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Modelling of GNSS Positioning Errors 
in a GNSS/INS/LiDAR-integrated Georeferencing 

FLORIAN PÖPPL1, MARTIN PFENNIGBAUER2, ANDREAS ULLRICH2, 
GOTTFRIED MANDLBURGER1, HANS NEUNER1 & NORBERT PFEIFER1 

Abstract: Kinematic laser scanning is an efficient and highly accurate method for the 
acquisition of 3D topographic data. A primary task in kinematic laser scanning is the 
transformation of the laser scanner measurements from a local scanner coordinate system to 
a global georeferenced coordinate system. This requires knowledge of the scanners’ trajectory 
(position and orientation over time). The trajectory is typically computed via Kalman filtering 
of Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) 
measurement data. However, this trajectory often exhibits significant errors, which become 
apparent when point clouds acquired at different times overlap spatially. In these overlapping 
areas, corresponding points may be exploited in a subsequent strip adjustment to improve the 
trajectory and the system calibration and therefore the final point cloud. However, ignoring 
the raw GNSS and INS measurements and their statistical properties can lead to over-
optimistic estimates and deformation of the laser point cloud. In this contribution, a method is 
presented which integrates the GNSS position, raw inertial measurements and laser scanner 
correspondences into one adjustment and explicitly models the time-correlated stochastic 
errors of the GNSS positioning solution. This method for direct georeferencing considerably 
reduces the discrepancies between overlapping point clouds, as demonstrated on an airborne 
laser scanning dataset in comparison with an existing state-of-the-art strip adjustment 
implementation. 

1 Georeferencing for Kinematic Laser Scanning 

Georeferencing is an important task in kinematic laser scanning, since most use-cases require the 
acquired point cloud to be in a suitable georeferenced coordinate system. The default way of 
achieving this involves GNSS (Global Navigation Satellite System), which provides absolute 
positioning, and INS (Inertial Navigation System), which provides high frequency relative position 
and orientation. Classically, GNSS and INS are fused via Kalman filtering to obtain the platform 
trajectory. When the geometric relation between platform and laser scanner is known, the laser 
measurements can be transformed from the scanner’s coordinate system into the platforms’ 
coordinate system and then into the earth-referenced coordinate system of the trajectory (Fig. 1). 
These errors in turn propagate through the georeferencing and result in errors in the point clouds, 
which become visible as discrepancies in areas that are scanned several times. This can be partially 
rectified by identifying correspondences in overlapping areas and introducing them as observations 
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in a strip adjustment (Fig. 2, FILIN & VOSSELMAN 2004; KAGER 2004), thereby correcting errors 
in position and/or orientation and possibly the laser scanner calibration. 

 

Fig. 1:  GNSS antenna, INS and laser scanner 
mounted rigidly on the multi-sensor 
platform 

 

Fig. 2:  Corresponding points on the ground form 
constraints on the trajectory at the 
acquisition times 

However, such an approach is typically based on correcting the existing trajectory, and does not 
take into account the underlying GNSS or INS measurements or their stochastic properties. To 
allow correction of time-varying errors, a flexible trajectory correction model (e.g. splines) must 
be used, leading to an increase in the number of parameters. Without sufficient ground control this 
results in overparametrization and overfitting of the model as well as in systematic deformation of 
the point cloud (GLIRA et al. 2016). 
In this work, a different approach is presented: The position observations from an initial GNSS-
only processing are combined with the inertial measurements in a non-linear least-squares 
adjustment to produce an initial trajectory, which is used for a first georeferencing of the laser 
data. Then, correspondences are extracted from overlaps in the laser point cloud and used as input 
to a single least-squares adjustment together with the GNSS positions and inertial measurements. 
This allows simultaneous determination of time-constant calibration parameters, time-varying 
errors in the inertial sensors, and the trajectory (Tab. 1). Conceptually, this is a tight coupling of 
laser scanner measurements with the INS and a loose coupling with the GNSS, where information 
from the laser measurements helps to stabilize the INS drift. However, loose coupling of the GNSS 
poses its own challenges. The errors in the GNSS positioning may be correlated in time and in 
space due to a) the processing itself – usually via Kalman filter – and b) not fully modelled 
systematic errors such as ionospheric or tropospheric effects. Depending on the strength of the 
correlations, disregarding the time-correlated nature of the GNSS position observations leads to 
overly optimistic or biased parameter estimates. We propose explicitly accounting for the time-
correlation in the stochastic model by assuming an additional stochastic error term modelled by a 
first-order Gauss-Markov process. This is similar to how inertial sensor errors are commonly 
modelled (FARRELL et al. 2022). Applying this to GNSS errors is not new in the context of Kalman 
filters (NIU et al. 2018), but has to our knowledge never been done in the context of batch least-
squares estimation in general or strip adjustment in particular. We also present a simple yet 
effective way of estimating the relevant parameters of the stochastic model. 
In Section 2, we will first discuss the methodology and then in Section 3 demonstrate our approach 
by applying it to an airborne laser scanning dataset. This dataset was acquired with a RIEGL VUX-
16023 laser scanner. The scanner features three differently oriented mirror facets, resulting in three 
views: nadir, +10 degrees forward, and -10 degrees backward (Fig. 3). A comparison of the strip 
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differences of a) strip adjustment with constant per-strip trajectory correction, b) our method with 
uncorrelated GNSS error model and c) our method with time-correlated GNSS error model shows 
significantly reduced discrepancies for our proposed approach (c). 

 
Fig. 3:  RIEGL VUX-16023 scan pattern with nadir/forward/backward views 

2 Integrated Georeferencing with Time-Correlated GNSS Errors 

2.1 GNSS/INS/LiDAR-Integrated Georeferencing 
In this section, we describe the functional and stochastic models for the trajectory estimation using 
pre-processed GNSS positions, raw inertial measurements from the INS and correspondences 
extracted from the LiDAR point cloud. This approach employs batch non-linear least-squares 
estimation, where the discrepancies between the model predictions and a given set of 
measurements are minimized. The least-squares minimization is solved by non-linear optimization 
techniques, namely the Levenberg-Marquardt algorithm as implemented in the Ceres library 
(AGARWAL et al. 2022).  
Figure 4 shows the processing pipeline for the GNSS/INS/LiDAR integration. The main steps are: 

1. Computing an initial trajectory from GNSS/INS data via batch least-squares adjustment, 
using a Kalman filter to initialize trajectory parameters for the non-linear optimization. 

2. Georeferencing of the LiDAR data with the initial trajectory and calibration parameters to 
obtain an initial point cloud for identifying correspondences. 

3. Computing an improved trajectory and calibration with a batch least-squares adjustment of 
all available data: GNSS, INS and LiDAR. 

4. Georeferencing of the LiDAR data with the improved trajectory and calibration to obtain 
the final point cloud. 

 
Fig. 4: Processing pipeline for GNSS/INS/LiDAR integration 
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The rest of this section describes the details of the least-squares adjustment in step 1 and step 3. A 
summary of the parameters occurring in the least-squares estimation is given in Tab. 1. 

Tab. 1: Parameters for the least-squares estimation. 

Trajectory • Position: cubic spline with coefficients 𝒙𝒙𝑝𝑝 ∈ ℝ3𝑥𝑥(𝑛𝑛+2), provides a continuous 
position 𝒑𝒑�𝑡𝑡,𝒙𝒙𝑝𝑝� ∈ ℝ3 of the platform in the local coordinate system. 

• Orientation: quadratic quaternion spline with coefficients 𝒙𝒙𝑜𝑜 ∈ ℝ4𝑥𝑥(𝑛𝑛+1), 
provides a continuous platform orientation 𝐑𝐑(𝑡𝑡, 𝒙𝒙𝑜𝑜) ∈ SO(3), i.e., the 
rotation from the platform coordinate system to the local coordinate system. 

Position and orientation are with respect to a local tangent plane coordinate 
system. Spline nodes are set at the sample times of the 𝑛𝑛 inertial measurements. 
To simplify presentation, we define the platform coordinate system to be identical 
to the INS coordinate system. 

GNSS • Antenna lever-arm 𝒍𝒍𝑎𝑎 ∈ ℝ3: antenna position in platform coordinate system. 
• GNSS bias 𝒃𝒃𝑔𝑔 ∈ ℝ3xm: time-varying bias in xyz coordinates of the local 

coordinate system, modelled as a Gauss-Markov process. Bias parameters 
are estimated for all 𝑚𝑚 GNSS measurement. 

INS • Accelerometer bias 𝒃𝒃𝑓𝑓 ∈ ℝ3𝑥𝑥𝑥𝑥: time-varying random walk process. 
• Accelerometer scale-factor 𝒔𝒔𝑓𝑓 ∈ ℝ3: time-constant. 
• Gyroscope bias 𝒃𝒃𝜔𝜔 ∈ ℝ3𝑥𝑥𝑥𝑥: time-varying random walk process. 
• Gyroscope scale-factor 𝒔𝒔𝜔𝜔 ∈ ℝ3: time-constant. 
Time-varying INS biases are estimated at the sample times of the 𝑚𝑚 GNSS 
measurement and linearly interpolated in-between.  

LiDAR • Scanner boresight angles 𝜿𝜿 ∈ [0, 2𝜋𝜋)3: defines the rotation 𝐑𝐑(𝜿𝜿) from the 
scanner coordinate system to the platform coordinate system. 

• Scanner lever-arm 𝒍𝒍𝑠𝑠 ∈ ℝ3: scanner origin in the platform coordinate system. 
Objects • Plane offset and slope parameters (𝑜𝑜, 𝑧𝑧1, 𝑧𝑧2) ∈ ℝ3 per object plane. 

 
Trajectory model: The trajectory is modelled as a continuous-time function. Standard cubic B-
Splines are used for position and quadratic quaternion splines (KIM et al. 1995) for orientation. 
The continuous-time representation allows to evaluate the trajectory at any given time 𝑡𝑡. This is 
especially relevant for the high-frequency LiDAR data, where estimating the position and 
orientation for each emitted laser shot is unfeasible. In contrast to the spline-correction approach 
used in (GLIRA et al. 2016), the splines here are used to model the trajectory itself, with spline 
parameters introduced at the frequency of the inertial measurements. The aforementioned problem 
of overparametrization and block deformation is addressed by incorporating the raw inertial 
measurements and the GNSS position measurements in the strip adjustment, allowing for a highly 
flexible trajectory model without reducing redundancy. 
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GNSS measurement model: The GNSS is integrated in a loosely coupled manner. The raw 
measurements (pseudo-range, carrier-phase, Doppler) are first processed using a carrier-phase 
differential kinematic GNSS solution, in this case using the software package RTKLib (TAKASU 
& YASUDA 2009) in post-processing mode. The GNSS processing provides timestamped positions 
𝒑𝒑� and estimates of their precision. The predicted position of the GNSS antenna at time 𝑡𝑡 can be 
derived directly from platform position 𝒑𝒑�𝑡𝑡,𝒙𝒙𝑝𝑝�, orientation 𝐑𝐑(𝑡𝑡,𝒙𝒙𝑜𝑜) and GNSS lever arm 𝒍𝒍𝑎𝑎. The 
measurement is assumed to be contaminated with an additive error 𝝐𝝐𝑝𝑝. In total, the GNSS 
measurement equation for a measurement at time 𝑡𝑡 is given by 

𝒑𝒑�⏟
measurement

 =  𝒑𝒑�𝑡𝑡,𝒙𝒙𝑝𝑝�  +  𝐑𝐑(𝑡𝑡,𝒙𝒙𝑜𝑜)𝒍𝒍𝑎𝑎���������������
model

 +  𝝐𝝐𝑝𝑝⏟
error

. (1) 

 
Inertial measurement model: The measurements 𝒇𝒇� ,𝝎𝝎�  of the specific force 𝒇𝒇 and angular rate 𝝎𝝎  
at time 𝒕𝒕 include systematic errors (bias 𝒃𝒃𝑓𝑓/𝒃𝒃𝜔𝜔 and scale factor 𝒔𝒔𝑓𝑓/𝒔𝒔𝜔𝜔) and additive noise 𝝐𝝐𝑓𝑓/𝝐𝝐𝜔𝜔 

𝒇𝒇�  
𝝎𝝎�⏟

measurement

=
=  �𝑰𝑰3 + 𝑺𝑺𝑓𝑓�𝒇𝒇 +  𝒃𝒃𝑓𝑓

(𝑰𝑰3 + 𝑺𝑺𝜔𝜔)𝝎𝝎+ 𝒃𝒃𝜔𝜔�����������
model

+
+
𝝐𝝐𝑓𝑓
𝝐𝝐𝜔𝜔 �
error

. (2) 

Non-orthogonality is not considered, thus 𝑺𝑺𝑓𝑓 = diag�𝒔𝒔𝑓𝑓� and 𝑺𝑺𝜔𝜔 = diag(𝒔𝒔𝜔𝜔). The predicted 
specific force 𝒇𝒇 and angular velocity 𝝎𝝎 are computed via inertial navigation equations (GROVES 
2013; PÖPPL et al. 2023) and depend on platform position 𝒑𝒑�𝑡𝑡,𝒙𝒙𝑝𝑝� and orientation 𝐑𝐑(𝑡𝑡,𝒙𝒙𝑜𝑜). 
 
LiDAR measurement model: The LiDAR-derived measurements are based on detecting and 
matching planar features in the point clouds.  Points from all strips are rasterized with cell size of 
[ℎ𝑥𝑥, ℎ𝑦𝑦,ℎ𝑧𝑧] and a best-fitting plane is computed via principal component analysis (PCA) of all 
points within each cell (Fig. 5 and Fig. 6). Raster cells are classified as valid based on certain 
planarity conditions, e.g., if the smallest eigenvalue is below a given threshold. From this, we 
derive the plane center 𝒄𝒄� and (unit-length) normal 𝒏𝒏� . The plane center and normal are stored 
internally in the scanner coordinate system (𝒄𝒄�𝒔𝒔,𝒏𝒏�𝒔𝒔) and transformed into the local coordinate 
system according to the georeferencing equations  

𝒄𝒄 � = 𝐑𝐑(𝑡𝑡,𝒙𝒙𝑜𝑜)𝐑𝐑(𝜿𝜿)(𝒄𝒄�𝒔𝒔 + 𝒍𝒍𝒔𝒔) + 𝒑𝒑�𝑡𝑡, 𝒙𝒙𝒑𝒑�, 
𝒏𝒏 � = 𝐑𝐑(𝑡𝑡,𝒙𝒙𝑜𝑜)𝐑𝐑(𝜿𝜿)𝒏𝒏�𝒔𝒔. 

(3) 

Every such feature plane is assigned the time 𝑡𝑡 of the closest actual LiDAR point. The feature 
planes serve as LiDAR measurements (𝒄𝒄�𝒔𝒔,𝒏𝒏�𝒔𝒔) in the least-squares estimation. They are not actual 
measurements but rather each derived from multiple LiDAR points. 
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Fig. 5:  All points are sorted into 3D raster cells but considered separately for each strip and view.  

 Points are colored by view: forward (blue) / nadir (green) / backward (red) 

 
Fig. 6:  For each strip and view, a feature plane is computed for the points in each raster cell via PCA. 

Feature planes in a cell are then associated with a corresponding object plane. 

All feature planes in a given raster cell are aggregated into an object plane. This object plane 
corresponds to the actual physical plane, which is observed multiple times. Initially, each object 
plane is defined by a center 𝒄𝒄𝟎𝟎 and (unit-length) normal 𝒏𝒏0, as well as (unit-length) axes 𝒌𝒌10,𝒌𝒌20 so 
that 𝒏𝒏0 =  𝒌𝒌10 × 𝒌𝒌20. For the least-squares adjustment, object planes are parametrized by an offset 
𝑜𝑜 and slopes 𝑧𝑧1/𝑧𝑧2, with resulting center, axes and normal 

𝒄𝒄 ≔ 𝒄𝒄0 + 𝑜𝑜 𝒏𝒏0,  𝒌𝒌𝟏𝟏 ≔
 𝒌𝒌10+𝑧𝑧1𝒏𝒏0

� 𝒌𝒌1
0+𝑧𝑧1𝒏𝒏0�

 ,  𝒌𝒌𝟐𝟐 ≔
 𝒌𝒌20+𝑧𝑧2𝒏𝒏0

� 𝒌𝒌2
0+𝑧𝑧2𝒏𝒏0�

,  𝒏𝒏 ≔ 𝒌𝒌1 × 𝒌𝒌2. (4) 

 
Fig. 7:  Plane observation model: 1) Normal distance (𝒄𝒄 − 𝒄𝒄�) ⋅ 𝒏𝒏 from the object plane center 𝒄𝒄 

to the feature plane center 𝒄𝒄�. 2) Axis distance 𝒏𝒏� ⋅ 𝒌𝒌⋆ for each object plane axis 𝒌𝒌1/𝒌𝒌2 
and the feature plane normal 𝒏𝒏�. 

The parameters (𝑜𝑜, 𝑧𝑧1, 𝑧𝑧2), and thus the object plane’s position and orientation are optimized 
during the adjustment in order to minimize the normal and axis distances between object plane and 
all corresponding feature planes (Fig. 7). The plane measurement equation is given by 



Dreiländertagung der DGPF, der OVG und der SGPF in Dresden – Publikationen der DGPF, Band 30, 2022 

189 

0
0
0

  
=
=
=

  
(𝒄𝒄 − 𝒄𝒄�) ⋅ 𝒏𝒏
𝒏𝒏� ⋅ 𝒌𝒌𝟏𝟏
𝒏𝒏� ⋅ 𝒌𝒌𝟐𝟐�����������

constraint

  
+
+
+

  
𝜖𝜖𝑛𝑛,
𝜖𝜖𝑘𝑘1,
𝜖𝜖𝑘𝑘2.�
error

 (5) 

Strictly speaking, this is not an explicit measurement, but rather a constraint. Note that the above 
equations implicitly depend on the platform trajectory and scanner calibration as in Equation (3). 
At this point, all errors occurring in the above measurement models are assumed Gaussian, 
uncorrelated and therefore independent. The relevant standard deviations for the Gaussian noise 
of the inertial measurements are determined in a static calibration. For the LiDAR 
correspondences, they are derived from the PCA results, taking into account LiDAR angular and 
ranging accuracy. The GNSS error standard deviations are internal estimates provided by the 
GNSS processing solution. However as argued above, the GNSS positions are not uncorrelated. 
Therefore, we now introduce a stochastic model for the time-correlated error component. 

2.2 Stochastic Error Model for Loosely Coupled GNSS Integration 
Assuming that the GNSS position measurements include not only white noise but also a time-
correlated error term, the measurement equation can be extended to 

𝒑𝒑�  =  𝒑𝒑(𝑡𝑡,𝒙𝒙𝑜𝑜)  +  𝐑𝐑(𝑡𝑡, 𝒙𝒙𝑜𝑜)𝒍𝒍𝑎𝑎  + 𝝂𝝂⏟
time-

correlated
errors

+  𝜺𝜺⏟
uncorrelated

errors
=

measurement
noise

. 
(6) 

A simple, yet effective way of modelling time-correlated errors is a first-order Gauss-Markov 
(FOGM) process, defined recursively by 

𝜈𝜈𝑖𝑖 = exp �− 𝑡𝑡𝑖𝑖−𝑡𝑡𝑖𝑖−1
𝑇𝑇

����������
=:𝑎𝑎

𝜈𝜈𝑖𝑖−1 +  𝑤𝑤𝑖𝑖,   𝑤𝑤𝑖𝑖 ~ 𝑁𝑁(0,𝜎𝜎𝑤𝑤2). (7) 

This is an order 1 autoregressive process, where the autoregressive coefficient 𝑎𝑎 is constrained 

by 0 < 𝑎𝑎 < 1. When the first sample  ν0 is also normally distributed with  ν0~ 𝑁𝑁(0, 𝜎𝜎𝑤𝑤2

1−𝑎𝑎2
) , the 

process is stationary with covariance 𝕍𝕍(𝜈𝜈𝑖𝑖) = 𝜎𝜎𝑤𝑤2

1−𝑎𝑎2
 and zero mean 𝔼𝔼(𝜈𝜈𝑖𝑖) = 0. 

 
Fig. 8:  Autocorrelation of first-order Gauss-Markov process 𝜈𝜈 
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For each coordinate system axis of the local coordinate system, we model a separate Gauss Markov 
process. Each process is defined by two parameters, its process noise standard deviation and its 
correlation time. The process noise variance 𝜎𝜎𝑤𝑤2  controls the amount of stochastic noise added in 
each time step. While the measurement noise is uncorrelated, each 𝜈𝜈𝑖𝑖  is a weighted sum of the past 
process noise realizations and therefore correlated in time. The correlation time 𝑇𝑇 is a measure of 
how long it takes the process to become uncorrelated with itself; specifically, 𝑇𝑇 refers to when the 
autocorrelation drops below 1/𝑒𝑒. If 𝑇𝑇 →  0, the additive white-noise error model is recovered, 
while for 𝑇𝑇 → ∞ the FOGM turns into a random walk. For errors in GNSS positioning, time 
correlation of around 10-30 seconds may be expected (from own experiments), but this can go up 
to several 100 seconds in the presence of multi-path effects (HAN & RIZOS 2000). Since in most 
instances, the applicable parameters of the Gauss-Markov process are not known, we propose to 
adapt the Cochrane-Orcutt estimator (COCHRANE & ORCUTT 1949) from linear least-squares with 
time-correlated errors to our specific non-linear least squares setting.  
In our model, the unknown time-correlation applies only to the GNSS errors. The time-correlated 
component 𝝂𝝂 is explicitly modelled by the parameters 𝒃𝒃𝑔𝑔, assumed to follow a first-order Gauss-
Markov process. The Cochrane-Orcutt estimator is adapted in the following way: 

1. Estimate model parameters with uncorrelated GNSS measurement model. 
2. Obtain an estimate of the process correlation time 𝑇𝑇 and standard deviation 𝜎𝜎 by fitting a 

first-order Gauss Markov process to the residuals 

Per assumption, this is an FOGM process with additive measurement noise. For 
observation 𝑖𝑖, the process model has the form 

The coefficients (𝑎𝑎𝑥𝑥,𝑎𝑎𝑦𝑦,𝑎𝑎𝑧𝑧) and hence the correlation times, as well as process noise 
variances and measurement noise variances can be estimated using standard state-space 
methods from time-series analysis (DURBIN & KOOPMAN 2012). 

3. Estimate model parameters with time-correlated GNSS errors via non-linear least-squares. 

Note that in the above, the measurement noise is assumed Gaussian, independent and identically 
distributed with no cross-correlation between the axes. This is not typically the case for the 
covariance matrices of the GNSS position measurements which are provided by the GNSS 
processing solution, as these include some correlations between the x-, y- and z-axis. This 
assumption is a limitation due to the implementation of the time-series estimation; the full 
covariance matrix of the GNSS position measurement is used in the actual adjustment. 

𝒓𝒓 ∶=  𝒑𝒑� −  𝒑𝒑(𝑡𝑡,𝒙𝒙𝑜𝑜)  +  𝑹𝑹(𝑡𝑡,𝒙𝒙𝑜𝑜)𝒍𝒍𝑎𝑎 = 𝝂𝝂 + 𝜺𝜺. (8) 

�
𝑟𝑟𝑥𝑥
𝑟𝑟𝑦𝑦
𝑟𝑟𝑧𝑧
�
𝑖𝑖���

GNSS
residuals

= �
𝜈𝜈𝑥𝑥
𝜈𝜈𝑦𝑦
𝜈𝜈𝑧𝑧
�
𝑖𝑖���

Gauss-Markov
process

+ �
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝜀𝜀𝑧𝑧
�
𝑖𝑖���

,

measurement noise

 

�
𝜈𝜈𝑥𝑥
𝜈𝜈𝑦𝑦
𝜈𝜈𝑧𝑧
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3 Airborne Laser Scanning Case Study 

3.1 Equipment and Dataset 
The data for this case study was acquired with a RIEGL VUX-16023 and an AP+50 GNSS/INS 
navigation system mounted on a Cessna 206 over Retz, a small town in Lower Austria. The flight 
trajectory is shown in Fig. 10. The flying altitude was 550 m above ground level with a ground 
speed of 57 m/s and a pulse repetition rate of 600 kHz, resulting in a point density per strip of 7 
points per square meter. 
The RIEGL VUX-16023 is an airborne laser scanner with a mass of 2.65 kg, a field of view of 100 
degrees, a scan speed of up to 400 lines/sec and a pulse repetition rate of up to 2.4 MHz. It is 
designed for corridor mapping applications with high point density. The instrument is based on 
time-of flight measurements at 10 mm accuracy, 5 mm precision, and a measurement range of up 
to 1800 m. It is able to capture up to 32 targets per pulse and thus offers excellent multi-target 
capabilities, which is especially important for power line surveying and forestry. The RIEGL 
VUX-16023 offers a sophisticated scan pattern consisting of scan lines with periodically changing 
directions (Fig. 3). The scan directions in the center of the scan lines change consecutively from 
strictly nadir, to +10 degrees forward, and to -10 degrees backward. This scan pattern provides an 
almost complete 3D data set, as also vertical surfaces like the facades of buildings and objects (e.g. 
towers, masts, and poles) are accurately sampled by laser range measurements (Fig. 9). In addition, 
the nadir direction enables reliable data acquisition down to the bottom of narrow canyons. 

  

Fig. 9:  Retz chapel. The points are colorized 
according to the three different view 
directions indicated in Fig. 4 

Fig. 10:  Flight trajectory with 2×3 flight strips in a 
cross pattern 

3.2 Results and Comparison 
For comparison and to motivate the methodology, we compute a separate strip adjustment solution 
with the OPALS software (PFEIFER et al. 2014), using the approach developed by GLIRA et al. 
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2016. In this adjustment, laser scanner calibration (lever arm and boresight angles) are estimated 
as part of the adjustment, and the initial trajectory from GNSS/INS is corrected by estimating a 
constant offset in position and orientation per strip. Correspondences in the laser point cloud are 
established iteratively via a closest point algorithm, while the underlying GNSS and INS 
measurements are not considered.  

 

Fig. 11:  DSM of all strips and views 

  

Fig. 12:  Signed maximum strip difference of all strips 

The study area contains a large number of fields and other vegetation, which will show up as large 
discrepancies in the strip differences (Fig. 12) due to differing viewing directions. For a clearer 
presentation, we will focus on the area marked in red. The strip differences show systematic errors 
up to 15 cm, presumably stemming in a large part from an inaccurate trajectory. These errors are 
on a timescale of a few seconds or less, making them impossible to correct with a constant per-
strip offset. One approach would now be to allow not only an offset, but rather a time-varying 
correction using splines. This then leads to the problem of choosing the number of spline 
parameters or equivalently, the spacing of the spline knots: If the spacing is too large, the errors 
will not be fully correctable. A smaller spacing however may quickly lead to overfitting and 
deformation of the trajectory and in consequence the point cloud. This leads us to the approach 
detailed above: Keep the measurements from GNSS and INS and integrate them with LiDAR 
correspondences. 
The GNSS/INS/LiDAR-integration is carried out as described in Section 2. Inertial measurements 
are available with 200 Hz, GNSS positions with 1 Hz. The frequency and number of the LiDAR 
plane correspondences depends on the rasterization parameters. Here, a cell size of 2.5 m was used, 
followed by a 4x sub-sampling of all planes and a 24x sub-sampling of all horizontal planes. The 
forward/nadir/backward viewing angles allow extraction of correspondences even on short 
timescales (within a strip) and with very steep slopes (e.g., facades). Comparing Fig. 13 and Fig. 
14 there are two major differences: The overall number of extracted objects is much lower with 
only the nadir view, because in-strip overlaps of the different views are not considered. However, 
in addition to an overall reduction in the number of extracted object planes, there are almost no 
vertical planes left at all, as these are rarely seen with a nadir viewing angle.  
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Fig. 13:  Number of extracted object planes 

per 10-degree interval of the slope 
of the plane normal, for all views of 
all strips 

 
Fig. 14:  Number of extracted object planes 

per 10-degree interval of the slope 
of the plane normal, for the nadir 
view of all strips 

Analogously to Fig. 12, the strip differences after the batch least-squares adjustment using GNSS 
positions, inertial measurements and LiDAR plane correspondences are shown in Figure 15. 
However, the errors have different characteristics compared to those in Fig. 12: There are large-
scale differences of up to 15 cm, while the smaller-scale difference patterns have mostly 
disappeared. While it is hard to pinpoint the error source exactly due to the complexity of the 
model, discrepancies that are constant over wider areas point towards an inaccurate platform 
position. As shown in Fig. 17, the residuals for the GNSS position observations increase drastically 
within all strips. In order to achieve a consistent point cloud, the modelled antenna position has to 
diverge significantly from the measured GNSS position.  

 
Fig. 15:  Strip differences of 

GNSS/INS/LiDAR-adjustment 
with uncorrelated GNSS 
positions 

 
 
 
 

 

 
Fig. 16:  Strip differences after 

GNSS/INS/LiDAR-adjustment with 
time-correlated GNSS position 
errors. 
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The differences between the GNSS position measurements and the modelled antenna position (Fig. 
17) have a systematic time-dependence. This is contrary to the stochastic assumption of 
measurements with independent zero-mean noise, resulting in the strip differences seen above. 
The discrepancies between the model and the GNSS measurements are largest in the center of each 
strip, where LiDAR correspondences with the cross-track strips are present.  

 

 
Fig. 17:  GNSS residuals without time-correlated error model 

Table 2 shows the estimated correlation time and process noise standard deviations of the GNSS 
position residuals. The correlation time is 20-35 seconds depending on the axis. The process noise 
standard deviation is 10x higher for the z-axis than for the x- and y-axis. This partially due to the 
LiDAR measurements, as the majority of the correspondences are horizontal planes, which 
constrain the trajectory only in the height component. The increased process noise standard 
deviation in the z-axis may also suggest the actual error process is more complicated than the 
modelled FOGM process. Nevertheless, for representing the time-correlated characteristics of the 
residuals in Fig. 17, the FOGM model is a substantial improvement compared to assuming 
independent measurements. 

Tab. 2: Estimated Gauss-Markov process parameters 

 x-Axis y-Axis z-Axis 

Correlation time 𝑇𝑇 [s] 21.14531 26.97508 34.87152 

Process noise standard deviation1 𝜎𝜎𝑤𝑤 [m] 0.00021 0.00019 0.00227 

With the estimated process parameters, we can now model the time-correlated GNSS bias within 
the least-squares adjustment, while all other parameters remain the same. The resulting point cloud 
shows drastically reduced differences compared to before (Fig. 16). Judging from the 
comparatively homogenous strip differences of the rooftops on the lower left side of Fig. 16, there 
seems to be no significant lateral error. The magnitude of the estimated bias 𝒃𝒃𝑔𝑔 is around 4-5cm 
for the z-axis, and the GNSS residuals now show no obvious time-correlation (Fig. 18). Some 
discrepancies between different strips and between views within a strip do remain, the cause of 
which will be investigated in future work. 

                                                 

1 The noise standard deviations are of course only applicable for our time sampling frequency of 1Hz (or equivalently, a time step 
size of 1s) and would have to be converted for other sampling frequencies. 
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Fig. 18:  GNSS errors and residuals with time-correlated error model 

4 Conclusion 

In this contribution, we presented a method for integrating GNSS, INS and LiDAR data, which 
takes into account the time-correlation of the GNSS position measurements. The approach was 
validated with an ALS dataset where it achieved reduced strip differences compared to a classic 
strip adjustment approach using a constant per-strip trajectory correction and to the 
GNSS/INS/LiDAR-integrated adjustment without explicit modelling of the GNSS errors’ time-
correlation. However, this does not conclusively disprove the existence of strip deformations, 
which might occur with a more flexible spline-based strip adjustment. In future work, it would be 
prudent to perform a systematic comparison of the results not only in terms of internal consistency 
(i.e., strip differences), but also with accurate reference data in order to rule out these systematic 
deformations in the point cloud. 
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