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Abstract: Remote sensing data plays a crucial role in crop growth monitoring by 
characterizing the spatiotemporal variability of crop traits. In the context of climate-smart 
agriculture, the impact of biochar application in agroecosystems has received significant 
attention in recent years. However, despite the numerous studies examining the potential of 
biochar-facilitated fertilization on harvested crop yields and above-ground biomass 
production, monitoring of the impact of biochar treatments by remote sensing approaches on 
crop dynamics during the growing season has not been well addressed. Therefore, the main 
objective of this research was to provide a first case study to evaluate the potential of optical 
remote sensing to investigate the impact of biochar on crop growth. We used seasonal 
multispectral data acquired from an unmanned aerial vehicle (UAV) with high spatial 
resolution. In our case study, we used an off-the-shelf DJI Phantom 4 multispectral UAV 
system to monitor the seasonal development of spelt (Triticum aestivum ssp. spelta L.) in a 
biochar enrichment experiment. We here propose a straightforward data processing workflow 
based on an empirical line method to convert raw UAV data to normalized and comparable 
reflectance maps, which then were the bases for calculating various visible/near-infrared 
(VIS/NIR) vegetation indices. OSAVI was the best resolving index in relation to the actual 
yield, indicating equal to better spelt development over the biochar plots with a fertilizer level 
comparable to half and full conventional amount, compared to conventionally high fertilized 
controls. 

1 Introduction 

Global plant production faces the main challenge of sustainability under the constraint of the 
rapidly increasing population and the gradual depletion of natural resources (FRÓNA et al. 2019). 
In this context, reliable and timely information about the crop sown area becomes essential in 
developing management strategies in precision agriculture (RAMTEKE et al. 2020). Precision 
agriculture is a site-specific crop management approach that gathers, processes, and analyses 
spatial and temporal variability in soil, field, and crop parameters to support management decisions 
(SISHODIA et al. 2020). Remote sensing plays a crucial role in precision agriculture as it covers 
large areas rapidly and repeatedly, thus characterizing spatial and temporal crop traits. In addition 
to providing a synoptic view, remote sensing can provide structural information about vegetation 
health. As the spectral reflectance of the crop canopy changes with phenology (growth), stage and 
crop health, it can be measured and monitored by multispectral sensors (RAMTEKE et al. 2020) . 
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Satellite images have been widely adopted for crop monitoring due to the images' often sufficient 
spatial, spectral, and temporal resolution (LI et al. 2022; BLICKENSDÖRFER et al. 2022). 
Furthermore, high-resolution unmanned aerial vehicle (UAV)-based imagery has been used 
recently to address the data gap in satellite products suffering from cloud coverage and to address 
questions requiring centimeter-level spatial resolution(YAO et al. 2019).  
In the context of mitigating climate change and adapting to the loss of soil fertility, there is a 
particular interest in assessing the impact of biochar-facilitated fertilizer application in 
agroecosystems (JEFFERY et al. 2011). Biochar is a black carbon-rich product obtained through the 
pyrolysis of various biomass feedstocks to intentionally amend the soil. Several studies have 
indicated that biochar application to soil can (i) improve soil fertility, (ii)  enhance nutrient 
availability, (iii) increase soil water holding capacity and correlated growth and yield, (iv) increase 
microbial population and activities, and (v) reduce greenhouse gas emissions through carbon 
sequestration  (TRUPIANO et al. 2017; BIEDERMAN & HARPOLE 2013). A commonly reported 
impact of biochar is the improvement of above-ground biomass productivity. Nevertheless, 
previous studies found that biochar could affect crop development only during the green-up phase, 
while the harvested crop yield could remain unaffected (HEIDARIAN DEHKORDI et al. 2020b). 
Despite the growing literature investigating the effect of biochar on total crop productivity, the 
biochar effects on crop development over the growing season have received much less attention. 
Therefore, the spatio-temporal information provided by the UAV images can reveal variability in 
crop performance due to the presence of biochar within the agricultural soils. So far, HEIDARIAN 
DEHKORDI et al. (2020a) (2020b) have investigated the advanced perspectives of UAV (10 channel 
MicaSense RedEdge-M) remote sensing in combination with in-situ ground measurements of crop 
traits for monitoring the crops dynamic affected by century-old biochar enrichment in precision 
agriculture. To date, short-term biochar effects on plant systems using high-resolution UAV-based 
data at the canopy level have yet to be addressed. 
The primary objective of this manuscript is to describe the ability to use the small-scale, high 
spatial-resolution UAV system to detect the differences between biochar fertilized fields and 
control fields and to investigate at which development stage those differences can be quantified or 
detected. Due to the high fertilization standard of the high-quality field, the expected impact of 
biochar-facilitated fertilization on crop growth may be low but possibly detectable using high 
spatial-resolution UAV data. The available imagery source was visible-near infrared multispectral 
data collected over one crop growth season. This study proposes a data processing workflow, from 
raw imagery to creating a reflectance map and extracting vegetation indices (VIs). These indices 
are used to answer the following question: Is it possible to detect the short-term impact of biochar 
treatments on spelt (Triticum aestivum ssp. spelta L.) crop performance at the canopy level using 
UAV-based crop traits? 

2 Material and Methods 

2.1 Site description  
The study area was a farmer's field of approximately 21 hectares cultivated with spelt, located in 
Germany (latitude: 50° 58'55.1"N, and longitude: 6°25'50.4"E ) (Figure 1). Spelt seeds were sown 
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in December 2022. The Muencheberg soil quality rating (SQR) of the area is >85, Colluvisol over 
Chernozem-parabraunerde. Spelt development was monitored during the experiment from the 
Booting stage to the senescence. The experimental treatment consisted of three biochar-enriched 
stripes with a diameter of 6 m along the field's length. Each stripe was treated with 1 ton/ha of 
terra preta biochar and 180 kg nitrogen/ha, 90 kg N/ha, and 40 kg N/ha for stripes T1, T2, and T3, 
respectively. Apart from these biochar-enriched stripes, the experimental field was exposed to 
homogeneous agricultural practices, and the soil was treated with organic minerals of 180 kg N/ha.  

 
Fig. 1: Map of the experimental pairs (reference vs biochar plots) in the spelt field in Ameln-Titz, 

Germany. Background image corresponds to the Red-Green-Blue (RGB) orthomosaic captured 
by UAV on 02 June 2022 

Three 3 ×100 m plots (red stripes in Fig. 1) were selected inside the biochar-enriched stripes, at 
least 1.5 m from the border of each stripe, to avoid gradient effects at the edge of the treatments. 
Subsequently, three plots of 3 ×100 m (black stripes in Fig. 1) were selected as reference soil areas 
within a distance of approximately 3 m from the biochar-enriched stripes to ensure comparable 
soil properties while preventing effects from mixing of biochar and reference soil particles. A set 
of ground control points (GCPs), consisting of five 0.3×0.3 m targets, were placed in the field for 
geo-referencing UAV images. GCP coordinates were measured with a real-time kinematic (RTK) 
global navigation satellite system (GNSS) (Hiper VR, Topcon Positioning Systems, Inc., Tokyo, 
Japan) with an overall accuracy of 0.01 m. 

2.2 Unmanned Aerial Vehicle (UAV) data acquisition 
A multispectral remote sensing dataset was acquired during the 2022 growing season using the 
multispectral camera mounted on the DJI Phantom 4 Multispectral (P4M). The P4M camera has 
six bands, including one RGB sensor and five monochrome sensors capturing blue (450 nm central 
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wavelength), green (560 nm), red (650 nm), red-edge (730 nm), and near-infrared (840 nm). Each 
spectral sensor has a global shutter and 1600×1300 pixels image resolution. In addition, the P4M 
is equipped with a band-by-band incident light sensor, which allows the irradiance measurement 
for each band during flight. The UAV was flown at 50 m above ground level (AGL) with an 
airspeed of 4.25 ms⁻¹. The forward and side image overlaps were 75% and 65%, resulting in a 
ground sampling distance (GSD) of 0.035 m. During data collection, six flights were performed 
between May and July 2022 in clear sky conditions and between 12:00 to 15:00 h local time. For 
each flight, a set of Lambertian reference panels with known hemispherical-conical reflectance 
factors was placed next to the field and recorded at flight altitude to enable the generation of 
reflectance maps in the postprocessing. 

2.3 UAV-data preprocessing 

2.3.1 Processing workflow 
The data processing workflow, including data processing and vegetation indices extraction, is 
illustrated in Figure 2. First, the individual images were corrected for vignetting effect (section 
2.3.2). Then, raw digital numbers (DNs) were corrected for sensor gain and exposure time yielding 
normalized-DN values (section 2.3.3). These two steps were performed on the individual images 
using an in-house developed python code. The corrected images were processed using the 
Metashape processing workflow (Agisoft LLC, St. Petersburg, Russia) that included GCPs for 
georeferencing orthomosaics as final products. The empirical line method (ELM) was applied for 
atmospheric correction and to create reflectance maps using a python code (section 2.3.4). Several 
vegetation indices were then calculated from the reflectance maps using the raster calculator tool 
in QGIS (section 2.4). In addition, a mask was applied to the vegetation indices maps in QGIS to 
exclude soil pixels before conducting the statistical tests to examine the difference between the 
reference and biochar plots (2.5). 

 
Fig. 2: Overall multispectral UAV-image processing workflow 

2.3.2  Vignetting correction  
Vignetting is the effect of the radial falloff in pixel values, which results in darker areas near the 
edges of images (Goldman 2010). The vignetting effect, V(x, y), is typically modeled as a high-
order polynomial (Equation 2). It assumes zero vignetting, V(xᵥ, yᵥ) = 1, at the image center:  

 
𝑟𝑟 =  �(x −  xᵥ)² +  (y − yᵥ)²  

(1) 

 

 𝑉𝑉(𝑥𝑥,𝑦𝑦) = 1 +  α₁r +  α₂r² + α₃r ᶟ + α₄r⁴ +  α₅r⁵ +  α₆r⁶ (2) 
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Where r is the distance of the pixel (x, y) from the center of the vignette (xᵥ, yᵥ), which can be 
obtained by (Equation 2), matrix α shows the polynomial coefficients for the vignetting correction, 
which can be found in the EXIF/XMP metadata of the images. 

The corrected image intensity (Icorrected) is calculated from the original image intensity I (x, y) using 
Equation (3): 

 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦) = [𝐼𝐼(𝑥𝑥, 𝑦𝑦) − 𝐵𝐵𝐵𝐵(𝑥𝑥, 𝑦𝑦)] × 𝑉𝑉(𝑥𝑥,𝑦𝑦) (3) 
 

Where BL(x, y) is the normalized black level value, which can be found in EXIF/XMP metadata. 

2.3.3 Radiometric correction 
The radiometric correction is a crucial step in the processing flow. When an image is captured, 
raw data are stored as DNs, representing the radiant energy received by each pixel. During 
radiometric calibration, DNs are converted to radiance and usually later top of canopy reflectance 
to enable comparisons between datasets acquired under differing light conditions or with different 
sensors (MINAŘÍK et al. 2019). Radiance in absolute physical units cannot be calculated for DJI 
multispectral images as the sensor is not radiometrically calibrated by the manufacturer. Instead, 
normalized DNs are calculated using Equation 4, as described in Multispectral Image Processing 
Guide provided by DJI (DJI 2020): 
 

 
𝐷𝐷𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =

𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 1ₑ⁶
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠 × 𝑐𝑐𝑔𝑔𝑐𝑐𝑠𝑠𝑟𝑟𝑔𝑔 𝑠𝑠𝑥𝑥𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑟𝑟𝑠𝑠 𝑡𝑡𝑔𝑔𝑐𝑐𝑠𝑠 

 
(4) 

 
 

where sensor gain and the camera exposure time can be found in XMP/EXIF metadata of each 
image, and 1ₑ⁶ is used to convert the exposure time from microseconds to seconds. 

2.3.4 Mosaic generation 
The individual images, corrected as described in sections 2.3.2 and 2.3.3, were imported into 
Agisoft Metashape to automate the image post-processing, recognize the characteristics of the used 
multispectral camera, and make the necessary geometric corrections (e.g., lens distortion). As the 
next step, the GPS metadata of the GCPs were used for geo-positioning and photogrammetric 
reconstruction, and finally, the software generated the orthomosaic and digital surface model.   

2.3.5 Reflectance 
ELM is commonly used for atmospheric correction and for generating surface reflectance data. 
The method assumes a linear relationship between DNs or radiance values in an image and surface 
reflectance (SMITH & MILTON 1999). Therefore, one or more reflectance calibration panels of 
known reflectance and Lambertian properties must be visible in the aerial imagery to apply the 
method. The UAV data for this study was acquired simultaneously with nine standard reflectance 
panels (2%, 3%,4 %,5%, 6%, 12%, 24%, 40% and 63%). First, the reference panel ROIs were 
manually extracted from the central part of each panel in the orthomosaic, for every flight, in 
QGIS. Then, the reference panel measurements were obtained band by band using a python script, 
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due to a displacement between the bands in the DJI P4 multispectral imageries. A mask was also 
applied for each orthomosaic within the python script to mask out the saturated panels for each 
spectral band. Then , ELM was applied to the orthomosaic to create a reflectance map as described 
in (CHAKHVASHVILI et al. 2021).  

2.3.6 Calculation of Multispectral vegetation indices 
Vegetation indices s allow monitoring spectral changes related to, e.g., crop structure, above-
ground biomass, crop health, and weed presence (CUARAN & LEON 2021). The normalized 
difference vegetation index (NDVI) is a good indicator for green biomass, with the well-known 
shortcomings of saturating in closed canopies and being influenced by soil reflectance. The 
enhanced vegetation index (EVI) was proposed to address this issue by adjusting for atmospheric 
conditions and canopy background noise using a blue band. The normalized difference red edge 
index (NDRE) was identified as a good proxy of nitrogen concentration. The chlorophyll index 
red (CI-red) and the simplified canopy chlorophyll content index (s-CCCI) are often used for 
evaluating canopy chlorophyll and nitrogen content. The optimized soil-adjusted vegetation index 
(OSAVI) and chlorophyll vegetation index (CVI) are indicative of leaf chlorophyll content. 
Formulae and references are displayed in Tab. 1. 

Tab. 1: Multispectral vegetation indices calculated in this study 

Index  Formulae Reference 
Normalized Difference 

Vegetation Index  
NDVI (NIR – Red) / (NIR + Red)  (BUSCHMANN & NAGEL 

1993) 
Normalized Difference Red 

Edge  
NDRE (NIR -RE) / (NIR + RedEdge) (GITELSON & 

MERZLYAK 1994) 
Enhance Vegetation Index  EVI 2.5 * [(NIR – Red) / (NIR + 6*Red 

– 7.1*Blue + 1)] 
(ZHANG et al. 2006) 

Optimized soil adjusted VI  OSAVI 1.16 (NIR – Red)/ (NIR + Red+.16) (LIMA-CUETO et al. 
2019) 

Chlorophyll vegetation index  CVI (NIR/Green) * (Red/Green) (VINCINI et al. 2008) 
Chlorophyll index red  Cl-red (NIR/Red) - 1 (GITELSON et al. 2003) 

Simplified canopy chlorophyll 
content index  

s-
CCCl 

NDRE/ NDVI (FITZGERALD et al. 
2006) 

2.4 Statistical Analysis  
Analysis of Variance (ANOVA) and Tukey-Kramer post hoc test (NANDA et al. 2021) were used 
to determine whether the contrasts between the mappings of reference and biochar plots were 
statistically significant. As expected, a significant difference was found at a very high level due to 
the high number of samples (n) and, therefore, low variance. Since this is inconclusive, Cohen's D 
as a standardized mean difference (AARTS et al. 2013) was used to estimate the distance between 
means as effect size. Since the data distribution of pixel values can be fitted with a gaussian 
function, a comparison of means with a factor is possible. Therefore, peaks of the overlapping 
Gaussian functions can be distinguished, indicating that the underlying images (treatments) are 
from different datasets and differ to a certain degree. Cohen's D (as effect size) and the means ± 
standard deviation (SD) are discussed in this manuscript as means of differentiation and possibly 
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magnitude or contrast in VI representation.The effect size is interpreted using the classification 
developed by COHEN (1988), which is presented in Tab. 2: 

Tab. 2: Cohen’s D effect size classification 

Effect size (D) Interpretation 
0,00 ≤ D < 0,20 Ignored 
0,20 ≤ D < 0,50 low 
0,50 ≤ D < 0,80 Medium  
0,80 ≤ D < 1,00 Strong 

1,00 ≤ D Very Strong 

3 Results and Discussion  

Figure 3 exemplarily illustrates the time series for OSAVI. The data collection started in May 
when the spelt was between the booting phase and inflorescence emergence. The mean of the 
observed areas (T1-R3) relates to plant health through chlorophyll content, which is, during the 
vegetative phase, a sign of healthy, well-supplied, and growing plants. The highest values are 
expected just before flowering, and mean values decline towards senescence.  

 
Fig. 3: Optimized soil adjusted vegetation index (OSAVI) time series; the boxes are the areas with 

biochar-fertilizer treatments as shown in Fig. 1. Colouring shows the seasonal dynamic in mean 
pixel values of this index 

On the second measurement day (2nd June), OSAVI was lower compared to 15th May and rose 
again on 14th June, which is also apparent in the boxplot in Fig. 4. This response is likely related 
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to weather conditions (not shown), where the field experienced a dry and slightly too warm May 
with insufficient rain and some colder days with possible light stress towards 2nd June, followed 
by warm and moist enough conditions until 14th June. This response could be seen as a recovery 
on 14th June from a short stress period; from around 14th June on, there were the only short phases 
of optimal growing conditions in an otherwise too dry and warm growing season, though that fit 
well with spelt senescence timing. From 14th June onwards, OSAVI constantly decreased due to 
the onset of senescence until 14th July, one day before the harvest. 
The mean OSAVI value of the biochar treatment 1 plot (red box) was higher than in the adjacent 
reference plot (grey box) (same order as in Fig. 3) at each acquisition date except on 14th July, 
when the mean OSAVI was 0.3 for both reference and biochar plots (Fig. 4). Cohen's D showed 
that the difference was nearly negligible on all the dates with a D value less than 0.2, except for 
2nd and 29th June, which have a medium and low effect with D = 0.54, and 0.37, respectively. For 
treatment 2, reported Cohen's D effects compared to the references except for 15th May and 29th 
June could be mostly ignored. In contrast, Cohen's D indicated a medium effect between treatment 
3 and its adjacent reference on 15th May, 2nd and 29th June, and a medium to very strong effect 
toward treatment 1 with D values of .71, 1.18, and 1.19, respectively. These numbers indicate that 
the spelt is denser and healthier in treatment 1 compared to the reference plots and treatment 2. 
Both performed better than treatment 3; an effect was visible by eye at harvest in July.  

 
Fig. 4: Comparison of the optimized soil adjusted vegetation index (OSAVI) of the three biochar stripes 

versus the three reference stripes for each acquisition date. Whiskers show highest and lowest 
values respectively, dividing line is the median, green triangle the mean. Brackets indicate 
comparisons between treatments, with respective Cohen’s D value 

Graphs of other examined multispectral vegetation indices are not presented here but data can be 
found in Tab. 3 and 4. Biochar treatment effects became visible in all VIs. However, those effects 
were negligible on 15th May for nearly all the VIs except EVI, which showed a medium to strong 
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effect, and OSAVI indicated a Medium effect. On 2nd, 14th, and 29th June, NDVI, EVI, NDRE, and 
OSAVI exhibited medium to very strong impact with a D value ranging up to 0.5 and higher.  

Tab. 3: Mean vegetation index values and maximum distance between means (%)  
for the biochar and reference plots during the growing season 2022 

    15.05.2022 02.06.2022 14.06.2022 29.06.2022 14.07.2022 
NDVI total mean ±STD 0.91 ±0.04 0.67 ±0.08 0.79 ±0.05 0.41 ±0.09 0.3 ±0.05 

max dist. btw. 
means [%] 

1.70% 12.8% 3.13% 17.9% 11.2% 

EVI total mean ±STD 0.56 ±0.1 0.63 ±0.13 0.73 ±0.1 0.27 ±0.07 0.29 ±0.05 
max diff. btw. 
means [%] 

16.7% 24.0% 6.58% 22.0% 4.95% 

OSAVI total mean ±STD 0.86 ±0.06 0.58 ±0.1 0.69 ±0.13 0.35 ±0.07 0.29 ±0.05 
max diff. btw. 
means [%] 

4.48% 22.9% 9.67% 19.7% 5.15% 

NDRE total mean ±STD 0.39 ±0.05 0.17 ±0.05 0.2 ±0.06 0.22 ±0.04 0.16 ±0.04 
max diff. btw. 
means [%] 

7.14% 24.7% 20.9% 9.83% 6.58% 

Clred total mean ±STD 25.3 ±9.49 4.23 ±1.47 7.97 ±3.17 1.43 ±0.57 0.96 ±0.29 
max diff. btw. 
means [%] 

14.7% 33.0% 17.1% 29.4% 15.8% 

CVI total mean ±STD 6.88 ±2.39 3.34 ±1.01 9.01 ±1.97 7.51 ±2.25 4.28 ±1.18 
max diff. btw. 
means [%] 

15.9% 12.6% 14.8% 5.54% 15.9% 

s-CCCl total mean ±STD 0.42 ±0.05 0.25 ±0.07 0.26 ±0.06 0.54 ±0.11 0.53 ±0.13 
max diff. btw. 
means [%] 

8.45% 16.5% 17.5% 13.7% 6.99% 

Overall, the findings correlate well with fertilization management, where treatment 1 received the 
same amount of conventional nitrogen fertilizer as was used for the reference under standard 
cultivation. Treatment 2 received half the amount of fertilizer, and treatment 3 received no 
additional fertilization except the replacement of formerly depleted N on the field, resulting in 
22% less N than the references. As for the crop yield, the farmer reported that treatment 1 was 
about 5% higher than the reference yield, and treatment 2 was like the reference despite having 
received half the fertilization. However, treatment 3 yield was 20% less than the references (direct 
communication). 
All examined vegetation indices showed negligible to low difference between biochar and 
reference plots on the 14th July. OSAVI and EVI performing best in the vegetative phase. CVI 
showed overall large variances and is likely not recommended for detecting the effects of biochar 
in a homogeneous grassy cereal canopy. For comparisons between VIs, the ability to resolve 
differences between treatments, expressed by a wide range of values, and resolution, relating to 
the change of mean over the whole season should be considered. It should be noted that the 
approach of effect-size-based evaluation, essentially comparable to an arbitrary calibration of 
colour values (via Cohen’s D), appears to work well in this case and correlates with the actual 
productivity and observations.  
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Tab. 4: The magnitude of difference/distance between means by Cohen’s D of the vegetation indices 
comparing the biochar-treated and reference plots; strong and very strong effects bold (D > .80); 
T1-T3, the overall largest difference as expected between highly and lower-than-conventional 
fertilization, measured by final yield as well as most indices, highlighted in grey. Not all comparisons 
(15 overall) shown. Underscored values correlate with the maximum distance ([%], see table 2) for 
the respective index on that acquisition 

Date/ Index    15 May 2022 02 Jun 2022 14 Jun 2022 29 Jun 2022 14 Jul 2022 
NDVI 
 
 
 
  

T1 - T2 0.05 0.62 0.54 0.77 0.09 
T1 - T3 0.17 1.44 0.46 0.98 0.41 
T2- T3 0.21 0.84 0.09 0.19 0.32 
T1 - R1 0.02 0.53 0.52 0.26 0.01 
T2 - R2 0.2 0.2 0.1 0.64 0.1 
T3 - R3 0.36 0.64 0.26 0.77 0.29 

EVI 
 
 
 
  

T1 - T2 0.96 0.63 0.49 0.97 0.13 
T1 - T3 1.17 1.48 0.32 1.06 0.26 
T2- T3 0.19 0.76 0.16 0.11 0.14 
T1 - R1 0.21 0.66 0.48 0.4 0.02 
T2 - R2 0.86 0.25 0.09 0.74 0.11 
T3 - R3 0.73 0.42 0.11 0.81 0.02 

OSAVI 
 
 
 
  

T1 - T2 0.55 0.67 0.12 1.02 0.01 
T1 - T3 0.71 1.18 0.38 1.19 0.28 
T2 - T3 0.16 0.84 0.35 0.2 0.34 
T1 - R1 0.15 0.54 0.11 0.37 0.17 
T2 - R2 0.53 0.17 0.07 0.78 0.34 
T3 - R3 0.51 0.72 0.25 0.71 0.04 

NDRE 
 
 
 
  

T1 - T2 0.25 0.72 0.81 0.04 0.08 
T1 - T3 0.58 1.01 0.91 0.23 0.1 
T2 - T3 0.29 0.28 0.09 0.26 0.02 
T1 - R1 0.11 0.3 0.29 0.1 0.08 
T2 - R2 0.24 0.24 0.4 0.27 0.05 
T3 - R3 0.38 0.62 0.51 0.15 0.07 

Clred 
 
 
 
  

T1 - T2 0.09 0.58 0.52 0.73 0.08 
T1 - T3 0.15 1.31 0.42 0.92 0.31 
T2- T3 0.26 0.78 0.11 0.18 0.22 
T1 - R1 0.02 0.53 0.48 0.27 0.03 
T2 - R2 0.19 0.18 0.12 0.6 0.08 
T3 - R3 0.36 0.6 0.29 0.73 0.22 

CVI 
 
 
 
  

T1 - T2 0.33 0.19 0.62 0.13 0.06 
T1 - T3 0.3 0.07 0.67 0.19 0.42 
T2 - T3 0.03 0.11 0.06 0.06 0.48 
T1 - R1 0.06 0.26 0.08 0.19 0.2 
T2 - R2 0.18 0.33 0.57 0.06 0.07 
T3 - R3 0.1 0.17 0.4 0.14 0.05 

s-CCCl 
 
 
 
  

T1 - T2 0.44 0.66 0.64 0.78 0.05 
T1 - T3 0.73 0.68 0.83 0.76 0.22 
T2 - T3 0.27 0.01 0.16 0 0.17 
T1 - R1 0.13 0.14 0.09 0.37 0.11 
T2 - R2 0.3 0.38 0.4 0.34 0.01 
T3 - R3 0.42 0.53 0.46 0.65 0.06 

 
However, this approach may not be generalizable since there are pitfalls in the statistical 
applicability, which may not have appeared here due to high homogeneity, but which nevertheless 
must be considered. An example is the high number of degrees of freedom with the extremely high 
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n. It is not necessarily a true high n since other influences besides fertilization cannot be ruled out 
completely. In an extreme case, one could regard this experiment as one random sample with n=6 
and 5 degrees of freedom. This observation could be alleviated by, e.g., bootstrapping and 
increasing the number of observations artificially, which allows for a post-experiment 
randomization to see if the initial observations still hold. Such an analysis would enable analysing 
how small an experimental area could be to rule out side effects while still being valid, which is 
advisable for future experiments. 
In conclusion, differentiating short-term biochar treatments via Cohen’s D works for VIs derived 
from multispectral, high spatial resolution UAV images. The biochar treatment showed the most 
indicative impact on spelt crop during the inflorescence emergence. In direct comparisons, 
vegetation indices, especially OSAVI, enable evaluating plant status and possibly forecasting yield 
locally, which may help to optimize soil pre-treatment or fertilization. However, comparisons with 
ground truth data from yield and scoring plants throughout the season should be performed to 
solidify the findings. In addition, the minimum plot size for differentiation of biochar-facilitated 
fertilization should be determined in the future. 
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