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Forecasting Urban Development from Satellite Images 

NANDO METZGER1 

Abstract: Forecasting where and when new buildings will emerge is a rather unexplored niche 
topic, but relevant in disciplines such as urban planning, agriculture, resource management, 
and even autonomous flight. In this work, we present a method that accomplishes this task 
using satellite images and a custom neural network training procedure. In stage A, a 
DeepLapv3+ backbone is pretrained through a Siamese network architecture aimed at solving 
a building change detection task. In stage B, we transfer the backbone into a change forecast-
ing model that relies solely on the initial input image. We also transfer the backbone into a 
forecasting model predicting the correct time range of the future change. For our experiments, 
we use the SpaceNet7 dataset with 960 km2 spatial extension and 24 monthly frames. We found 
that our training strategy consistently outperforms the traditional pretraining on the ImageNet 
dataset. Especially with longer forecasting ranges of 24 months, we observe F1 scores of 24% 
instead of 16%. Furthermore, we found that our method performed well in forecasting the 
times of future building constructions. Hereby, the strengths of our custom pretraining become 
especially apparent when we increase the difficulty of the task by predicting finer time win-
dows. 

1 Introduction 

Understanding the evolution of land use (e.g., constructions and change of land type) is crucial in 
fields like urban planning, agriculture, natural resource management, anticipating housing market 
prices, and even autonomous driving and flying. One of the critical components in purely vision-
based positioning systems is having an up-to-date map of the environment. Especially in emergen-
cies, it is crucial to have a map with minimal uncertainty to find safe landing sites. These uncer-
tainties are reducible by regularly conducting resource-intensive survey flights. However, a system 
that can anticipate the changes could assist in indicating the locations of future survey flights and 
potentially save unnecessary flights in regions with no change. 
While existing approaches aim to forecast Land use/Land cover class changes, none explicitly 
targets building footprint as the output variable. Moreover, there appears to be a lack of research 
using advanced deep learning methods that aim to forecast the time of when the changes will occur. 
In this work, we aim to forecast where and when changes in building footprints are going to hap-
pen. We consider the problem of change forecasting as a binary segmentation problem with labels 
“change” and “no change”, whereas the forecasting range of the model is already implicitly defined 
by the selection of the training data (i.e., using a consistent forecasting range in the training sam-
ples). We use satellite data series as the primary input data source because they provide global, 
uniform coverage. 
We develop a 2-stage training strategy that is centered around the state-of-the-art segmentation 
network DeepLabv3+ (CHEN et al. 2018). The stages are as follows: 
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 Stage A: We train a Siamese change detection network on the task of change detection 
(See Fig. 1 for the task overview). 

 Stage B: We use the pretrained backbone of stage A, to build two variants of forecasting 
models. The first model variant deals with the task of change forecasting, the other with 
the task of time range forecasting task (see Fig. 1 for the task overview). 

 

Fig. 1:  Visual overview of tasks. The red crosses stress the unavailability of a variable in each 
task. 

2 Methodology 

2.1 Data 

To validate our method, we make use of the SpaceNet7 dataset. It is published by VAN ETTEN 2021 
and created for the building tracking competition featured at the NeurIPS 2020. The dataset con-
sists of 60 locations, each containing a series of 24 Planet Labs satellite image mosaics of 4×4 km 
at timestamps that are one month apart. The ground sampling distance of the images is 4 m, and 
the total covered area of this dataset is 960 km2. The dataset also contains a set of human-labeled 
building footprints, where each image of the time series is labeled individually. 
For this work, we derive a dataset that considers image pairs from the same locations but at differ-
ent time steps and calculate the changes in the corresponding building footprints. Note, that for 
simplicity reasons, we neglect the cases where buildings are removed. Using this method, we ob-
tain about 11,000 unique image pairs. If we divide them into training patches of 224×224 pixels, 
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we get 237,000 mutually exclusive pairs. However, for the task of change forecasting, one implic-
itly defines the forecasting range by the choice of the training sub-datasets with a consistent fore-
casting range. For example, when we want to forecast for the smallest possible range (i.e., one 
month), the subset of pairs that are one month apart contains 5,000 samples, whereas, with the 
largest forecasting range of 24 months, we can only obtain 200 samples. The dataset also exhibits 
a severe label imbalance. The average percentage of positive pixels in the whole dataset amounts 
to 0.3%, and only every seventh patch has more than 0.5% positive labels. 

2.2 Experimental Setup 

We allocate the locations in the dataset into a training set with 42 locations (70%), a validation set 
for parameter tuning with 6 locations (10%), and a test set to calculate the final metrics with 12 
locations (20%). As our evaluation metric, we use the optimal F1 score. The optimal F1 score has 
appealing theoretical properties, but it uses knowledge about the true labels to classify the predic-
tions. Therefore, we also implement our adaptive threshold by a moving average over the last 500 
optimal training thresholds. We found that the discrepancies between the optimal F1 score and the 
F1 score from our adaptive threshold are diminishingly small, such that we only report the optimal 
F1 score. 

2.3 General Idea 
The task of change forecasting is naturally ill-posed. One satellite image alone does not define for 
which future time range the binary classification of “change”/ “no change” should be predicted. It 
is therefore important that the model is trained on a subset of pairs with a fixed temporal difference, 
which implicitly defines the forecasting range. However, using these small subsets, one cannot 
exploit the full potential of the data. To still use all samples, we propose to first train the compo-
nents of the model to perform the change detection task, where the time range is explicitly defined 
by the two input images of each pair. We call this pretraining procedure stage A, whereas our main 
task of change forecasting is called stage B (Fig. 2). 

 

Fig. 2:  Modular model architectures and general workflow. 
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2.4 Stage A: Change Detection 
In stage A, we train a Siamese change detection network with the DeepLabv3+ backbone on the 
task of change detection using ordered pairs of satellite images. On the one hand, we can use all 
the available training pairs in this stage. On the other hand, this type of pretraining already allows 
the adaption to the satellite images domain, in contrast to the traditional pretraining that is usually 
performed on the ImageNet domain. We use the building footprints belonging to the first image 
as an additional feature and process it using a convolutional neural network. Please refer to Fig. 2 
for further detail about the architecture. As a loss function, we use the binary cross-entropy loss. 

2.5 Stage B: Forecasting 
We extract the components of the change detection model of stage A and use them as initializations 
for two versions of forecasting models:  

 The change forecasting model predicts a binary change label and is trained using the bi-
nary cross-entropy loss. We train one classifier for each of the sub-datasets with forecasting 
ranges {1,3,6,9,12,15,18,21,24}, which helps us better understand the strengths and weak-
nesses of our approach. 

 The time range forecasting model is set up in a multitasking learning approach, where 
the model needs to predict the time of the change on an ordinal scale (n time windows) and 
the binary change label. We fix the maximal range to 24 months, and in a first set up, we 
split it into two prediction windows – e-g, n=2, such that the two ordinal labels are defined 
as 1-12, and 13-24 months respectively. Furthermore, we also test a setup of three labels 
(n=3) where the labels are defined as 1-8, 9-16, and 17-24 months. The output dimension 
of the model is n+1, where the last output represents the “no change”-class. Finally, we 
train the model using a multi-class- and a binary cross-entropy loss for time range forecast-
ing and change forecasting, respectively. 

In both cases, we first freeze the backbone and footprint convolutions and train the remaining 
model for 5,000 batch iterations. We then reduce the learning rate by a factor of 10 and train the 
entire model. 

3 Results and Discussion 

3.1 Change Forecasting 
In the comparison of Fig. 3 (left), we notice a consistent improvement by using our pretraining 
strategy compared to using the traditional ImageNet-pretraining strategy. Most notably, the model 
experiences a much more significant absolute increase in performance of +8% F1 score for the 
forecasting range of 24 months. The baseline models are only trained on the sub-datasets that cor-
respond to their forecasting range, while our training strategy implicitly allows the models to ac-
cess the information contained in the whole dataset through the pretraining of stage A. Therefore, 
it makes sense that the performance gap gets more significant as the forecasting range progresses 
because that is also when the availability of change forecasting samples is scarce. 
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Furthermore, we provide the precision-recall curve in Fig. 3 (right) for the classifier that is assigned 
to the 24 months prediction range. It shows what tradeoffs may be considered when implementing 
a real-world system. 
Fig. 4 helps to get an understanding of which visual cues the model is using to make predictions. 
It is apparent that the models mainly go for construction sites and cluttered or empty spaces in the 
vicinity of already existing buildings. 

 

Fig. 3:  Left: Performance of our pretraining strategy compared to ImageNet. Each dot denotes 
a different model that is specialized in the corresponding time range; Right: The preci-
sion-recall curve of the model that predicts the 24 months window. The colors of the 
dots resemble the corresponding thresholds 

3.2 Time Range Forecasting 
The resulting confusion matrices and F1 scores for the time range forecasting tasks with two and 
three target labels are presented in Tab. 1 and  

Tab. 2, respectively. The results attest that all classifiers exhibit a noticeable signal on the diago-
nals of their confusion matrices. Our pretraining method outperforms the baseline method in terms 
of F1 score in both tasks, whereas the lead grows significantly for the three-label setting, which is 
the more challenging task. Moreover, we note that the class 9-16 months in the three-label setting 
creates the most considerable confusion. After all, it seems that the pretraining is effective enough 
to learn an operational classification. 

Tab. 1: Setup with two labels (1-12 months, and 13-24 months).  
The rows are the ground truth classes, while the columns are the predicted classes. 

 Our Pretraining (F1= 68.4%)  ImageNet Pretraining (F1= 67.6%) 
 (1-12)m (13-24)m  (1-12)m (13-24)m 

(1-12)m 44k 28k  39k 33k 
(12-24)m 19k 60k  14k 65k 
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Tab. 2: Setup with three labels (1-8 months, 9-16 months, and 17-24 months).  
The rows are the ground truth classes, while the columns are the predicted classes. 

 Our Pretraining (F1= 48.2%)  ImageNet Pretraining (F1= 42.2%) 
 (1-8)m (9-16)m (17-24)m  (1-8)m (9-16)m (17-24)m 

(1-8)m 25k 10k 18k  26k 16k 13k 
(9-16)m 4k 13k 22k  11k 9k 21k 
(17-24)m 2k 16k 32k  6k 16k 29k 

 

 

Fig. 4:  Visual samples of the 18 months change forecasting task. We overlay the predictions 
and ground truth labels with their corresponding input image for better interpretability. 

4 Conclusion and Outlook 

The main contribution of this work is a model to forecast where and when changes in building 
footprints will happen. In this niche, there seems to be a scarcity of research. Furthermore, we 
develop a 2-stage transfer learning procedure that is superior to the traditional applied ImageNet 
pretraining and validate it on the task of change forecasting and time range forecasting. In stage A 
of our methodology, we pretrain a Siamese DeepLabv3+ on the task of change detection. In stage 
B, we use the pretrained components to tackle the task of change forecasting and time range fore-
casting. In all tasks, our method performs consistently better than traditional pretraining on 
ImageNet. In particular, for change forecasting, the method proved to be the most efficient for the 
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longer forecasting ranges - i.e., for the 24-month range, it achieves an F1 score of 24%, while the 
baseline achieves only 16%. In the range forecasting task, we found the largest performance in-
creases for the more challenging case where three time ranges need to be predicted. 
We argue that the tasks at hand with these particular settings are very challenging. On the one 
hand, very few visual cues give away a potential future change in land use. On the other hand, 
building change detection and forecasting tasks inherently lead to a significant imbalance in the 
label distribution, as new buildings are built very slowly and infrequently. 
In our future work, we want to exploit the temporal dimension of the data more efficiently. We 
assume that time series analysis, such as convolutional recurrent neural networks (RNNs), can 
yield a model that recognizes spatial and temporal patterns indicating future changes. Moreover, 
the usage of higher resolution imagery would reveal more valuable cues to solve the task. 
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