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Integration Approach for Manual Generated Single Tree 
Crown Annotations 
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Abstract: For an accurate mapping of forest stands, precise object detection at the 
individual tree level is necessary. Currently, supervised deep learning models dominate 
this task. To train a reliable model, it is crucial to have a robust model and an accurate 
tree crown annotation dataset. The current method for generating these datasets still relies 
on manual annotation. However, the tree crowns exhibit intricate contours. In some 
instances, trees intersect with each other, and their spatial arrangement is irregular. This 
leads to inaccurate and incomplete quantity annotations, including the inclusion of 
multiple tree crowns in a single annotation. Therefore, this study explores a novel 
approach that integrates the annotations of multiple annotators for the same region of 
interest and can reduce annotation inaccuracies due to personal preference and bias. 

1 Introduction 

Single tree crown mapping is an important component of forestry research. It provides data for 
various environmental assessments, modeling, and management by supplying information such 
as crown size changes, individual tree placements, and health status. Traditional field 
measurement of individual tree crowns is a time-consuming process and hampered by access 
concerns in private areas. In contrast, the remote sensing measurement collects a broader 
variety of tree cover information, is less expensive, and is not limited by accessibility 
constraints (ZHAO et al. 2023).  
The progress in computer vision has led to the creation of various techniques for the automatic 
identification and delineation of tree crowns in aerial images, supplanting traditional manual 
methods reliant on visual interpretation. These approaches predominantly rely on image 
analysis, with deep learning emerging as a prominent strategy in the realms of object detection 
and instance segmentation. This dominance is further bolstered by the swift advancements in 
graphics processing units and the continual refinement of algorithms (HOESER et al. 2020). By 
harnessing human-provided knowledge, exemplified by manually annotated tree crown labels, 
supervised deep learning models iteratively optimize their vast number of parameters, which 
endows them with the capacity to differentiate individual tree crowns, akin to the cognitive 
processes of humans. 
Hence, along with a meticulously crafted deep learning model, an accurately annotated dataset 
is also of paramount significance. However, the creation of annotation datasets for tree crowns 
is fraught with several unavoidable challenges. First, unlike other regular surface features 
(buildings, roads, etc.), the outer contour of the tree crown is extremely complex. Moreover, 
the overlapping and intermingling of multiple trees pose additional complexities. In terms of 
spatial distribution, particularly in forested areas, trees exhibit an uneven distribution. Lastly, 
the quality of images, accompanied by certain surface intricacies like shadows, and the 
presence of entities resembling trees in appearance (e.g., green belts, lawns) contribute to the 
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annotator's decision-making challenges. Negotiating these hurdles proves to be a challenging 
task, even for seasoned experts. 
In response to these challenges, this study introduces an innovative approach, proposing the 
integration of annotations from multiple annotators for the same region of interest (ROI). The 
objective is to alleviate the detrimental impact stemming from the individual preferences and 
errors of annotators during the process of single tree crown annotation.  
In the ensuing chapters, Chapter 2 provides a comprehensive introduction to the methodology, 
while Chapter 3 delineates the experimental details. Moving forward, Chapter 4 and Chapter 
present the results and related evaluations. Lastly, the study culminates in Chapter 6 with a 
summary and future research prospect. 

2 Methodology 

Deep learning models utilized for instance segmentation typically employ vector data as a 
carrier in their annotation datasets. Geometric shapes, such as points, lines, and polygons, serve 
as representations for labels. In contrast to raster data, vector data tends to exhibit smaller file 
sizes, storing solely the endpoint coordinates of geometric shapes rather than the values of 
individual pixels. Additionally, the resolution remains constant regardless of scaling ratios.  
One idea for integrating vector annotation data involves transforming the vector data into the 
raster domain for specific numerical operation and subsequently reverting it back. WALTER 
(2018) proposed a method for amalgamating multiple polygons based on the “Wisdom of the 
Crowd”. This approach assumes that "if many individuals measure the same object, the average 
geometry should closely approximate the real geometry" (WALTER 2018). COLLMAR et al. 
(2023) expanded on this concept to integrate tree crown labels obtained from crowdsourcing 
through a two-step process. However, these methodologies are centered around polygon 
integration for a single object and are not applicable when dealing with the adjacency of 
multiple objects within a single image. 
Our work further extends the principle of the “Wisdom of the Crowd”, reconstructing the 
matrix transformed from vector data, which we named the acquisition matrix. Employing a 
combination of Markov random field (MRF) and graph cuts algorithm, we achieve integrated 
annotation, enabling the amalgamation of multiple independent polygons within a single region 
of interest. 

2.1 Acquisition matrix 
The shape of the acquisition matrix is (N+1, H, W), where N represents the number of the 
individual annotations related to a ROI, and H and W are the height and width of the 
corresponding ROI. The additional layer, denoted as 1, serves for further numerical operations. 
The specific process is as follows: 

1. Each individual vector annotation is converted to a raster annotation map with the shape 
of (1, H, W), where the value of each pixel in the map is the identifier (ID) of the tree 
crown label, and background pixels are assigned a value of 0. 

2. The N layers of the acquisition matrix are formed by stacking these raster images. 
3. The expansion layer records the frequency f of the current pixel being labeled. 

Moreover, through processing the acquisition matrix, potential clusters corresponding to the 
ROI are identified. These clusters are characterized by their ID sequence, composed of the tree 
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crown labels assigned by each annotator. Refinement of potential clusters is based on the 
following assumptions: 

 Pixels in the region around the tree center, where most annotators agree on the tree 
crown, share the same ID-sequence, referred to as the central ID-sequence (CIDS). 

 Pixels at the edges of the tree crown may exhibit different ID-sequences due to varying 
perspectives of one or more annotators, referred to as the edge ID-sequence (EIDS). 

 
Fig. 1: Instance of the acquisition matrix 

Fig.1 illustrates an instance of the acquisition matrix, where we have specifically identified six 
key pixels for further explanation. A and B denote the CIDS serving as focal points for most 
annotators, surrounded by pixels that share the same ID sequences. Meanwhile, C, D, and E 
represent the EIDS, with the former two having lower recognition levels than A and B but 
being unequivocally related. Notably, E is situated on a label boundary, deviating from the 
decision of one annotator. Lastly, F is highly likely to be categorized as background, aligning 
with the assessment of a single annotator. Subsequent processing entails their assignment to 
the pertinent clusters. 
We obtain anchors for potential clusters by retaining the CIDS. The process is as follow: 

1. Retain potential clusters with f exceeding the threshold T, indicating majority annotator 
agreement. 

2. Apply non-maximum suppression considering the abundance of ID-sequences to 
eliminate redundancies that may point to the same tree crown. This approach is 
designed to preserve CIDS while eliminating EIDS. 

The finally refined potential clusters obtained represent the recognized trees within the 
corresponding ROI. Subsequently, MRFs are employed to regenerate labels for each individual 
tree crown. 

2.2 Markov Random Field 

MRF is a probabilistic graphical model used to model the relationship between random 
variables. It is a graph structure composed of a set of nodes and edges connecting these nodes, 
where nodes represent random variables, and edges represent the dependency between 
variables (GEMAN & GRAFFIGNE 1986). In this work, we established a MRF to characterize the 
annotation map, where each pixel (𝑥௜) in the map is a node, connected by edges with its eight 
neighbors’ nodes (𝑥௝). Their set is denoted by 𝒩 resp. 𝑥௝ ∈ 𝒩ሺ𝑥௜ሻ. Based on the MRF we 
implemented the following energy function (QIU et al. 2022): 
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𝐸 ൌ  ෍቎ ෍ 𝐸௣ሺ𝑥௜ , 𝑥௝ሻ
௫ೕ ∈ 𝒩ሺ௫೔ሻ 

൅ 𝐸௨ሺ𝑥௜ሻ቏ 
௫೔

→ 𝑚𝑖𝑛 (1) 

Here, two terms determine the total energy 𝐸. 𝐸௣ሺ𝑥௜ , 𝑥௝ሻ is the pairwise potential of 𝑥௜ and its 
neighbor 𝑥௝. To encourage adjacent pixels to be classified into the same cluster (C), pairwise 
potential is defined as: 

𝐸௣ሺ𝑥௜ , 𝑥௝ሻ  ൌ  ቊ
0, 𝑖𝑓 𝐶ሺ𝑥௜ሻ ൌ  𝐶ሺ𝑥௝ሻ 
1, 𝑖𝑓 𝐶ሺ𝑥௜ሻ ് 𝐶ሺ𝑥௝ሻ.

 (2) 

𝐸௨ሺ𝑥௜ሻ is the unary potential of each pixel, representing the energy of classifying the pixel into 
clusters. It is obtained as follows:  

1. Compute the similarity matrix 𝑆ሺ𝑥௜ሻ of the ID-sequences between the pixel and all 
potential clusters, where similarity is quantified as the fraction of the number of 
identical IDs over the total number of items in the ID-sequence.  

2. Convert the similarity matrix into a unary potential matrix 𝑀௨ሺ𝑥௜ሻ  through the 
following numerical computation: 
 

𝐸௨ሺ𝑥௜ሻ ∈  𝑀௨ሺ𝑥௜ሻ  ൌ 𝑚𝑖𝑛ሺെ𝑙𝑜𝑔ଶ 𝑆ሺ𝑥௜ሻ , 2048ሻ (3) 
  

Subsequently, 𝐸௨ሺ𝑥௜ሻ  are normalized and scaled to the range of 0 to 2048 based on the 
maximum unary potential. In this way, each pixel presents high unary potential on clusters with 
low relevance.  
For the established MRF, our objective is to derive the optimal clusters distribution that 
minimizes the total energy associated with it. Here, we utilize an efficient approximation 
algorithm based on graph cuts, namely α-expansion moves, to achieve minimum energy 
estimation (BOYKOV et al. 2001). The final clusters distribution is converted to vector data, 
which is the integrated annotation. 

3 Experimentation 

To assess the viability of the integration method, we selected eight locations within Frankfurt 
am Main as ROIs. These areas encompass cemeteries, streets, squares, and backyards within 
the city area. The trees’ arrangement varies from completely irregular (such as cemeteries) to 
organized (such as streets, squares), reflecting both natural growth and intentional planting (see 
Fig.2). Each aerial image has dimensions of 512×512 pixels, with a Ground Sampling Distance 
(GSD) of 20 centimeters per pixel, thereby providing ground surface information across an 
area of 10485 square meters.  
One of the ROIs (H in Fig.2) was annotated twice by the three experts. As for remaining ROIs 
(A to G in Fig.2), four experts independently annotated the tree crowns. Subsequently, we 
applied a threshold of 70 to identify the centres of potential clusters (3 for A to G, 4 for H). 
Moreover, the integrated and individual manual annotations were compared against the tree 
cadastre collected in the field. The cadastre, maintained by the parks department of the City of 
Frankfurt am Main, has been accessible online to the public since 2014, with the latest version 
updated in August 2023. 
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It is worth noting that since tree registry records do not have access to private areas, this portion 
of the tree will be excluded at evaluation. For example, the left edge of B and the left-center 
part of D in Fig.2. 

 
Fig. 2: Aerial images of the experimental region of interest 

4 Results 

In Fig. 3, we present the visualization of annotations for some distinct representative areas, 
which exemplify specific spatial arrangements. The white lines in the figure represent the 
integrated annotation, while the differently colored lines correspond to individual manual 
annotations. 

 
Fig. 3: Annotation visualization in representative areas 
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From a visual standpoint, the integrated annotation effectively encompasses the tree crowns, 
capturing the consensus among annotators. Furthermore, each label aligns more closely with 
the actual edge of the tree crown, providing a more realistic representation from a subjective 
perspective. In particular, when trees are scattered and distributed individually, tree crown 
labels of integrated annotation are more representative of the actual situation. 

5 Evaluation 

5.1 Intersection over Union 

Intersection over Union (IoU) is a common metric used to evaluate the accuracy of object 
detection, which is defined as the ratio of the area of intersection between the predicted 
bounding box and the ground truth bounding box to the area of union between them. Here, we 
use overall IoU to assess the consistency of the annotations with the field measured tree 
coverage from the tree register. The tree coverage is expressed as a circular shape, calculated 
from crown diameter. 

 
Fig. 4: Relative overall Intersection over Union 

Fig. 4 depicts the relative overall IoU of A to G. We represent the relative IoU of the 
annotations by establishing the optimal value of each ROI as 1, thereby standardizing the 
remaining annotations. It is apparent that among individual manual annotations for each ROI, 
there are considerable variations. In contrast, integrated annotation proves effective in 
alleviating these disparities and aligning IoU closer to, or even reaching, the optimal level. 
For H, the overall IoU of 68% in the integrated annotation is higher than the 59% to 65% in 
the manual single annotations. Fig. 5 shows the IoU distribution for each label in the 
annotation. It is evident that the labels in integrated annotation tend to demonstrate higher IoU 
when compared to individual manual annotations. 
 



44. Wissenschaftlich-Technische Jahrestagung der DGPF in Remagen – Publikationen der DGPF, Band 32, 2024 

147 

 
Fig. 5: IoU Distribution in H 

5.2 Tree center coverage 

The ability of the annotation to cover all trees is an indicator worth evaluating. We assessed 
tree center coverage by verifying the inclusion of tree centers from the tree registry in the 
annotation (see Fig. 6). In Comparison with the fluctuations in IoU, tree center coverage 
typically exhibits minimal divergence among annotators. Integrated annotations are influenced 
by different annotators to converge to a neutral position. For H, the integrated annotation was 
able to cover 82% of the trees' centers compared to manual single annotations, which ranged 
from 69% to 79%. 

 

Fig. 6: Tree center coverage 
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5.3 Multiple trees as a single label 

Influenced by image quality and tree characteristics, labeling multiple trees as a single entity 
is a common annotation error. Therefore, this type of error is quantified and presented in Fig. 
7. In the figure, Single indicates that the label is associated with only one tree center, while 
Multiple denotes that the label covers more than one tree center. 

 

Fig. 7: Multiple trees as a single label 

It is worth noting that this error is present in almost all ROIs. However, due to the mutual 
constraints imposed by multiple annotators, the integration of labels can effectively keep this 
situation well-controlled within a low range. 

5.4 Annotation Preferences 

Finally, we conducted a quantitative assessment of each annotator's annotation preferences in 
three dimensions (see Fig. 8): IoU, TCC (tree center coverage) and TSL (tree as single label).  

 

Fig. 8: Annotation preferences 
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Similar to Section 5.1, we standardize the representation of metrics by defining the optimal 
value for each dimension as 1, thereby normalizing the assessments of the other annotators. 
Among these annotators, Annotator 1 delineates the broadest tree coverage in the aerial image, 
encompassing more trees, albeit with less distinction between individual trees. Conversely, 
Annotator 3 places greater emphasis on distinguishing individual trees, but overlooks the 
labelling and contouring of a few trees. Annotator 3 shares a similar annotation preference with 
Annotator 2. Lastly, Annotator 4 excels at identifying trees in aerial images but falls short in 
distinguishing and describing contours. In comparison, our integrated annotations, by 
leveraging the strengths and compensating for the weaknesses of individual annotators, 
produce an annotation map that is balanced on all three dimensions. 

6 Conclusion 

This study introduces a novel integration approach of annotations that begins by constructing 
an acquisition matrix to gather annotations from each annotator for the same region of interest. 
Subsequently, adhering to the wisdom of the crowd principle, a Markov random field is 
constructed to represent each pixel. Finally, the labels are reassigned to all pixels through graph 
cuts algorithm.  
Experimentation on tree crowns in various regions of Frankfurt am Main demonstrates the 
method's potential to integrate annotations from different annotators while mitigating the bias 
and preference from individual annotators. While the integrated annotations are not necessarily 
optimal for a single metric, they prove to be the most balanced, approaching or reaching 
optimal values for multiple metrics. Therefore, this approach is adept at generating relatively 
high-quality annotations in situations where the ground truth is uncertain or unavailable. 
In future research, we would attempt to generate a large number of labels by crowdsourcing to 
verify its capability on a high number of annotations. In addition, possible improvements are 
annotations on different patterns, i.e. grouping annotators on RGB images, pseudo-red images, 
and radar images to provide diverse data references for integration. For the assessment of 
annotation quality, it is meaningful to perform an all-encompassing assessment by consistency 
checks, e.g. the consistency of pixel colors within a single label, the consistency of the NDVI, 
and whether to incorporate edge shadowing errors, to assess the performance of the integration 
method more comprehensively. 
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