated and analyzed per test dataset. The model class “live” was the most 

<1 >=1 & <2 >=2 & <5 >=5 & <8 >=8 & >20 >=20

2019_02_1H 3% 27% 8% 5% 24% 32%

2019_02_05H 6% 28% 8% 5% 24% 29%

2019_02_1L 16% 27% 8% 5% 24% 21%

2019_02_05L 11% 28% 8% 5% 24% 24%

3%

27%

8%
5%

24%

32%

6%

28% 29%

16%

21%

11%

24%

0%

5%

10%

15%

20%

25%

30%

35%
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abundant in both mapping stages, including 32 - 33 % of the study area for datasets including 
VHM-H and 28 - 31 % for VHM-L datasets. The class declining was comprised 10 % of the 
study area for datasets with VHM-H and 9 - 10 % for VHM-L. Deadwood and bare ground 
pixels varied between 0 and 1 %, corresponding to 2.9 - 5 ha (deadwood) and 0.1 - 0.8 ha (bare 
ground).  

3.3 Deadwood and pixel resolution  

Focusing on the improvement of deadwood detection only the results for the class “dead” are 
provided here, full results are included in Appendix 2 and  
Appendix 3.  
In 2019 between 2.9 and 5 ha deadwood was mapped depending on the test dataset, compared 
to 2.6 (RF) and 3 ha (UNC) in the reference dataset from 2016 (Fehler! Verweisquelle konnte 
nicht gefunden werden.). When comparing the datasets with the same resolution, more dead-
wood was mapped in all datasets with VHM-H than with VHM-L (Appendix 4). In addition, 
the coarser VHM resolution of 1m produced the most deadwood pixels with VHM-H and the 
least with VHM-L of all tested datasets. In the datasets with orthophoto resolutions of 0.2 m 
differences between VHM-H and VHM-L pairs were larger than in the datasets orthophoto 
resolution of 0.5 m. 

3.4 Deadwood, bare ground and the influence of the stage of the algorithm 

In all test datasets with 0.2 m orthophoto-resolution the amounts of mapped pixels of the classes 
“deadwood” and “bare ground” did not differ much between the RF and UNC model stages 
(Tab. 3). In contrast, the model class changes from “dead” to “bare ground” after UNC model 
application was very pronounced in the datasets with 0.5 m resolution (Appendix 4). Regardless 
of the model stage less than 1ha bare ground was mapped for test datasets with 0.2 m resolution. 
For test datasets with 0.5 m resolution bare ground amounts increased significantly between RF 
and UNC from 0.2 - 0.3 ha to 1.1 and 1.3 ha. In the reference dataset the model class change 
was also distinct, although not as pronounced as for test datasets. 

3.5 Model performance 

Input data with higher resolution (2019) delivered in all cases more accurate mapping results 
than the lower resolution baseline data (2016) (Tab. 4). OA increased from 0.70 (RF) and 0.74 
(UNC) in 2016 to in average 0.79 in 2019. Similarly, Kappa values increased from 0.60 (RF) 
and 0.65 (UNC) to in average 0.72. The best OA and Kappa values were calculated for both RF 
and UNC based on the 2019-05-05L dataset (OA = 0.80 and 0.82 and Kappa = 0.74 and 0.75, 
respectively) with the second-best dataset being 2019-02-05L resulting in similar OA of 0.80 
and slightly lower Kappa values of 0.73 and 0.72 for RF and UNC, respectively. The worst, but 
still outperforming the 2016 results were obtained with the 2019-05-05H dataset, with OA = 
0.76 and Kappa = 0.69 (RF) and OA = 0.78 and Kappa = 0.71 (UNC). For both RF and UNC, 
models based on datasets incorporating VHM-Ls always performed better than the correspond-
ing models using standard VHM-Hs.  
Two-stage deadwood mapping with UNC provided almost always equally good or better results 
than stand-alone RF models, with the most significant increase in mapping accuracy observed 
for the datasets including an orthophoto of 0.5 m resolution. Only the Kappa value for the RF 
results of 2019-02-05L was higher than for the second stage of the algorithm.   
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Tab. 4: Validation results of the two stage-deadwood mapping model (ZIELEWSKA-BÜTTNER et al. 2020) 
applied to different datasets. Evaluation metrics are provided for both stages of the algorithm (Random 

Forest and Uncertainty Model), with UA = user‘s accuracy, PA = producer‘s accuracy and F1-score 
indicating the accuracy to predict the model class „deadwood“ and OA = overall accuracy and Kappa 
value quantifying overall model performance. The best results are marked in bold. Datasets are speci-

fied in Table 2.  

 
Dataset 

Ortho_ 
VHM 

resolu-
tion 

VHM  
set-
tings 

Random Forest Model Uncertainty Model 
Deadwood Model Deadwood Model 

UA PA 
F1-

score 
OA 

Kap-
pa 

UA PA 
F1-

score 
OA 

Kap-
pa 

2016-05-1H 05_1 H 0.60 0.82 0.69 0.70 0.60 0.74 0.80 0.77 0.74 0.65 
2019-02-1H 

02_1 
H 0.71 0.88 0.78 0.79 0.72 0.71 0.87 0.79 0.79 0.72 

2019-02-1L L 0.74 0.84 0.79 0.79 0.72 0.74 0.84 0.80 0.79 0.72 
2019-02-05H 

02_05 
H 0.73 0.88 0.80 0.79 0.72 0.75 0.88 0.79 0.79 0.72 

2019-02-05L L 0.75 0.87 0.81 0.80 0.73 0.77 0.84 0.81 0.80 0.72 
2019-05-05H 

05_05 
H 0.68 0.91 0.78 0.76 0.69 0.79 0.86 0.84 0.78 0.71 

2019-05-05L L 0.72 0.89 0.80 0.80 0.74 0.82 0.89 0.85 0.82 0.75 

3.6 Deadwood mapping 

Greater differences than for overall model accuracy were observed for the mapping results for 
the deadwood class. The best RF results were obtained with the highest tested resolution VHM-
L (2019-02-05L), with UA = 0.75, PA = 0.87 and F1-score = 0.81followed by VHM-L (2019-
05-05L) with deadwood UA = 0.72, PA = 0.89 and F1-score of 0.80. This data combination 
provided also the best overall result for the UNC model with UA = 0.82, PA = 0.89 and F1-
score = 0.85. All models by far outperformed the results of the reference dataset, for both RF: 
UA = 0.60, PA = 0.82, F1-score = 0.69 and the UNC: UA = 0.74, PA = 0.80, F1-score = 0.77.  
With a VHM resolution of 0.5 m, RF models alone always provided equal or higher PA values 
than in combination with UNC while with VHM of 1m PA and UA values remained the same.  

4 Discussion 

Validation results confirm that both the resolution of orthophotos and VHMs as well as the 
VHM point selection method (lowest or highest point per pixel) affected the mapping results. 
In all cases, models based on the higher-resolution data from 2019 outperformed the results 
based on the reference dataset of 2016 in deadwood mapping accuracy and overall model per-
formance. 
Different amounts of deadwood were mapped across algorithm stages, datasets and acquisition 
years. While visual inspection of the orthophotos confirmed an increase in deadwood between 
2016 and 2019, reflecting the tree damages and bark beetle infestations during the drought years 
of 2018 and 2019 (SPIECKER & KAHLE 2023), different deadwood amounts mapped in the same 
year across different datasets highlight the multifaceted influences impacting deadwood map-
ping accuracy. 

4.1 Influence of spatial resolution 

Deadwood mapping accuracy and overall model performance increased, as expected, with spa-
tial resolution, as confirmed for resolutions between 0.5 and 5 m by PLUTO-KOSSAKOWSKA et 
al. (2017).  
The most pronounced influence of the spatial resolution only (while using VHM-H) was evident 
for the RF results, where the accuracy measures improved with all datasets by 0.8 – 0.13 in 
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comparison to the results of 2016 (Table 4). The highest accuracies for RF delivered datasets 
with the highest tested resolution of orthophoto and VHM (2019-02-05).  
The smallest increase in model accuracy was observed for the datasets including VHMs with 
the coarser resolution of 1 m. Here the smoothing effect on the vegetation heights was probably 
the cause of inaccuracies in areas with low vegetation, followed by misclassifications of bare 
ground as deadwood (ZIELEWSKA-BÜTTNER et al. 2020). However, the high resolution of the 
orthophoto in 2019 (0.2 m) still contributed to raising the model results to an acceptable level.  
The UNC model improved at most the classification results for the datasets with 0.5 m resolu-
tion, with the best combination being 2019-05-05L. The reason is most likely an exact match 
in resolution between the test datasets and the settings of the fixed UNC model, that was devel-
oped based on orthophotos and RF results of 0.5 m resolution. 

4.2 Influence of vegetation height model settings 

The point selection value for the VHM contributed further to improving the RF mapping accu-
racies, especially regarding the UA of the deadwood class, which is crucial for the map user, as 
too large commission errors can lead to meaningless field campaigns and ineffective use of 
resources (FASSNACHT et al. 2014).  VHMs with the lowest point value selected per pixel de-
livered higher accuracies than the initial settings using the highest point per pixel. Low point 
selection in the VHMs led to a more accurate identification of low forest height areas, thereby 
reducing the misclassification of bare ground as deadwood. However, it also contributed to 
masking out larger areas by cutting off more pixels on forest and tree edges. Consequently, a 
smaller deadwood area was mapped using VHM-L, but the advantage of an accurate mapping 
prevailed over a disadvantage of possible underestimation of deadwood area. Differences be-
tween the VHM settings were most pronounced in the height classes < 1 m and ≥ 20 m, with 
the greatest deviations in areas where both classes meet, e.g. at the tree outer parts, at stand 
borders along forest edges, roads and gaps. 

4.3 Mapping accuracy 

The second-stage of deadwood mapping with UNC improved the overall model performance 
only for datasets with resolutions of 0.5 m. For the accuracy of mapping the class deadwood, 
the influence of UNC was more pronounced and its application improved the UA and F1 score 
for almost all datasets including an orthophoto of 0.5 m resolution. The increase in UA usually 
came with the cost of a slight decrease in PA, however not below 0.84 (2019-02-05L), which 
can still be considered as very good.  
Deadwood mapping accuracies (PA of 0.84 - 0.91) achieved with all test datasets are compara-
ble with those obtained by KAMIŃSKA et al. (2018) (PA for dead spruce of 0.76 – 0.90) based 
on color-infrared (CIR) aerial imagery and VHM from ALS, who, however, used only well 
visible dead trees for validation. VHMs from ALS are known to be more detailed and accurate 
than the VHMs from image matching of stereo aerial imagery (GANZ et al. 2019; WHITE et al. 
2018; WHITE et al. 2016), on which our models were based on. KRZYSTEK et al. (2020) mapped 
standing dead trees with an UA of 0.93 – 1 and PA of 0.93 – 1 (based on a test reference dataset 
and depending on the study site) using ALS with a point density of 55 pts/m² and multispectral 
aerial imagery of spatial resolution of 0.17 m. The detection of snags was less successful with 
an UA = 0.56 and PA = 0.66. 
In all our tests, F1-scores ranged between 0.78 and 0.85. These results are comparable to those 
of other authors using data of similar spatial resolution with other methods. HELL et al. (2022) 
reported F1-scores of 0.78 and 0.77 while using a PointCNN algorithm for the classification of 
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snags and dead trees with ALS point clouds (max. point density of 80 pts/m²) and CIR true 
orthophotos (0.2 m resolution). LIU et al. (2021) achieved for standing deadwood class a F1-
score = 0.93 using a novel Pixel- and Object-based Image Fusion Method incorporating differ-
ent mapping algorithms with the WorldView3 data of 0.5 m resolution. We identified only one 
method for large-scale deadwood mapping based solely on aerial imagery products developed 
by SCHWARZ et al. (2023). The authors mapped conifer canopy mortality based on a deep learn-
ing approach using aerial images across Luxembourg with a F1-score of 0.725 – 0.759. Our 
results corresponding to these based on ALS data or other models indicate further potential in 
the exploration of the image based VHMs in line with the different mapping purposes.  

4.4 Conclusions 

Our study proves that accurate, large-scale area-wide mapping of standing deadwood is possible 
using solely orthophotos and VHM from image matching of stereo aerial imagery. The choice 
of the best dataset, however, may depend on the mapping targets. In this context, time and 
processing resources as well as large data storage requirements are important factors to con-
sider. Comparing different datasets, 2019-05-05L UNC provided the best results. Although ad-
ditional data processing was needed for the UNC, data preparation and processing time for the 
two-step procedure with a data resolution of 0.5 m was considerably shorter than for a stand-
alone RF model with a resolution of 0.2 m (2019-02-05L), which would be the second-best 
choice, because of the lower UA and the longer processing time. For large-scale deadwood 
mapping we consider the resolution of 0.5 m sufficient. Even if some thin snags might not be 
captured, they usually represent only a very small share of the overall deadwood, and the area 
they cover is neglectable when data is aggregated. In older disturbance areas, however, with 
large aggregations of deadwood in high decay stages, deadwood amounts might be seriously 
underestimated. For small-scale analyses, an intermediate RF data with a higher PA and visual 
control may thus be preferable.  
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7 Supplementary material 

Appendix 1: Distribution of the validation pixels different model classes: bare ground, live, declining 
and dead in the study area presented on the background color-infrared (CIR) orthophoto.  
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Appendix 2 Six confusion matrix illustrating results of visual validation per model class against results 
of RF deadwood mapping based on six predefined test datasets of different orthophoto resolution and 
alternating VHM settings. Datasets are specified in Table 2. Visual validation was extended by addi-

tional classes: building, orthophoto artefact and shadow.  

Test 
data-
set 

Data 
type 

Visual validation 

Class 
Bare 

ground 
Live 

Decli-
ning 

Dead 
Buil-
ding 

Ortho-
photo ar-

tefact 

Sha-
dow 

Sum 

20
19

_0
2_

1H
 

P
re

di
ct

io
n 

Bare ground 239 1 54 42 0 0 0 336 

Live 1 458 36 0 0 0 0 495 

Declining 15 28 477 14 0 0 0 534 

Dead 82 2 56 394 6 0 0 540 

Sum 337 489 623 450 6 0 0 1905 

20
19

_0
2_

1L
 

P
re

di
ct

io
n 

Bare ground 162 2 51 45 0 12 9 281 

Live 0 426 40 0 0 0 16 482 

Declining 12 25 442 15 0 1 16 511 

Dead 68 0 29 318 4 3 5 427 

Sum 242 453 562 378 4 16 46 1701 

20
19

_0
2_

05
H

 

P
re

di
ct

io
n 

Bare ground 251 1 69 44 0 23 21 409 

Live 0 457 36 0 0 0 19 512 

Declining 14 29 474 10 0 0 5 532 

Dead 75 2 46 396 6 2 15 542 

Sum 340 489 625 450 6 25 60 1995 

20
19

_0
2_

05
L 

P
re

di
ct

io
n 

Bare ground 214 2 58 46 0 19 17 356 

Live 0 453 34 0 0 0 17 504 

Declining 19 28 480 13 0 0 14 554 

Dead 70 0 37 380 5 3 9 504 

Sum 303 483 609 439 5 22 57 1918 

20
19

_0
5_

05
H

 

P
re

di
ct

io
n 

Bare ground 198 0 51 23 0 0 0 272 

Live 3 464 59 0 0 0 0 526 

Declining 18 45 413 12 0 0 0 488 

Dead 89 2 52 361 6 0 0 510 

Sum 308 511 575 396 6 0 0 1796 

20
19

_0
5_

05
L 

P
re

di
ct

io
n 

Bare ground 202 0 56 34 0 0 0 292 

Live 0 473 45 0 0 0 0 518 

Declining 4 30 421 7 0 0 0 462 

Dead 75 2 39 343 6 0 0 465 

Sum 281 505 561 384 6 0 0 1737 
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Appendix 3: Six confusion matrix illustrating results of visual validation per model class against results 
of the deadwood mapping final stage UNC based on six predefined test datasets of different ortho-

photo resolution and alternating VHM settings. Datasets are specified in Table 2. Visual validation was 
extended by additional classes: building, orthophoto artefact and shadow.  

Test 
data-
set 

Data 
type 

Visual validation 

Class 
Bare 

ground 
Live Declining Dead Building 

Orthophoto 
artefact 

Shadow Sum 

20
19

_0
2_

1H
 

P
re

di
ct

io
n 

Bare ground 240 1 58 43 0 21 16 379 

Live 1 458 36 0 0 0 20 515 

Declining 15 28 477 14 0 0 12 546 

Dead 81 2 52 393 6 4 12 550 

Sum 337 489 623 450 6 25 60 1990 

20
19

_0
2_

1L
 

P
re

di
ct

io
n 

Bare ground 253 2 73 46 0 23 24 421 

Live 0 457 36 0 0 0 19 512 

Declining 14 29 474 10 0 0 5 532 

Dead 73 1 42 394 6 2 12 530 

Sum 340 489 625 450 6 25 60 1995 

20
19

_0
2_

05
H

 

P
re

di
ct

io
n 

Bare ground 165 2 52 45 0 12 9 285 

Live 0 426 40 0 0 0 16 482 

Declining 12 25 442 15 0 1 16 511 

Dead 65 0 28 318 4 3 5 423 

Sum 242 453 562 378 4 16 46 1701 

20
19

_0
2_

05
L 

P
re

di
ct

io
n 

Bare ground 217 2 61 47 0 19 19 365 

Live 0 453 34 0 0 0 17 504 

Declining 19 28 480 13 0 0 14 554 

Dead 67 0 34 379 5 3 7 495 

Sum 303 483 609 439 5 22 57 1918 

20
19

_0
5_

05
H

 

P
re

di
ct

io
n 

Bare ground 235 0 78 32 0 0 0 345 

Live 3 464 59 0 0 0 0 526 

Declining 18 45 413 12 0 0 0 488 

Dead 52 2 25 352 6 0 0 437 

Sum 308 511 575 396 6 0 0 1796 

20
19

_0
5_

05
L 

P
re

di
ct

io
n 

Bare ground 229 0 84 37 0 0 0 350 

Live 0 473 45 0 0 0 0 518 

Declining 4 30 421 7 0 0 0 462 

Dead 48 2 11 340 0 0 0 401 

Sum 281 505 561 384 0 0 0 1731 
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Appendix 4: Maps showing classification results for six test datasets with different orthophoto and Veg-
etation Height Models setting at two-stages of the mapping algorithm: Random Forest Model and Un-
certainty Model. Datasets are specified in Table 2. RGB and CIR orthophotos are presented for refer-

ence 

 


