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Spot the Difference: Learned DSM Updating 

BINGXIN KE1, CORINNE STUCKER1 & KONRAD SCHINDLER1 

Abstract: In a rapidly changing world, keeping 3D city models up to date is a crucial task for 
many applications. Very high-resolution (VHR) optical satellite sensors, stereo matching al-
gorithms, and learning-based refinement enable the reconstruction of high-quality city models 
from space, but so far did not account for the evolution of urban scenes. In order to rapidly 
update an existing city model with a limited set of newly collected satellite images, we intro-
duce a DSM updating method based on neural implicit occupancy fields. We demonstrate that 
our method is able to effectively combine the old DSM and the new data. Consequently, 
changed areas can be updated to match new image observations, thus reducing the associated 
height errors (MAE) by ≈50% compared to the obsolete DSM; while the reconstruction qual-
ity in unchanged areas is ensured by the old DSM that is based on more imagery and thus a 
higher 3D point density. 

1 Introduction 

Reconstructing and maintaining an up-to-date city-scale scene is a fundamental and important task 
of photogrammetry and computer vision. The reconstructed high-resolution digital surface model 
(DSM) serves as a basis for various downstream applications, including topographic mapping, 
"digital twins", environmental simulations, planning, etc. Nowadays, very high-resolution satellite 
sensors enable the acquisition of optical remote sensing images with fine-grained details at almost 
any location on the Earth from different viewpoints in space, within a short time interval. The 3D 
reconstruction from remote sensing images is possible with the help of tailored stereo matching 
algorithms (ROTHERMEL et al., 2012; YOUSSEFI et al., 2020).  
Due to limitations in terms of image resolution, geometric conditions, and radiometric consistency, 
the derived point clouds and DSMs tend to be noisy and sometimes incomplete. Recently, learning-
based methods have been developed to refine the raw DSM from stereo reconstruction (BITTNER 
et al. 2018; STUCKER & SCHINDLER, 2022). We build on the ImpliCity method (STUCKER et al. 
2022), which directly converts raw point clouds into a city model with smooth surfaces, fine-
grained shape details, and crisp building edges. 
Such existing methods aim to reconstruct DSMs without considering the acquisition time of the 
input images, and thus without regard for the evolution of the city over time. In actual fact cities 
do change, mainly due to construction activities. Still, most of the area in an urban scene remains 
static over a relatively long period, hence an old city model is expected to provide additional data 
redundancy in unchanged areas, especially in the practical scenario where one aims to keep the 
model up to date, and therefore update shortly after the change, when only few new satellite images 
have been collected. 
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In this work, we propose a DSM updating method based on satellite images, using a neural implicit 
surface representation. With the help of a change detection module and properly pretrained encod-
ers and decoder, the proposed method can leverage the existing DSM and newly collected data 
together to produce high-quality reconstructions of both changed and unchanged areas.  

2 Methodology 

2.1 Method Overview 
Problem Formulation. The old DSM 𝐷𝐷1 can be derived from a stack of satellite images 𝑰𝑰1𝑟𝑟𝑟𝑟𝑟𝑟 that 
represent the state at time 𝑇𝑇1, with conventional semi-global matching (ROTHERMEL et al., 2012) 
followed by surface reconstruction (STUCKER et al. 2022), as shown in the left half of Figure 1. 
Our goal is to update the old DSM state 𝐷𝐷1 to a new state 𝐷𝐷2, given only few (≥ 2) newly collected 
satellite images 𝑰𝑰2𝑟𝑟𝑟𝑟𝑟𝑟 that represent the new state at time 𝑇𝑇2. The updated DSM 𝐷𝐷2 is expected to 
be up to date in the changed areas, but still have the same quality in unchanged areas. 
DSM updating method. We decompose the problem into two sub-tasks: (1) determining changed 
areas; (2) fusing data and reconstructing the DSM by making use of all data in the unchanged areas, 
while ignoring the old DSM in changed areas. As shown in the right half of Figure 1, a new point 
cloud 𝑃𝑃2 representing the new state is derived from the newly collected images 𝑰𝑰2𝑟𝑟𝑟𝑟𝑟𝑟. Our method 
then takes as input the old DSM 𝐷𝐷1, the point 𝑷𝑷2, and ortho-rectified images 𝐼𝐼1

𝐷𝐷1 and 𝐼𝐼2
𝐷𝐷1. The 

change detector gϕ takes one old state image I1
D1 and one new state image I2

D1 as input and outputs 
a binary change mask Mchange  with pixel-wise change probabilities pi ∈ {0,1} , namely, 
gϕ�I1

D1 , I2
D1� = Mchange. Having this predicted change mask and other input data (old DSM 𝐷𝐷1, 

new point cloud 𝐏𝐏2, and new state image pair 𝑰𝑰2
𝐷𝐷1), the DSM updater Fθ generates the new DSM 

𝐷𝐷2. Thus, our method can be formulated as: 
 𝐹𝐹𝜃𝜃 �𝑷𝑷2, 𝑰𝑰2

𝐷𝐷1 ,𝐷𝐷1,𝑔𝑔𝜙𝜙�𝐼𝐼1
𝐷𝐷1 , 𝐼𝐼2

𝐷𝐷1�� = 𝐷𝐷2 (1) 

The change detector 𝑔𝑔ϕ and the DSM updater 𝐹𝐹θ are parameterized as deep neural networks. Note 
that due to the ortho-rectification of the imagery, 𝐷𝐷1, 𝑀𝑀𝑐𝑐ℎ𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎, 𝐼𝐼1

𝐷𝐷1, and 𝐼𝐼2
𝐷𝐷1 are inherently aligned 

in the same geographic coordinate system. I.e., the (𝑥𝑥,𝑦𝑦)-axes are the East and North directions in 
the local UTM zone, and the 𝑧𝑧-axis is the vertical. 

2.2 Change Detector 
Our change detector module is a Fully Convolutional Siamese architecture, following (DAUDT et 
al. 2018). Data is cropped into patches for training and inference. To relieve the bias caused by 
radiometric conditions, the patches are randomly rotated by α ∈ {0∘, 90∘, 180∘, 270∘} and ran-
domly flipped along 𝑥𝑥 or 𝑦𝑦 axis during training. We further randomly swap the two input images 
to avoid asymmetries. Since it is in our context important to cover all changed content, even at the 
cost of including some unchanged parts, we trade precision for higher recall in post-processing: 
we perform erosion with radius  𝑟𝑟 = 10 pixels (respectively, 2.5 m) to remove noise, followed by 
dilation with  𝑟𝑟 = 40 pixels to cover slightly larger and more complete changed areas. 
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Fig. 1: Method overview 

2.3 DSM Updater 
The DSM updater module is the core of our method. It is adapted from the image-guided, coordi-
nate-based neural representation of ImpliCity. The scene is represented as a convolutional neural 
occupancy field (PENG et al., 2020), i.e., a function 𝑓𝑓θ that, for any given query point 𝑥𝑥 ∈ 𝑅𝑅𝟛𝟛 , 
returns the corresponding occupancy probability 𝑜𝑜�. In our case, 𝑜𝑜� = 0 for locations above the sur-
face and 𝑜𝑜� = 1 for points underneath the surface. 
Formulation. As shown in Figure 2, our network is an encoder-decoder design consisting of two 
raster encoders (DSM encoder 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 and image encoder 𝑓𝑓𝑖𝑖𝑖𝑖𝑟𝑟𝑎𝑎𝑎𝑎), one point cloud encoder 𝑓𝑓𝑃𝑃𝑃𝑃, one 
feature fusion module 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑎𝑎, and one decoder 𝑓𝑓𝑑𝑑𝑎𝑎𝑐𝑐𝑓𝑓𝑑𝑑𝑎𝑎. The encoders (𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷, 𝑓𝑓𝑖𝑖𝑖𝑖𝑟𝑟𝑎𝑎𝑎𝑎, and 𝑓𝑓𝑃𝑃𝑃𝑃) con-
vert the input into feature embeddings. For a specific (𝑥𝑥,𝑦𝑦) location, the corresponding features 
and the change probability can be queried by bilinear interpolation from the embeddings. Then the 
occupancy value is predicted by the decoder. The prediction at a query point x can be written as: 
𝑓𝑓𝜃𝜃 = 𝑓𝑓𝑑𝑑𝑎𝑎𝑐𝑐𝑓𝑓𝑑𝑑𝑎𝑎 �𝒙𝒙,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑎𝑎 �𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷(𝐷𝐷1,𝒙𝒙),𝑓𝑓𝑃𝑃𝑃𝑃(𝑷𝑷2,𝒙𝒙),𝑀𝑀𝑐𝑐ℎ𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎(𝒙𝒙)� ,𝑓𝑓𝑖𝑖𝑖𝑖𝑟𝑟𝑎𝑎𝑎𝑎�𝑰𝑰2

𝐷𝐷1 ,𝒙𝒙�� → 𝑜𝑜� ∈ [0,1] (2) 
Network Components. The point cloud encoder follows the encoder architecture of ConvONet 
(PENG et al., 2020) and convert the input point cloud 𝑷𝑷2 into a high-dimensional feature embed-
ding. The image encoder is the same as that in ImpliCity. It converts ortho-rectified images into 
an image feature embedding, to provide additional high-frequency details that would be missed in 
the sparser point cloud. The DSM encoder converts the old DSM into a feature embedding. It 
shares the same architecture as the image encoder, except for the first layer, which accepts single-
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channel input. The decoder predicts the occupancy value from the sum of queried features (ψ𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑑𝑑 
and ψ𝑖𝑖𝑖𝑖𝑟𝑟𝑎𝑎𝑎𝑎) and the coordinate of query point 𝒙𝒙. 
Feature Fusion. To smartly leverage the input data, we apply a feature-level fusion. Through 
ablation studies, we conclude that fusing the geometric features (i.e., DSM feature 𝜓𝜓𝐷𝐷𝐷𝐷𝐷𝐷 and point 
cloud feature 𝜓𝜓𝑃𝑃𝑃𝑃) yields the best result. Note that in changed areas (where 𝑝𝑝 = 1), the DSM 
should be ignored, thus the fusion is disabled and 𝜓𝜓𝑃𝑃𝑃𝑃 replaces 𝜓𝜓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑎𝑎. 
Training. During training, query points {𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝟛𝟛} are randomly sampled within the volume of 
interest, with higher sampling density in the vicinity of building and terrain surfaces. The ground 
truth occupancy values are assigned according to the relative position of the sample point w.r.t. 
the ground truth DSM. The network is then trained by minimizing the cross-entropy loss ℒ be-
tween predicted occupancies o� and true occupancies 𝑜𝑜: 
 ℒ(𝒐𝒐�,𝒐𝒐) = �(𝑜𝑜𝑖𝑖 ⋅ log(𝑜𝑜𝚤𝚤�) + (1 − 𝑜𝑜𝑖𝑖) ⋅ log(1 − 𝑜𝑜𝚤𝚤�))

𝑖𝑖

 (3) 

Pretrained Weights. Using pretrained network modules yielded excellent reconstruction results 
in our ablation studies. Thus, in our final model, we use the pretrained weights to initialize the 
model and fine-tune them to the specific scene with a rather small learning rate. 
DSM Generation. During inference, the updated DSM can be extracted from the neural occu-
pancy field, as the iso-surface at 𝑓𝑓θ = 0.5. We do this in a coarse-to-fine search for efficiency. 
First, query points are coarsely sampled along the z-axis at every (x,y) raster cell of the output 
DSM. Then the z-range is recursively partitioned around the value 𝑓𝑓θ = 0.5 to find the precise 
surface height.  
 

 
Fig. 2: Network architecture of the DSM updater  
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3 Experimental Setup 

Dataset. We evaluate the proposed method on a satellite image dataset of WorldView-2 and 
WorldView-3 over Zurich, acquired between 2014 and 2018. The reference DSM is rasterized 
from the publicly available LoD2 city model of Zurich in 2015 and 2018. As shown in Figure 3, 
the study area consists of three rectangular sub-regions, covering various kinds of changed and 
unchanged buildings. The areas of these sub-regions are 1.89km2 (ZUR_A), 1.84km2 (ZUR_D), 
and 0.73km2 (ZUR_C). By choosing 2017-09-01 and 2018-12-01 as time thresholds, as shown in 
Figure 4, we build up a typical map updating scenario, where we have several images from the 
past that represent the old state; and few images, collected recently within a short time interval, to 
capture the new state. The dataset is separated into three different geographical areas for training, 
validation, and testing. 
 

 
Fig. 3: Study area in Zurich. Three sub-regions with significant changes have been selected: ZUR_A is 

training area, ZUR_D is validation area, and ZUR_C is test area. 

 

 
Fig. 4: Splitting of the image time series into data for the old and new states. 
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Baseline. We reconstruct the scene from scratch with only the new data by training the full Im-
pliCity network on the new data. This result represents the quality one can reach without taking 
into account any information about the old DSM state. 
Evaluation Metrics. To quantify the quality of reconstructed and updated DSM, we calculate the 
mean absolute error (MAE) and the root mean square error (RMSE) over pixelwise deviations 
from the ground truth DSM. 
Implementation Details. Our method is implemented in PyTorch and tested on a single NVIDIA 
GeForce RTX 2080Ti GPU. Training data is randomly sampled as patches with spatial dimension 
of 64m×64m and randomly augmented by rotations of α ∈ {0∘, 90∘, 180∘, 270∘} and flipping 
along the 𝑥𝑥- or 𝑦𝑦-axis. At inference time, we use a sliding window with 50% overlap to cover the 
whole validation or test area. Overlapping predictions are merged with linear blending. 

4 Result and Discussion 

Quantitative Results. Comparing the first two rows on Table 1 (i.e., old DSM vs. baseline), we 
see that both baseline reconstructions, using either only old data or only new data, have reasonably 
good quality. However, as expected the old data cannot correctly recover changed areas, whereas 
the new data alone suffers from low redundancy and yields worse overall performance. By com-
paring the 3rd and the 1st row, we see that leveraging the new data improves the MAE in changed 
area by ≈ 50%.  
From the 3rd and the 2nd row we can see that the old DSM ensures the reconstruction quality in the 
unchanged area, and that the proposed selective DSM updating scheme outperforms the baselines 
in terms of overall statistics. The MAE drops by ≈ 0.2m and the RMSE drops by ≈ 0.3m. 

Tab. 1: Quantitative comparison of reconstructed in the test area. 
   Overall Building Terrain Changed Unchanged 

 Input MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 
  state [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] 

Input old 
DSM Old 1.54 2.55 2.53 3.88 1.23 1.97 3.13 4.67 1.50 2.47 

Baseline New 1.71 2.69 2.45 3.87 1.48 2.22 1.41 2.17 1.71 2.71 
Updated 

DSM Old + New 1.52 2.38 2.21 3.47 1.31 1.93 1.59 2.63 1.52 2.37 

 
Qualitative Results. Visual comparisons are shown in Figure 3. Firstly, we find that our method 
succeeds to update the content in changed areas from limited data, see white arrows in column (a) 
and (c). The demolished buildings are removed in the updated DSM, while the new buildings are 
reconstructed successfully. 
Secondly, as pointed out by the violet arrows in column (a) and (b), our method correctly repro-
duces unchanged buildings that could not be reconstructed correctly only from the new data.  
Moreover, as indicated by the red arrows in column (b) and (c), unchanged buildings that were 
missed in the old DSM can sometimes be recovered, too, when adding the new data. Moreover, 
the combined evidence tends to yield slightly sharper edges. 
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Fig. 3: Visual comparison of our result with the input DSM and the baseline in the test area. Heights are 

colored from blue to green to red. White arrows indicate the changed buildings; violet arrows indi-
cate unchanged buildings that cannot be reconstructed as well from only new data; red arrows 
indicate unchanged buildings that are reconstructed better when using both old and new data. 

5 Conclusion and Outlook 

We have presented a DSM updating method for city scenes, using a DSM of an old, obsolete state 
together with satellite-based photogrammetric point clouds and ortho-photos generated with a 
small number of new images. The technical core of our method is a neural occupancy field. To the 
best of our knowledge, our work is the first learning-based approach for smart updating of city-
scale DSMs based on satellite images. In summary, the conclusions of our study are: 
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1. ImpliCity, used from scratch with only little data that depict the new state, is able to recon-
struct a DSM surprisingly well, still the quality is degraded in unchanged areas.  

2. Leveraging the information captured in the old DSM together with the new data improves 
the reconstruction in the changed area without degrading unchanged areas. It is necessary 
to supply a reasonable change mask to guide the fusion, but that mask can be derived au-
tomatically from the available image data. 

3. Suitably pretrained weights of the encoders and the decoder achieve comparable 3D quality 
in changed and unchanged areas, resulting in seamless fusion of old and new information.  

In the wake of this exploratory study, potential improvements could be investigated in the future:  
1. Reducing network complexity. The current method includes several fairly large modules. 

It would be desirable to reduce the parameter count while preserving performance. 
2. Uncertainty guided data fusion. Introducing well-calibrated uncertainty estimation could 

provide additional information to better represent data dependencies. 
3. Improving generalization. From an application point of view, it would be useful to ensure 

invariance w.r.t. varying imaging conditions, geographical areas, building styles, etc.   
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