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Land Cover Classification based on Multiscale Time Series 
of Satellite and Aerial Images 

HUBERT KANYAMAHANGA1 & FRANZ ROTTENSTEINER1 

Abstract: Recent advances in remote sensing technology have increased the availability of 
high-quality image data, which might have different characteristics and thus can provide 
complementary information for the same observed region. This paper presents methods 
for land cover classification based on the joint use of high-resolution aerial images and 
satellite image time series (SITS). We extend an existing approach by introducing 
transformer-based components, comparing two approaches that fuse features extracted 
from SITS and an aerial image before predicting land cover at the geometrical resolution 
of the aerial image. We perform experiments on an existing benchmark dataset, showing 
that the transformer-based fusion of an aerial image with a SITS from Sentinel-2 improves 
the classification results by +1.8% in the mean IoU and by +0.8% in the overall accuracy 
compared to fully convolutional networks based on aerial images only.  
 

1 Introduction 

Land cover classification, the task of assigning a class label representing the physical material 
of the Earth surface to each pixel in the image, is one of the most important tasks in remote 
sensing. With the growing availability of high-quality image data, multiple sensors can be used 
to acquire data with complementary information of the same observed region. For example, 
aerial imagery can deliver textural information at decimetre resolution, but usually with high 
revisit times. On the other hand, satellite systems have short revisit times, so that the resultant 
images can capture temporal changes and patterns, but usually at a coarser spatial resolution, 
e.g. with a ground sampling distance (GSD) of 10 m or more. Both aerial and satellite images 
can be combined to improve land cover classification results.  
For aerial images, Fully Convolutional Networks (FCNs) with encoder-decoder architectures 
are frequently used for land cover classification, e.g. architectures based on U-Net 
(RONNEBERGER et al. 2015) that use skip connections between feature maps at corresponding 
resolutions from the encoder and the decoder to improve the spatial accuracy of the results. For 
SITS data, different methods such as 3D-Convolutional Neural Networks (CNNs) or Recurrent 
Neural Networks (RNNs) have been used to extract spatial and temporal information. Methods 
based on 3D-CNNs consider the time as just an additional dimension of the input data and learn 
filter kernels for a convolution in the two spatial and the temporal dimensions (JI et al. 2018; 
LI et al. 2022). RNNs are designed to explicitly model sequential data and capture temporal 
dependencies of the time series while processing one image at a time, maintaining a memory 
of the previous inputs and updating the output based on the current input (ZHU et al. 2021). 
Recently, RNNs have been challenged by vision transformers (ViTs), which have been adapted 
to efficiently capture both spatial and temporal dependencies in SITS data, yielding promising 
results in several remote sensing tasks (VOELSEN et al., 2023; TARASIOU et al. 2023; ZHANG et 
al. 2023). However, the methods cited so far only use a single modality as input.  
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The goal of this paper is to present a method for the simultaneous use of an aerial image and a 
co-registered Satellite Image Time Series (SITS) to obtain a land cover map at the GSD of the 
aerial image. Existing approaches for integrating such multi-scale images tend to use an 
architecture consisting of a separate network branch for each data modality (BENEDETTI et al. 
2018; GBODJO et al. 2021; BERGAMASCO et al. 2023; GARIOUD et al. 2023) before fusing the 
outputs for land cover classification. Our method is based on (GARIOUD et al. 2023), which we 
also use as our baseline. The method uses a FCN branch for processing aerial images and 
another CNN-based branch for the SITS data before fusing the results for classification. The 
SITS branch uses an attention-based model for encoding temporal information. We extend 
(GARIOUD et al. 2023) by introducing transformer models for the SITS branch of the network, 
adopting the approaches from (VOELSEN et al. 2023) and (TARASIOU et al. 2023) to implement 
two different transformer-based architectures. The first one uses a modified Swin Transformer 
(VOELSEN et al. 2023), whereas our second architecture replaces the SITS branch of (GARIOUD 

et al. 2023) by the Vision Transformer for SITS (TSViT) of (TARASIOU et al. 2023). In both 
new approaches, the branch processing the aerial imagery and the fusion of the feature maps 
and the aerial images are identical to (GARIOUD et al. 2023).  
The scientific contributions of this paper can be formulated as follows: 

 We present two new methods for the integration of multi-scale data by jointly using 
aerial images and multi-temporal information from SITS to exploit their potential for 
improving land cover classification.  

 In this context, we investigate two different transformer-based architectures, including 
the use of input time acquisitions of varying length for SITS.  

 In experiments based on the French Land cover from Aerospace ImageRy (FLAIR) #2 
Challenge dataset (GARIOUD et al. 2023) we analyse the impact of using SITS on the 
quality of the results of land cover classification, and we compare our two transformer-
based architectures with each other and with our baseline (GARIOUD et al. 2023).  

2 Related Work 

We start this review with discussing related work that uses CNNs for integrating multiscale 
data from different sensors for the classification. We then introduce transformer models and 
the way in which they are adapted to the task of semantic segmentation for remote sensing 
images, in particular SITS. Finally, we discuss the few existing approaches that use attention-
based modules to combine aerial and satellite image time series data. 
The integration of multiscale remote sensing data sources has been investigated in several 
works. For instance, BENEDETTI et al. (2018) use a Gated Recurrent Unit (GRU) network to 
process Sentinel-2 time series (10 m GSD) and a 2D-CNN branch to extract features from 
mono-temporal SPOT-6 images (2 m GSD). The resultant features are concatenated and 
provided to a decoder network to obtain a land cover classification at the GSD of SPOT-6. 
GBODJO et al. (2021) combine Sentinel-2 and SPOT-6 data with SITS from Sentinel-1 images. 
The Sentinel-1 and SPOT data are processed by 2D-CNN based encoders, while the Sentinel-
2 SITS is analyzed using a 1D-CNN encoder applying the convolution only in the temporal 
dimension. The resultant features are concatenated and used to predict land cover at the GSD 
of the SPOT images. Both approaches are limited to a fixed number of timesteps. Also, the 
difference in the GSDs is relatively small (10 m vs. 2 m GSD).  
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There are not many CNN-based approaches that combine SITS data with aerial images. 
BERGAMASCO et al. (2023) use a 3D-CNN network to extract spatial and temporal features 
from Sentinel-2 SITS, combining the features extracted from aerial images (0.2 m GSD) using 
a residual network (2D-ResNet). The fused features are fed to a decoder to discriminate 
different types of pasture at the GSD of the aerial images. The results show that combining 
aerial images and SITS data systematically improves the classification results compared to 
mono-modal classification. However, the method has limitations in differentiating classes that 
are semantically similar, and the class structure is not typical for land cover classification.  
Transformer models utilize self-attention modules to model long-range dependencies and 
relationships within input sequences and have proven to outperform other models for 
processing and analysing sequential data (KHAN et al. 2022). Compared to 3D-CNNs, which 
typically require fixed input dimensions, they offer the advantage of being able to adapt to 
varying sequence lengths. Several approaches have attempted to use attention-based models 
for the extraction of spatial-temporal information from SITS. VOELSEN et al. (2023) extended 
Swin Transformer (LIU et al., 2021) for processing the SITS. For each image of the SITS, Swin 
Transformer blocks are executed in parallel to extract spatial features, and the outputs are 
processed jointly by a temporal transformer block. The modified Swin Transformer 
outperforms purely CNN-based models for the task of generating multi-temporal land cover 
maps from Sentinel-2 time series. TARASIOU et al. (2023) adapted the ViT (DOSOVITSKIY et al. 
2021) for crop classification based on SITS data. They first compute attentions between all 
timesteps of corresponding patches at the same spatial location. After that the outputs are 
reshaped and the attentions are computed between all patches of the same timestep. Though 
this model was shown to achieve better results with fewer parameters than other techniques, it 
has a quadratic complexity with respect to the input size, which can result in higher hardware 
demand when working with larger inputs. Neither VOELSEN et al. (2023) nor TARASIOU et al. 
(2023) combine multiple modalities at different GSDs.  
Very few approaches have used attention-based models to jointly combine SITS data with 
aerial images. GARIOUD et al. (2023), on whose work ours is based, proposed a two-branch U-
Net-based architecture to fuse Sentinel-2 SITS with aerial images. They adopt the U-TAE 
model of GARIOUD et al. (2021), a modified U-Net with a Temporal self-Attention Encoder 
(TAE), to extract temporal information from a SITS. The aerial images are processed by a U-
Net to produce pixel-wise class predictions; in order to fuse the two modalities, the SITS 
features are added to the encoder features of all levels in the skip connections. We see a problem 
of (GARIOUD et al., 2023) in the way in which the attentions are computed; for all timesteps of 
a given SITS, the query (DOSOVITSKIY et al. 2021) is defined as the temporal average of the 
queries (all pixels) of all timesteps (GARNOT et al. 2019), which does not model the interaction 
between timesteps. To counteract this limitation, we propose to use transformer models (LIU 
et al. 2021; TARASIOU et al. 2023) in which the pixels of one timestep are encoded in a single 
query, which is then used to attend to all other elements of the timestep. 
To the best of our knowledge, none of the existing approaches have investigated the use of 
transformer-based models to jointly integrate temporal information extracted from SITS data 
with features learned from aerial images for land cover classification. In this paper, we extend 
(GARIOUD et al. 2023) by introducing a fully attentional model for processing SITS based on 
transformer networks (LIU et al. 2021; TARASIOU et al. 2023). We compare two different 
variants of transformers and additionally evaluate the contribution of the satellite data to the 
classification results of aerial images. 



H. Kanyamahanga & F. Rottensteiner 

226 

3 Methodology 

The main goal of our method is to combine SITS data and an aerial image for a pixel-wise 
prediction of land cover at the GSD of the aerial image. We propose a two-branch architecture 
which extends (GARIOUD et al. 2023) by introducing two different transformer-based 
approaches for processing SITS. This choice is motivated by the ability of transformer models 
to model temporal as well as long-range spatial dependencies.  
In Section 3.1, we briefly describe our baseline model (GARIOUD et al. 2023), which also 
provides us with the general structure of the joint classification procedure. The two subsequent 
sections describe our two transformer-based models for the network branch for processing 
SITS. The first one, described in Section 3.2, replaces the SITS branch of (GARIOUD et al. 2023) 
by the transformer-based model of VOELSEN et al. (2023). The second one replaces that branch 
by the Vision Transformer for SITS (TSViT) of TARASIOU et al. (2023) and is presented in 
Section 3.3. Section 3.4 describes the training procedure used for all three approaches.  

3.1 Joint Classification of Aerial Images and SITS using U-Net for SITS 
The input of the method proposed in (GARIOUD et al., 2023) consists of a georeferenced SITS 
XS with T timesteps, each image having CS spectral bands and covering the same area of HS × 
WS pixels at the GSD of the SITS, and an aerial image XA with CA spectral bands and covering 
an area of HA × WA pixels at the resolution of the aerial image. The aerial image corresponds 
to a subset of the area covered by the SITS. The output of our method is a land cover map of 
dimension HA × WA at the GSD of the aerial image. An overview of the architecture is given in 
Figure 1. The input dimensions are set to HS = WS = 40 and HA = WA = 512 (cf. Section 4.1).  
The SITS data are organized into a four-dimensional tensor of shape T × CS × HS × WS, which 
forms the input of the SITS branch. GARIOUD et al. (2023) use the U-Net-TAE architecture 
(GARNOT et al., 2021) for this branch, which is expected to extract temporal information from 
the given SITS. In this branch, each image of the time series is processed by a shared CNN 
encoder, and the lowest feature map is used to compute the temporal attention. The resulting 
attention masks are spatially upsampled; at each resolution, a weighted sum of the feature maps 
of the individual timesteps is computed, with the attentions being used as weights, and the 
resultant feature maps are concatenated to the feature maps of the corresponding layer in a 
CNN decoder. The final output of the decoder and, thus, the SITS branch is a feature map of 
dimension 64 × HS × WS at the spatial resolution of the SITS. 
The aerial image is organized into a tensor of shape CA × HA × WA processed by a separate 
branch (aerial branch) which also has a U-Net structure with five resolution levels and skip 
connections between corresponding levels of the encoder and the decoder. The fusion of the 
features extracted from the SITS and those extracted from the aerial image is performed in the 
skip connections. For that purpose, the area of overlap between the SITS and the aerial image 
has to be cropped from the SITS feature map, and the cropped feature map is upsampled 
multiple times, so that there is one upsampled map for each resolution level of the U-Net of the 
aerial branch. The fusion itself consists of adding the upsampled SITS features to the output of 
the corresponding encoder level of the aerial branch (FM in Fig. 1). Thus, instead of just 
forwarding the encoder output to the corresponding layer in the decoder, the skip connection 
will additionally forward the multitemporal information encoded in the SITS features to the 
decoder. The features delivered by the last decoder layer are processed by a softmax layer to 
predict the class scores, on the basis of which the land use map is generated.  
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Fig. 1: Network architecture for the joint classification of SITS and an aerial image, adapted from 
(GARIOUD et al. 2023). The architecture of the SITS branch differs for the three approaches 
used in this paper. The aerial branch consists of a U-Net processing a single aerial image. 
This SITS feature map is upsampled to the resolutions of all the feature maps of the U-Net 
branch and added to the encoder output in the fusion modules (FM) situated in the skip 
connections. The combined features are used in the U-Net decoder, the output of which is 
used to produce the land cover map. In training, a classification loss is minimized for both 
the SITS and the aerial branches, but at test time, no labels are predicted for the SITS 

3.2 SITS Branch based on a Swin Transformer  
Our first method for the joint classification of an aerial image and a SITS uses the general 
architecture depicted in Figure 1, but it replaces the SITS branch of GARIOUD et al. (2023) by 
a transformer-based method. In particular, the SITS branch consists of an encoder based on a 
modified version of the Swin Transformer (LIU et al. 2021) and a decoder based on UPerNet 
(XIAO et al. 2018); the resultant architecture of the SITS branch is presented in Figure 2. 
The original Swin Transformer computes attentions in a local window (e.g. patches of size 
7x7). In order to still consider global context, consecutive attention layers are based on 
windows that are shifted by half the window (LIU et al. 2021). Our SITS branch is based on the 
extension proposed by VOELSEN et al. (2023). It consists of four processing stages, each 
generating a feature map at a different resolution (feature maps C1 … C4 with 1/4 … 1/32 of 
the size of an input patch). The temporal domain is only considered in the first stage, in which 
Swin Transformer blocks are executed in parallel to extract spatial features for each timestep 
and the outputs are fused and processed by a temporal transformer block introduced by 
VOELSEN et al. (2023). Stage 1 consists of two such blocks, considering shifted windows as in 
(LIU et al. 2021). The output is reshaped to a 3D tensor, discarding the temporal dimension, in 
the way described below. The result is a feature map C1 that is passed to the decoder before 
being downsampled to serve as an input for encoder stage 2. In the subsequent encoder stages, 
the standard Swin Transformer blocks are applied (two in stages 2 and 4, six in stage 3, 
following the tiny architecture of LIU et al (2021)). This combination corresponds to the 
network variant SwinS1 introduced in (VOELSEN et al. 2023), which outperformed other 
investigated variants in that publication. 
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Fig. 2: Architecture of the SITS branch based on a Swin transformer encoder. It produces four 
feature maps C1, C2, C3, C4 that are used by a UPerNet decoder to generate a feature 
map of size (64 × 40 × 40) that is integrated into the Aerial branch. 

The feature maps produced by the four stages of the encoder are used as input by the UPerNet 
decoder. The output of the last stage (C4) is processed by a Pyramid Pooling Module (PPM) 
(ZHAO et al. 2017) which applies average pooling using different window sizes and 
concatenates the results to the input after reducing the feature dimension by 1 × 1 convolutions. 
The resultant feature map P4 is upsampled to the resolutions of the feature maps C1, C2 and 
C3, and the upsampled version is concatendated with the corresponding feature map. The 
application of 1 × 1 convolutions results in three feature maps P1, P2, P3. These feature maps 
are upsampled to the resolution of P1 (HS/4×WS/4) and all of them (P1, P2, P3 and P4) are 
concatenated. Using a 1 × 1 convolution the number of features is reduced to 64, and the result 
is upsampled to the dimenison HS × WS. This upsampled map is the output of the SITS branch. 
The main difference between the SwinS1 network of VOELSEN et al. (2023) and the Swin branch 
proposed here is that, we consider the temporal dimension only in the first stage; after that, the 
temporal dimension is collapsed. As a consequence of our approach, our architecture can deal 
with input sequences of varying length, i.e. T is variable, whereas in (VOELSEN et al., 2023) the 
input always has to consist of the same number of images (e.g. 4 or 12). The output of the last 
transformer block in stage 1 has a dimension of T × F1 × (HS / 4 ∙ WS /4), where F1 denotes the 
number of features. This is already three-dimensional, because the image patches were already 
arranged in a single dimension along the row direction. This tensor is reshaped to F1 × (T ∙ HS 
/ 4 ∙ WS /4), and multi-head self-attention (VASWANI et al. 2017) is applied to generate another 
feature map of the same dimension. In this way, attention is considered between the feature 
vectors of all spatial positions. Afterwards, the feature maps corresponding to different 
timesteps are summed to merge the information from different timesteps. This results in a 
feature map of dimension F1 × (HS / 4 ∙ WS /4), which can be rearranged in any shape that is 
required by subsequent network layers.  
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3.3 Vision Transformer for SITS (TSViT) 
Our second approach replaces the SITS branch of GARIOUD et al. (2023) by the Vision 
Transformer for SITS (TSViT) of TARASIOU et al. (2023). Each image of the SITS data is 
divided into non-overlapping patches, and attentions are computed between all timesteps of the 
corresponding patches at the same spatial location. Then, the outputs are reshaped and the 
attentions are computed between all patches of the same time step. We refer the reader to 
(TARASIOU et al. 2023) for more details about TSViT. For this approach, we also use a time 
series of varying length, similar to the Swin Transformer approach described in Section 3.2, 
and this is handled in the temporal encoder of TARASIOU et al. (2023). The branch processing 
the aerial imagery and the fusion of the feature maps from the SITS branch and the aerial 
images are identical to (GARIOUD et al., 2023).  

3.4 Training 

To train the proposed networks, a loss function L consisting of the sum of two terms, one for 
the SITS (LCE, SITS) and one for the aerial network branch (LCE, Aerial), is minimized. Both loss 
terms are based on a categorical Cross Entropy (CE) loss:  

 
LCE, Branch  tij

NC

i=1

 log pij

NP

j=1

 
(1) 

 L  LCE, SITS  LCE, Aerial. (2) 

In equation (1), Branch can be SITS or Aerial, NP is the number of pixels of an input patch of 
that branch, j is the index of a pixel, NC is the number of classes, and i is the index of a specific 
class. The indicator variable tij indicates whether the reference class label of pixel j is i (tij = 1) 
or not (tij = 0), and pij is the softmax output for pixel j to correspond to class i. In order to be 
able to compute this loss, the SITS branch also has to predict class probabilities. Thus, a 
softmax layer is applied to the feature map predicted by that branch when the network is 
trained. As a reference is only available for the aerial image, which covers a smaller area than 
the SITS, the class scores are cropped to the area of overlap and then upsampled to the spatial 
resolution of the aerial image before computing the loss LCE, SITS. 
The loss in equation (1) is minimized using the Adam optimizer (KINGMA & BA 2015). For the 
SITS network, a random initialization strategy is used for its parameters while for the aerial 
network, the parameters are initialized starting from the weights pre-trained on the ImageNet 
dataset, similar to (GARIOUD et al. 2022). 

4 Experiments 

4.1 Test Dataset 
In our experiments, we use the French Land cover from Aerospace ImageRy (FLAIR) #2 
Challenge dataset (GARIOUD et al. 2023), consisting of mono-temporal multispectral aerial 
image and height data acquired between 04/2018 and 11/2021 and SITS acquired by Sentinel-
2 over a period of one year in France. The dataset contains imagery and reference data from 
916 test areas distributed over 40 cantons in France, with a total area of about 817 km2. All 
images are georeferenced in the same coordinate system. The aerial images have 4 channels 
(RGB, near infrared) at a GSD of 20 cm. A normalized digital surface model is available as an 
additional input band, thus CA = 5. The SITS data consist of Sentinel-2 L2A images containing 
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bottom-of-atmosphere (BOA) reflectance values, and cloud and snow masks (DRUSCH et al. 
2012). We use CS = 10 channels at a GSD of 10 m, upsampling the six bands with a GSD of 
20 m by nearest neighbour resampling. Images having more than 5% of cloud cover according 
to the cloud masks are eliminated, so that the number of images per test area varies between 
20 and 110. We follow the procedure used in our baseline method (GARIOUD et al. 2023), which 
requires a fixed-length input, and preprocess the SITS by computing monthly average 
reflections considering cloud-free pixels in the images, so that the maximum number of 
timesteps available for a test area is 12. However, the number of timesteps might vary because 
there are months for which there is not a single cloud-free image of a test area. There is a pixel-
wise reference at the GSD of aerial images which differentiates 13 land cover classes: building 
(bld), pervious surface (pvs), impervious surface (ips), bare soil (bs.), water (wt), coniferous 
(cfs), decidous (dcs), brushwood (bsd), vineyard (vyd), herbaceous vegetation (hvg), 
agricultural land (agr), plowed land (pld) and other. The class distribution is very imbalanced, 
with class frequencies varying between 1.1% (other) and 19.8% (hvg).  

Each area is split into subsets (referred to as patches) covering a size corresponding to 512 x 
512 pixels in the aerial image. The SITS of every patch are sampled so that they have a size of 
40 × 40 pixels at the GSD of 10 m. Altogether there are 77,762 patches, each with an aerial 
image, a SITS (with varying number T of images) and a reference label map. GARIOUD et al. 
(2023) defined a training set consisting of 61,712 patches and a test set consisting of the 
remaining 16,050 patches. We use the same definition, further splitting the 61,712 training 
patches into a set of 48,812 patches to be used for updating the parameters (we will call this set 
training set in the rest of the paper) and a validation set consisting of 12,900 patches. More 
details can be found in (GARIOUD et al. 2023).   

4.2 Experimental Protocol 

When applying the three methods described in Section 3 to the data described in Section 4.1, 
we used HA × WA = 512 and HS × WS = 40. The patch size for the tokens in the transformer-
based methods is set to 2 x 2 pixels (TARASIOU et al. 2023). We use the split into training, 
validation and test sets as described earlier, which is also consistent with (GARIOUD et al. 2023). 
The training procedure was as described in Section 3.4. In training, we also applied data 
augmentation, using random rotations by 900, 1800, 2700, horizontal and vertical flipping. 
Training is carried out for a maximum of 100 epochs, but training is stopped if the validation 
accuracy does not increase for 30 epochs (early stopping). We used the ADAM optimizer 
(KINGMA & BA 2015) with the parameters β1= 0.9 and β2= 0.999. The batch size is set to 5 , 
the learning rate is set to 6e-5 and is decreased by a factor of 0.7 every 10 epochs. We have 
chosen those values because they were found to perform well on the validation dataset. The 
training is carried out on a cluster with 2x NVIDIA A100 80GB GPUs in a data parallel fashion 
where a distributed data parallel strategy is employed to leverage these computational resources 
efficiently, allowing for parallel training across multiple GPUs. All the models are 
implemented using the PyTorch Lightning Framework. 
We carry out four sets of experiments. In the first one uses the U-Net of (GARIOUD et al. 2022) 
to predict land cover only based on the aerial images; it is referred to as U-Net in the remainder 
of this paper and its results will be compared against those of the other methods, all based on 
SITS, to assess the impact of the latter on the classification quality. The second set of 
experiments (referred to as U-T&T) is our baseline based on (GARIOUD et al. 2023). The set of 
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experiments referred to as Swin are based on the SITS branch described in Section 3.2, whereas 
the set TSViT uses method described in Section 3.3 for that purpose. Each experiment is 
repeated three times, each time starting from a different random initialization of the weights 
and using random shuffling for batches, to assess the impact of these random components on 
the classification results.  
To evaluate the performance of our models, the classification results on the test patches are 
compared to the reference. We report the intersection over union (IoUc) for each class c:  
 

IoUC= 
TPC

TPC+FPC+FNC
 (3) 

In Equation 3, TPC, FPC, and FNC denote the number of pixels that are true positives, false 
positives and the false negatives, respectively, for a class c. The mean intersection over union 
(mIoU) is also computed by taking the average of the IoUC values for all classes except other, 
following the protocol in (GARIOUD et al. 2023). We also determine the overall accuracy (OA), 
i.e. the proportion of correctly classified pixels. For these two compound metrics, we report the 
average and the standard deviations over the three test runs.  

4.3 Results 
Tab. 1 shows the mIoU and OA values achieved in the four experiments described above. The 
numbers show that the use of SITS data as an additional source of information leads to an 
increase in the overall performance. When using only aerial imagery in experiment U-Net, the 
lowest mIoU score of 55.2% is achieved. Using the baseline of GARIOUD et al. (2023) which 
also considers SITS (experiment U-T&T), the mIoU is slightly improved (56.8 % versus 
55.2%), but it also has a higher standard deviation in the results. The methods applying 
transformer-based SITS branches perform on a similar level. The TSViT model achieved a 
slightly better mIoU score of 57.0 % than the one based on the Swin Transformer (56.9%), 
which also seems to be less stable, as indicated by the somewhat larger standard deviation. It 
could be said that when using the TSViT transformer, there is a significant improvement in 
mIoU (+1.8%) when using SITS compared to a model only relying on aerial imagery, whereas 
the differences between the methods that combine SITS and aerial data is not significant. As 
to be expected, the differences in OA are even smaller. The values seem to be more stable 
across different test runs, as indicated by the standard deviations. Again, the numbers indicate 
that the SITS help (improvement of +0.6-0.8% for the two transformer-based methods), but the 
differences between the methods that combine SITS and aerial images are barely significant. 

Tab. 1: Mean IoU (mIoU) and Overall Accuracy (OA) for land cover classification [%] on the test set of 
the FLAIR #2 dataset achieved by different deep learning methods. The numbers are the averages 

achieved by three independently trained models, followed by the standard deviation. U-Net: the U-Net 
model using only aerial images. U-T&T: the baseline (GARIOUD et al. 2023). Swin: Our model based 
on the Swin Transformer (cf. Section 3.2). TSViT: our model using the TSViT transformer. All except 

U-Net use both aerial and satellite imagery. Best results are indicated in bold. 

Method mIoU [%] OA [%] 
U-Net 55.2±0.0 71.3±0.0 
U-T&T 56.8±0.7 71.7±0.0 
Swin 56.9±1.1 72.1±0.1 

TSViT 57.0±0.0 71.9±0.0 

Tab. 2 presents the class-wise IoU values achieved in the four experiments, averaged over the 
three test runs. The numbers in the table indicate that there is no unique tendency in the 



H. Kanyamahanga & F. Rottensteiner 

232 

performance of the compared methods w.r.t. the different classes. Nevertheless, the method 
solely based on aerial images only achieves the best IoU value for class hvg. The method based 
on the Swin Transformer preforms best for five classes, the one based on TSViT for four and 
the baseline for two. In general, the improvements due to the consideration of SITS is in the 
order of 1%-2% across classes, but it can be up to 20% for cfs. To a certain degree this can be 
expected, because coniferous trees show a different seasonal behaviour than some other 
vegetation classes, which would not be reflected in the aerial data. The fact that the scores for 
the majority of the classes are better for the transformer-based methods would indicate a slight 
advantage of these approaches over the baseline, but as pointed out earlier, on average the 
differences are quite small. Fig. 3 presents qualitative results for an urban area. An example for 
a rural area is shown in Fig. 4.  

Tab. 2: Class-wise IoU values [%] on the test set of the FLAIR #2 dataset achieved by different deep 
learning methods. The compared methods are those defined in Tab. 2. The numbers are averages 

achieved by three independently trained models. Best results are indicated in bold. 

Method bld pvs ips bs wt cfs dcs bsd vyd hvg agr pld 
U-Net 81.8 49.2 72.8 40.5 85.0 41.1 68.7 23.9 62.2 48.4 53.0 35.5 
U-T&T 81.9 48.6 71.9 43.4 83.2 56.9 69.8 25.6 65.1 46.0 53.3 36.6 
Swin 81.3 50.6 73.0 42.4 80.5 55.4 71.2 23.9 65.2 45.5 54.1 38.9 

TSViT 78.7 48.7 68.8 51.5 85.2 62.4 69.7 21.5 64.2 41.0 55.8 36.3 
 

             
           (a) Aerial Image         (b) Reference             (c) U-Net   

             
           (d) U-T&T           (e) Swin               (f) TSViT   

Fig. 3: Aerial image of a test area, the corresponding reference and the land cover maps predicted 
by the four methods compared in our experiments. The area corresponds to multiple 
patches that were classified independently. It is dominated by land cover that is typical for 
urban areas. Blue circles show areas that are misclassified by all approaches. The 
acronyms for (c) – (f) correspond to the compared methods. Colours: magenta - bld, grey - 
pvs, red - ips, brown - bs, blue - wt, dark green - cfs, acquamarine - dcs, orange - bsd, 
purple - vyd, bright green - hvg, yellow - agr, dark yellow - pld 
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Tab. 2 also shows that some classes can be differentiated more easily than others. The 
frequency of the classes in the data seems to matter, as some of the highest IoU scores (55%-
81%) are achieved for classes occurring very frequently (e.g., ips, dcs, bld, and agr), whereas 
some of the lowest scores are achieved by underrepresented classes (e.g. bsd, pld). 
Nevertheless, hvg, a class with a high frequency of occurrence, achieves a very low IoU score, 
whereas vyd, an underrepresented one, achieves a relatively high one. This may be attributed 
to a very similar appearance of some classes. For example, it might be difficult to differentiate 
herbaceous vegetation areas (e.g. gardens, public parks) against agricultural land in some areas.  

             
           (a) Aerial Image         (b) Reference             (c) U-Net   

             
           (d) U-T&T           (e) Swin               (f) TSViT   

Fig. 4: Aerial image of a test area, the corresponding reference and the land cover maps predicted 
by the four methods compared in our experiments. The area corresponds to multiple 
patches that were classified independently. It is dominated by land cover that is typical for 
rural areas. Black circles highlight regions that are classified better by approaches which 
integrate SITS. The acronyms for (c) – (f) correspond to the compared methods. The colour 
code is identical to the one in Fig. 3 

Fig. 3 and 4 show how the use of temporal information from SITS data helped in identifying 
classes which change over time. It can be seen that agr, vyd, cfs, are better separated by 
approaches that integrate SITS data (cf. the regions in the black circles). In general, all the 
models show similar performance on classes such as bld, pvs, ipv, and bsd, which are not 
affected by seasonal changes. The numbers in Table 2 show that these classes can be easily 
identified by all the models This is also confirmed by a visual inspection of Figure 3, showing 
how most of the object types are clearly detected, e.g. buildings with the roads connecting 
them. Fig. 4 also show that all models exhibit a certain level of uncertainty to classify natural 
areas such as bs and bsd, potentially because they look similar to other object types, even when 
considering an entire vegetation cycle. In summary, despite some remaining problems, our 
results show the benefits of integrating SITS for land cover classification using transformers.  
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5 Conclusion and Outlook 

In this paper, we investigated two different approaches based on transformer models to 
integrate aerial and SITS for land cover classification. Our results show that the integration of 
SITS improves the results by a margin of up to 1.8% in mIoU compared to what can be achieved 
by an approach only relying on aerial images and applying a classical U-Net (GARIOUD et al. 
2022). A comparison of the two transformer-based models and the baseline (GARIOUD et al. 
2023) shows a slight advantage for the former, though the overall improvement is relatively 
small. The largest improvement due to the integration of SITS was achieved for cfs, but classes 
such as bs, vyd or agr are also classified. This indicates the benefit of combining the two 
modalities for the classification of land cover. 
Our results also indicate that, whereas SITS improve the classification accuracy that can be 
achieved, this improvement is relatively small, and some classes are relatively poorly 
differentiated. Future work could investigate different ways of computing attentions for 
extracting temporal information from SITS data. Also, the way in which the timesteps are 
combined after stage 1 of the Swin Transformer encoder could be changed to allow a multi-
temporal information flow at higher levels of the network. Another issue to be addressed could 
be the way in which the features of the SITS and the aerial data are fused; perhaps, attention-
based models could also be used here. Finally, the training procedure could be changed, e.g. 
by using alternative loss functions that compensate for the class imbalance of the training data. 
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