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Improved Rainfall Measurements from Microwave Link  
Attenuation Data via MSG SEVIRI Cloud Information 

REBECCA WIEGELS1,2, KATRIN KRZEPEK1, CHRISTIAN CHWALA2 & DOROTA IWASZCZUK1

Abstract: Adequate spatial coverage of precipitation measurements is not available for large 
regions. Attenuation data from commercial microwave links (CML) allow precipitation esti-
mates via existing networks, such as the cellular network. However, the processing of the noisy 
CML data requires a distinction between wet and dry periods. Here, satellite data play a sig-
nificant role, as they can be used in place of conventional reference data to distinguish be-
tween dry periods and precipitation events. In this work, a convolutional neural network is 
used to process visual and infrared cloud information from geostationary satellites to create 
a dry indicator. Precipitation products based on satellite data, such as the NWC SAF products 
PC and PC-Ph, and are utilized as baseline products for comparison. The evaluation shows 
that the developed Deep Learning (DL) product improves the performance at day- and espe-
cially at nighttime. Limitations in detecting the correct rain field area is reduced by the DL 
product compared to the PC products. In total the DL product improves the Matthews Corre-
lation Coefficient value by about 0.05 compared to the PC-Ph product. 

1 Introduction 

Reliable and accurate precipitation measurements are crucial for climate observation and for water 
related issues such as resource management or flood forecasting. However, observation networks 
have an uneven spatiotemporal global distribution. Data from Commercial Microwave Link 
(CML), as part of cellular networks, is an additional source for precipitation estimation that has 
proven to provide valuable rainfall information at a high spatiotemporal resolution (CHWALA & 
KUNSTMANN 2019). The principal idea is that the signal transmitted from one antenna to the other 
is attenuated by rainfall, which can then be quantified from the measured attenuation. However, 
high fluctuations in CML signal levels, which can occur also during dry periods, can hamper the 
detection of rain events in the recorded data (POLZ et al. 2020). Therefore, several methods exist 
to separate precipitation from non-precipitation periods such as the widely applied rolling standard 
deviation approach (SCHLEISS & BERNE 2010) or the 1D Convolutional Neural Network (CNN) 
approach (POLZ et al. 2020). A detailed listing is given by POLZ et al. (2020). However, the existing 
methods rely on reference data that do not cover various countries so that a further separation 
technique is needed which can be applied in precipitation measurement network scarce areas. 
Here, satellite data play a significant role, as they can be used in place of conventional reference 
data to distinguish between dry periods and precipitation events. The satellites remotely sense 
scattered and emitted radiation from clouds and precipitation. Especially, visual and infrared data 
of geostationary satellites, which is available in real time, has been used to estimate rainfall 

1 Technical University Darmstadt, Remote Sensing and Image Analysis Department, 
Franziska-Braun-Str. 7, 64287 Darmstadt, E-Mail: [katrin.krzepek, dorota.iwaszczuk]@tu-darmstadt.de 

2 Institute of Meteorology and Climate Research, KIT, Campus Alpin, Kreuzeckbahnstraße 19, 82467 
Garmisch-Partenkirchen, Germany, E-Mail: [rebecca.wiegels, christian.chwala]@kit.edu 

DOI: 10.24407/KXP:188528618X



R. Wiegels, K. Krzepek, C. Chwala & D. Iwaszczuk 

44 

(ROEBELING & HOLLEMAN 2009; KIDD & HUFFMAN 2011). The instrument Spinning Enhanced 
Visible and Infrared Imager (SEVIRI) on board of Meteosat Second Generation (MSG) satellite 
provides Earth and atmosphere observations at a scale of 15 min and about 3 × 3 km² resolution. 
SEVIRI observes at 12 spectral channels in the visible and infrared range. The Nowcasting and 
Very Short Range Forecasting Satellite Application Facility (NWC SAF) developed a wide range 
of precipitation and cloud products based on SEVIRI data, such as the Precipitation Clouds (PC) 
and Precipitation Clouds from Cloud Physical Properties (PC-Ph) products. These products, avail-
able only for Europe, provide the precipitation probability and have successfully been utilized to 
improve CML precipitation estimation (VAN HET SCHIP et al. 2017). However, the products have 
large uncertainties and do not yet exist for the entire area covered by MSG SEVIRI. Therefore, 
other approaches are needed to improve CML precipitation estimations explicitly in areas where 
reference data and precipitation cloud products are not available. Other studies have shown that 
Deep Learning (DL) is capable of predicting cloud properties and precipitation based on MSG 
SEVIRI satellite data (MORAUX et al. 2019; KIM et al. 2020) and of other geostationary satellites 
(MA et al. 2022; PFREUNDSCHUH et al. 2022; SADEGHI et al. 2019). Convolutional Neural Networks 
(CNNs) are specifically designed to recognize visual patterns and process images (GOODFELLOW 
et al. 2016), which makes satellite imagery a suitable input dataset.  
Therefore, this work proposes a CNN approach to yield a dry indicator from MSG satellite data, 
which is called the DL product throughout this work. Specifically, we aim at developing a wet-dry 
classification with the future application for CML signal processing to enable precipitation esti-
mation in areas where observation networks are scarce. Thus, the DL product utilizes MSG 
SEVIRI data as input which, unlike to the PC and PC-Ph products, covers not only Europe but also 
the African continent. In addition to its potential use throughout the entire MSG SEVIRI covered 
area, the DL product aims to reduce uncertainties of the precipitation cloud products PC and PC-
Ph, such as their limited performance during nighttime. This work evaluates the developed DL 
product with a direct comparison to the existing baseline products.  

2 Data 

For this work, native satellite imagery, specifically Level 1.5 SEVIRI data, is used as input for the 
DL model, while the NWC SAF products PC and PC-PH serve as baseline products. Level 1.5 
data is available at EUMETSAT’s datastore in HRIT format (EUMETSAT 2022). The precipitation 
cloud products PC and PC-Ph, produced with software version NWC/GEO v2018, were kindly 
provided by NWC SAF. The available data includes two months from the 1st of May, 2021 to the 
1st of July, 2021 at a 15-minute resolution. The PC product gives the precipitation likelihood from 
0 to 100 % with intervals of 10 % for each cloudy pixel. Differently, the PC-Ph product provides 
the probability of precipitation additionally based on cloud top microphysical properties such as 
the effective radius, Cloud Optical Thickness and the parallax corrected Cloud Water Path. Note 
that both final PC and PC-Ph products utilize ancillary data, such as the surface temperature or the 
geopotential at different pressure levels from Numerical Weather Prediction. (NWC SAF 2019) 
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As radar reference dataset, the station-corrected radar climatology RADKLIM-YW of the German 
Weather Service (DWD), which provides 5-minute precipitation rates, is applied. The data is avail-
able with an equidistant grid of 1 km² spatial resolution, covering Germany with 1100 × 900 grid 
cells.  

3 Methods 

As DL model, a Convolutional Neural Network (CNN) was chosen to conduct the wet-dry classi-
fication. For this purpose, the model was fed with several channels of MSG SEVIRI, and trained 
with the radar reference set. The dataset of the full time period is split into three subsets. One is 
used to train the model, one is used for validation and optimization and the third subset is used for 
testing and remains unseen during training and optimization. The test subset consists of 584 sam-
ples, a 6-day period, of which each covers the full domain of the radar reference with 180 × 252 
grid cells. Differently, the training and validation samples consist of small patches, of which each 
patch covers an area of roughly 50 × 27 km² with 9 × 9 grid cells.  

 

Fig. 1:  A graphical illustration of the CNN architecture. The section within the dashed box indicates that 
the layers are applied per channel individually and then concatenated as indicated 

The architecture of the proposed CNN model is shown in Figure 1. The details of the number of 
kernels (n), kernel size (k), stride (s) and activation function type are given in the figure. Each 
input sample consists of a set of channels, two infrared (IR 3.9 & IR 10.8), one water vapor (WV 
6.2) and one visible channel (VIS 0.6). The input is preprocessed with a separated min-max nor-
malization applied to all channels of one unit. They are separately convolved (SADEGHI et al. 2019) 
and downsampled by a max-pooling layer in order to maintain and learn information of each chan-
nel individually. The previous layers are kept to transfer pre-max pooling information, as done by 
MORAUX et al. (2019), to recover the high-resolution information which is lost during max-pool-
ing. The downscaled concatenated feature maps are then upsampled with a transposed convolu-
tional layer. The final feature maps are derived by applying a last convolutional layer. The ability 
to generalize is encouraged by utilizing batch normalization. Finally, the network outputs a con-
tinuous wet probability in a range of [0, 1] at the same temporal and spatial resolution as the input. 
This leads to a total of 233,441 trainable parameters. Since, the dataset is made up of around 90% 
dry and only 10% wet pixels, an imbalanced dataset is at hand. To balance the dataset, not all 
patches that are composed of only dry pixels are considered for training. The optimized settings 
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for model and input dataset were estimated through hyper-parameter tuning. This resulted in a 
learning rate of 10−4, batch size of 128, the binary cross-entropy as loss function and a 10 % share 
of patches exclusively consisting of dry pixels.  

Table 1: Binary measures, their output ranges and optimum 

Measure Formula Range Optimum 

True Positive Rate TP / (TP+FN) [0,1] 1 

True Negative Rate TN / (TN+FP) [0,1] 1 

False Negative Rate FN / (TP+FN) [0,1] 0 

False Positive Rate FP / (TN+FP) [0,1] 0 

Overall Accuracy (TP+TN) / (FP+FN) [0,1] 1 

MCC ⸱    ⸱   
  [-1,1] 1 

 
For the evaluation, a binary mask is applied to the probabilistic output to generate the needed dry-
wet classification. Then, binary classification scores (Table 1) can be applied. The confusion ma-
trix helps to sort classification results into four classes. Correctly classified samples are referred to 
as True Positives (TP) and True Negatives (TN). The error types are grouped into False Positives 
(FP) and False Negatives (FN). The normalized measures include True Positive Rate (TPR), False 
Positive Rate (FPR), True Negative Rate (TNR) and True Negative Rate (TNR). Additionally, to 
address all parameter the Overall Accuracy (OA) and the Matthews Correlation Coefficient (MCC) 
are applied, of which the latter is less sensitive to class balance. 
The Receiving Operating Characteristic (ROC) is utilized additionally, where TPR is plotted over 
FPR. The ROC curve visualizes the trade-off of threshold choice, thus, the benefits of high TP 
numbers and costs of high FP numbers, which is especially relevant for rain event detection ap-
proaches. Generally, the point (0,1) represents a perfect classifier. Contrarily, random guessing is 
represented by the diagonal [(0,0), (1,1)]. 

4 Results & Discussion 

The overall performance is evaluated with the help of the above described measures. Table 2 lists 
the scores of the DL product as well as both baseline products. Note, the threshold for each product 
is chosen based on which produced the highest MCC score. The DL product outperforms both 
baseline products in terms of OA, MCC and FPR. However, the TPR is the highest for the PC 
Product with a rate of 0.79 compared to 0.65 of DL Product. This is due to the fact, that the baseline 
products score the highest MCC for a low threshold which in turn means that the wet predictions 
increase. Thus, the baseline product performs well in detecting precipitation but in turn gives up a 
high number of correct true dry predictions (TN).  
Related studies that apply CNN to yield precipitation based on satellite data perform similar or 
higher in terms of TPR. SADEGHI et al. (2019) estimated the hourly precipitation intensities based 
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on infrared and water vapor geostationary satellite observations in the USA. Similarly, MORAUX 

et al. (2019) developed a CNN to generate precipitation intensities over Europe, however, utilizing 
MSG SEVIRI and rain gauge data as input data. Both studies included categorical scores in their 
evaluation allowing a direct comparison to the DL product. The DL product scored in overall 0.65, 
which is within the magnitude of PERSIANN-CNN (SADEGHI et al. 2019) with TPR 0.67, which. 
The CNN model of MORAUX et al. (2019) with 15-minute resolution estimation scored a TPR of 
0.47 and FPR of 0.08. Yet, the authors reveal higher scores for combined DL predictions based on 
MSG SEVIRI and additionally rain gauge and topography data. 

Table 2: Overall performance of DL prediction (threshold at 0.5) and the baseline products 
(threshold ad 10%). Bold values indicate the scores closest to the optimum for each measure 

 OA MCC TPR FPR TP [ꞏ106] FP [ꞏ106] FN [ꞏ106] TN [ꞏ106] 

DL product 0.93 0.55 0.65 0.05 0.76 0.65 0.42 12.84 

PC-Ph 0.89 0.50 0.71 0.09 0.97 1.24 0.4 12.07 

PC 0.85 0.47 0.79 0.14 1.07 1.85 0.29 11.46 

 
The choice of threshold influences the scores of binary inputs strongly. Therefore, the ROC curve 
is used as an additional measure to assess the performance. Fig. 2 reveals the high performance of 
the DL product at any chosen threshold. At any point, the ROC curve of the DL product (red 
points) is closer to the point (0,1), which is the point that indicates a perfect classifier, than the 
ROC curve of the PC-Ph product. 

 

Fig. 2:  The ROC curves of the DL product compared to the PC-Ph product in blue (left) and both base-
line product compare to each other on the right 

The baseline products and other studies (KUMAH et al. 2021) show a performance drop during 
night compared to daytime. Fig. 3 highlights this decrease of performance as the differences be-
tween filled and striped bars, representing the MCC scores calculated for images during day and 
night. The mean drop of MCC between day and night is reduced by the DL product from 0.26 of 
PC and 0.10 of PC-Ph to 0.06. Moreover, the DL product scores a higher MCC at both day and 
night. During daytime the highest MCC score of the baseline products reaches 0.59 and the DL 
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product reaches 0.60. At night the difference of highest MCC between baseline and DL product is 
increased with a difference of 0.12.  

Fig. 3:  The MCC score of the DL, PC and PC-Ph products, but distinguished between daytime (filled 
bars) and night-time (striped bars in front), plotted for different threshold choices 

The evaluation between day and night indicates a particular improvement during night-time. 
Therefore, qualitative visualizations of night- (a), (b) and daytime (c) are shown in Fig. 4. All sub-
figures show a reduction of FPs (false positive, i.e. falsely classified as wet) in purple for the DL 
product. Nevertheless, the DL product is able to correctly classify the dry classified pixels (grey) 
in an example when no precipitation occurred in Germany, where the PC products generate FPs 
(b). However, these visualizations show that all three products have limitations in capturing the 
exact outline of a rainfall field and in correctly classifying small individual patches of rainfall. The 
issue of correctly classifying wet and dry pixels for the later case can be found in the centre of Fig. 
4(c), where both error types, FPs in purple and FNs in orange, occur for all three products. 
This work’s limitations lie within the temporal scope and regional dependency of the developed 
DL product. Firstly, the overarching objective of this work is to apply the DL method and product 
to other regions where radar data is not available. The DL product trained with German target data, 
will most likely show a decreased performance in regions with different climatic conditions and 
therefore unseen cloud and precipitation relations. Secondly, MORAUX et al. (2019) point out that 
the main difficulty of a satellite DL approach is to distinguish clouds with a low precipitation rate 
of non-precipitation clouds, which occur more frequently in winter of the northern hemisphere. 
Therefore, the DL product is expected to show a decreased performance during winter time and 
explains the especially good performance for a short period of time in Germany’s summer time. 

5 Conclusions 

In this study, the applicability of a CNN (DL product) to detect dry and wet areas based on MSG 
SEVIRI information was demonstrated for day- and night-time in the study area of Germany at a 
6-day summer period. Compared to the existing baseline products PC and PC-Ph from NWC SAF, 
the DL product shows clear improvements of the MCC, which is most prominent during night-
time. However, the baseline products, when choosing the threshold for highest MCC, perform 
better in terms of the TPR and FNR. 
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Altogether, based on the findings of this work, it can be concluded that a DL approach to create a 
dry indicator of satellite data is a promising method. However, since the overall goal is that the 
dry indicator can be applied to improve CML precipitation estimations in future, especially in areas 
where only sparse precipitation networks exist, it is suggested that the promising DL results are 
evaluated for different regions and seasons. In this work, the evaluation time period is limited to 6 
days of June 2022. Therefore, further studies require to test the promising results for a longer time 
period, especially for a time period that includes seasonal differences.  

 

Fig. 4:  Qualitative differences shown between DL, PC and PC-Ph products in correctly detecting rain-
fall (cyan), correctly detecting dry pixels (grey) and false predictions for rainfall (purple) and dry 
pixels (orange). From (a) to (c) the dates of these examples are 2022-06-25 00:30, 2022-06-27 
02:30 and 2022-06-30 13:15 

6 Code Availability 

The code used for the processing of data and of the DL model developed for this work can be 
found in the published repository (WIEGELS et al. 2024). 
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