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UAV-based Assessment of the Impact of Aboveground Bi-
omass and Photosynthesis Parameters
on Winter Wheat Yield
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Abstract: The enhancement of grain yield (GY) in wheat (Triticum aestivum) is pivotal for
global food security, yet it faces bottlenecks as potential yield improvements through tra-
ditional breeding reach their ceiling. This study investigated whether above-ground bio-
mass (AGB) or photosynthetic efficiency parameters provide a more accurate mid-season
prediction of GY in winter wheat.

Utilizing unmanned aerial vehicle (UAV) multispectral (MS) imagery, we extracted can-
opy reflectance data to evaluate the correlation of 35 vegetation indices (VIs) with AGB
and key photosynthetic parameters across three phenological stages. Our analysis em-
ployed an array of computational techniques: principal component analysis (PCA), partial
least squares regression (PLSR), random forest (RF), and support vector regression
(SVR), each with distinctive approaches to model the relationship between VIs and GY.
The findings revealed that VIs have a pronounced correlation with AGB, particularly at
the flowering stage, suggesting that AGB could serve as a more reliable predictor of GY
than photosynthetic efficiency parameters. Among the modeling techniques, PLSR yielded
the most accurate GY predictions across all stages. Notably, PCA and RF also demon-
strated substantial predictive capabilities, with RF models providing robust performance
and insightful variable importance metrics. SVR models, while exhibiting the need for
careful normalization due to their sensitivity to data scaling, still performed commendably,
especially in the grain ripening stage.

With the demonstrated promise of Vs as effective proxies for AGB, we recommend their
integration into GY estimation models, contributing to developing a reliable indicator of
yield forecasting and the optimization of resource allocation in agricultural practices.

1 Introduction

The core of crop productivity lies photosynthesis, the process by which plants capture and store
energy. Enhancements in photosynthetic efficiency, particularly the rate of CO2 assimilation
(A) per leaf area (FURBANK et al. 2020), can lead to yield increases (PARRY et al. 2010; RAINES
2010). This rate is a reflection of a plant's metabolic health (ZHANG et al. 2013), encapsulating
the efficiency of carbon assimilation. It is a composite indicator, incorporating resource use
efficiency (TARVAINEN et al. 2015), influenced by light (PENNISI et al. 2019), water (DONOHUE
et al. 2017), and nutrient availability (TAUSZ-POSCH et al. 2014). Besides, stomatal conduct-
ance, denoted as ‘gs’, is also a vital physiological mechanism in plants that ensures gas ex-
change and significantly affects photosynthetic performance (TANAKA et al. 2013). It affects
the diffusion of CO2 into the leaf (YAMORI & SHIKANAI 2016), thereby impacting the rate of
COz assimilation (LAWSON et al. 2011). The significant natural variability of stomatal conduct-
ance observed in different plant species (FARALLI et al. 2019; ROCHE 2015), emphasizes its
potential as a breeding target for increasing CO: assimilation and yield.
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Chlorophyll fluorescence (ChlF) parameters, especially the maximum quantum efficiency of
PSII (Fv/Fm and Fv'/Fm'), serve as reliable indicators of photosynthetic efficiency (GUIDI et
al. 2019), plant health (BAURIEGEL et al. 2010), and stress detection (YAO et al. 2018). It has
been emphasized as a useful tool for studying the photosynthetic mechanisms (GUIDI &
CALATAYUD 2014; SANCHEZ-MOREIRAS et al. 2020).

While photosynthetic parameters offer a snapshot of plant physiology, above ground biomass
(AGB) provides a cumulative measure of these processes over time. AGB represents the tan-
gible outcome of photosynthetic activity, which is directly related to plant development and an
essential determinant of yield (WALTER et al. 2018; YUE et al. 2019). Its variation among wheat
cultivars highlights the influence of genetic and environmental factors on productivity (BENDIG
et al. 2014). Thus, understanding the relationship between AGB and photosynthetic parameters
is essential for predicting winter wheat yield, which is the focus of this study.

In the field of plant physiological research, conventional methodologies for quantifying pho-
tosynthetic efficiency and biomass accumulation are time-consuming and labour intensive. Ad-
vances in remote sensing technology, specifically unmanned aerial vehicle (UAV) systems
equipped with multispectral (MS) and standard RGB cameras, have emerged as a non-invasive
and expeditious alternative. These systems facilitate the remote assessment of critical agro-
nomic traits, including grain yield (GY) (HERZIG et al. 2021), nitrogen (N) content (PREY &
SCHMIDHALTER 2019), senescence patterns (MAKANZA et al. 2018), crop density (LIU et al.
2017), and plant height (LIU et al. 2021). The integration of UAV-derived datasets with ad-
vanced machine learning (ML) and deep learning (DL) algorithms offers a promising frontier
for enhancing the precision of yield predictions (PAUDEL et al. 2022).

Notwithstanding the application of UASs and associated vegetation indices (VIs) in the analy-
sis of GY, little is known about whether it is more important to monitor key photosynthetic
parameters or AGB for predicting yield. This study postulated that AGB, due to its direct rela-
tion to biomass accumulation, will exhibit a more pronounced correlation with multispectral
Vs, thereby serving as a superior predictive measure for GY.

The objectives of this investigation are i) to examine the correlations between photosynthetic
parameters, AGB, and VIs with wheat GY ii) to evaluate the performance of selected VIs and
ML models in predicting wheat yield.

2 Materials and Methods

2.1 Study Area and Experimental Design

Seven diverse European winter wheat elite varieties were involved in this experiment, i.e.,
Aurelius (Saatbau Linz), Bernstein (Syngenta), Dagmar (Limagrain), Mv Nador (Marton
genetics), Nogal (F. Desprez et Fils), Skyfall (R.A.G.T Saaten Deutschland), and Julius (KWS
Lochow). These varieties were sown in plots that measured 10 m x 1.85 m, with a row spacing
of 15 cm. The trial utilized a randomized complete block design, comprising four replicates
and three nitrogen (N) treatments, resulting in a total of 84 plots. The experimental site was
located at the research station of the Technical University of Munich in Diirnast, Freising
(48.40630° N, 11.69535° E). The soil at this location is described as a homogeneous Cambisol
with a composition of 20.8% clay, 61.5% silt, and 16.6% sand. Three N fertilizer levels (i.e.,
0, 120, and 180 kg N ha™'), which were chosen based on typical agronomic recommendations
for winter wheat were implemented. These were applied in three equal portions around BBCH
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25, 32, and 60 using Ammonium Sulphate Nitrate and Calcium Ammonium Nitrate. The soil
was rich in P and K, so no additional application rate was added. Standard field management
practices were uniformly applied across all plots. Sowing took place on 02.11.2022, and the
crops were harvested upon reaching full maturity on 27.07.2023.

2.2 Data Collection and Methodology

2.2.1 Photosynthetic Parameter Quantification

This investigation delineated the photosynthetic dynamics of selected European winter wheat
cultivars at critical phenological stages. The stages were characterized using the BBCH scale:
BBCH40 (end of stem elongation), BBCH65 (flowering), and BBCHS80 (grain filling and
maturation). The LI-6800 Portable Photosynthesis System (LI-COR Biosciences, Lincoln, NE,
USA) facilitated the quantification of key photosynthetic metrics: net assimilation rate (A),
stomatal conductance to water vapor (gsw), and the efficiency of photosystem II
photochemistry as indicated by chlorophyll fluorescence (Fv'/Fm'). The LI6800 provided data
on four stomatal conductance parameters; however, this study focused on gsw due to its
documented responsiveness to water related indices. Environmental conditions within the
measurement chamber were rigorously regulated to ensure uniformity: airflow (700 pmol s™),
relative humidity (55%), ambient CO2 (400 ppm), chamber temperature (25°C), PAR (20 pumol
m~s™!), and light intensity for fluorescence measurements (200 umol m™s™'). Measurements
were taken post-equilibration, averaging 40 to 60 seconds per sample. Three foliar samples per
plot were analyzed, with mean values used for subsequent analysis.

2.2.2 Acquisition and Processing of Multispectral Images

Reflectance data was captured using a DJI Matrice M300 RTK UAV, equipped with a
MicaSense Dual Camera Kit. This setup captured data across ten spectral bands, namely: blue
(444 nm, 475 nm), green (531 nm, 560 nm), red (650 nm, 668 nm), red edge (705 nm, 717 nm,
740 nm), and near-infrared (840 nm). Radiometric correction was ensured by an onboard
ambient light sensor and reflectance panels used for calibration. UAV flights were conducted
at 12 meters AGL for optimal GSD (1.08 cm) with 80% overlap in all directions. Flight timing
was synchronized with peak solar irradiance for consistency. Orthomosaics were generated in
Agisoft Metashape Professional 1.8.4, with geospatial accuracy verified by the UAV's RTK-
GPS and SAPOS. Spectral band calculations on orthomosaics were performed in QGIS 3.32.3,
employing raster calculator tools and Excess Green Index-based segmentation to minimize soil
background interference. The refined spectral indices were saved as TIFF files for correlation
analyses within the R environment. In this study, a comprehensive suite of 35 VIs was
meticulously chosen to forecast the yield of winter wheat cultivars. Specifically, 9 VIs were
selected for their relationship to the assimilation rate and stomatal conductance, which are
indicative of the plants' gaseous exchange capabilities. 16 VIs were included for their
pertinence to chlorophyll fluorescence, serving as proxies for the efficiency of photosystem II
photochemistry. The remaining 15 VIs were identified for their connection to AGB, reflecting
the direct measure of crop development. The aggregation of these indices was aimed at
harnessing their collective predictive power to enhance the accuracy of yield estimations,
thereby addressing the critical intersection of photosynthetic activity and biomass
accumulation. Computations were conducted in R, using the 'raster' package to manage zonal
statistics and calculate median VI values for defined ROIs corresponding to experimental plots.
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2.2.3 Modelling Approaches and Evaluation

A suite of models, including Principal Component Analysis (PCA), Partial Least Squares
Regression (PLSR), Random Forest (RF), and Support Vector Regression (SVR), was
employed to discern predictive relationships between VIs and empirical yield data. Correlation
analyses and model constructions were performed using various R packages, with model
optimization facilitated by the 'caret' package. Data was partitioned into training and test sets
with extensive cross-validation to ensure model validity. Model accuracy was evaluated using
coefficient of determination (R?) (Eq. 1), Root Mean Square Error (RMSE) (Eq. 2), Mean
Absolute Error (MAE) (Eq. 3), and Residual Prediction Deviation (RPD) (Eq. 4), with higher
R? and lower RMSE and MAE indicating improved model precision. An RPD above 2.5
signifies excellent predictive ability. The equations used for these metrics incorporate
estimated and measured values, their averages, and standard deviations.

R? = 1t — 002 0= 977 / Spati— 07 Savi— 97 Eq. 1
R = [Y, St - w0 Eq. 2

MAE = 52 1x — vl / k Eq. 3

RPD = SDyi / RMSE Eq. 4

3 Results and Conclusions
3.1 Yield Prediction models

3.1.1 Principal component analysis and Partial Least Square Regression

The PCA models, constructed for BBCH40, BBCH65, and BBCHS80 growth stages, displayed
substantial efficacy in isolating key variations from a set of 35 vegetation indices, thereby
mitigating multicollinearity. Notably, the BBCH65 PCA model, with an R? of 0.93 and an
RMSE of 0.41 t/ha! in the training set and an R? of 0.92 and RMSE of 0.42 t/ha’! in the test
set, outperformed the other stages, indicating a significant alignment of principal components
with GY at this mid-season stage (Fig. 1). Conversely, the PLSR models, while employing the
same stage-based configuration, leveraged a broader component array, particularly at the
BBCHS0 stage with five components, culminating in an exceptional training set performance
(R?=0.97, RMSE = 0.28 t/ha!) and a robust test set outcome (R? = 0.94, RMSE = 0.41t/ha™)
(Fig. 1). Such results underscore the PLSR model's superior predictive accuracy, especially as
the crop approaches maturation. The nuanced selection of the PLSR components, corroborated
by an "elbow point" analysis, highlights its strategic reduction of RMSE values, a vital
consideration in predictive model optimization. This analysis, grounded in empirical data,
advocates for the PLSR model's deployment in later growth stages of wheat, given its
heightened correlation coefficients with AGB, a critical determinant of GY. In essence, while
PCA offers valuable insights during the vegetative growth phase, PLSR's integration of
complex spectral data presents a more robust framework for yield prediction.
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Fig. 1:  Comparison of the prediction of GY using different PCA and PLSR models for the training

and test datasets

3.1.2 Random Forest and Support Vector Regression

RF models showcased a variable performance across different configurations. Model 1, with
an mtry value of 12 (Tab. 1), demonstrated a strong correlation in training (R? = 0.9839) but
suffered a performance drop in testing (R? = 0.8774), as indicated by an increase in RMSE to
0.614 t/ha’'. Model 2, however, with a higher mtry value of 31, sustained its predictive accuracy
more consistently, evidenced by an R? of 0.9878 in training and a notable R? of 0.9049 in
testing, alongside an RMSE of 0.195 t/ha’! and 0.536 t/ha’!, respectively (Fig.2). Model 3
paralleled the performance pattern of Model 1 during testing phases, albeit with a slightly lower
R2 of 0.8844 and an RMSE of 0.585 t/ha’!. These models' robustness was further characterized
by the significance of various features, with CCCI, NDWI, and OSAVI REDEDGE emerging
as key predictors across models.

Conversely, the SVR models, predicated on Gaussian Radial Basis functions and sensitive to
data scaling, required meticulous normalization. The sigma value and cost parameter (C) tuning
were pivotal, as exemplified by the first SVR model's cross-validation RMSE of 0.533 t/ha’!
and R2 of 0.91, which slightly deteriorated in the test set to an RMSE of 0.664 t/ha! and R? of
0.85. The subsequent models followed suit, with the third SVR model showcasing superior
cross-validation results (RMSE = 0.412 t/ha™!, R2 = 0.96), indicating a robust model that was
slightly less predictive in the test set (RMSE = 0.701 t/ ha™!, R> = 0.83).

The SVR models generally exhibited higher precision during cross-validation compared to the
RF models, as indicated by lower RMSE values and higher R2. Particularly, the third SVR
model's cross-validation performance was exemplary, possibly due to its optimized sigma
parameter and cost setting. However, the RF models, especially Model 2, demonstrated
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remarkable stability between training and testing phases, suggesting a better generalization

capability. Overall, RF models potentially offer more robust generalization across datasets,

whereas SVR models excel in model precision during the validation process.

Tab. 1: Descriptive statistic of RF models averaged trained performance across 10 folds using differ-
ent mtry selection.

BBCH mtry RMSE R? MAE RPD
40 12 0.515 0.91 0.42 2.87
65 31 0.461 0.94 0.38 3.29
80 8 0.461 0.94 0.4 3.01
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Fig. 2:  Comparison of the prediction of GY using different RF and SVR models for the training and

test datasets

3.2 Conclusions

In conclusion, the integrated analysis of PCA, PLSR, RF, and SVR models provides a
comprehensive landscape of their capabilities and constraints in the context of wheat yield
prediction. The PCA models, while adept at multicollinearity reduction, showcase optimal
performance at the BBCH65 stage, but they are constrained by the diminishing marginal
returns on variance explanation. On the other hand, the PLSR models demonstrate an enhanced
capacity for predictive accuracy, particularly with a five-component model at the BBCH80
stage, suggesting a nuanced selection of components is key for model optimization. RF models
emerge as robust and generalizable predictors, with the importance of features such as CCCI
and NDWTI highlighting the models' sensitivity to specific vegetation indices. SVR models,
with their superior precision in cross-validation, underscore the importance of meticulous
parameter tuning and normalization.
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