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Early Detection of Bark Beetle Induced Forest Stress 
using Sentinel-2 Data 

LISA MANDL1,2 & STEFAN LANG2 

Abstract: Abiotic as well as biotic disturbances are central shapers of forest ecosystems. 
In contrast to sudden disturbance agents such as wind, avalanches and fire, bark beetle 
infestation is characterized by successive progression. When infestation is observable by 
the human eye, trees are already in the final stages of infestation - the so-called red- and 
grey-attack. In the relevant phase - the green-attack - biochemical and biophysical 
processes take place, which, however, are not or hardly visible. In this study, we applied 
a time series analysis based on semantically enriched Sentinel-2 data and spectral 
vegetation indices (SVI’s) to detect early traces of bark beetle infestation in the 
Berchtesgaden National Park. Results show that the best separability of healthy and early-
infested pixels is in the vegetation red-edge and SWIR parts of the electromagnetic 
spectrum. Regarding the indices, water stress-related ones have proven to be most 
sensitive. This method detects initial bark beetle infestation up to three weeks before 
sightings in the field. From a site-specific perspective, bark beetle areas are reflected with 
an accuracy of 76% compared to reference data. 

1 Introduction 

Whilst access to environmental data grew rapidly in the last decade, constant monitoring for a 
full understanding of forest disturbance mechanisms is still a big challenge. The launch of the 
Sentinel-2 satellites within the European Copernicus programme has made a major contribution 
to the monitoring of ecological and forestry issues and marked a paradigm shift in Earth 
observation (EO) monitoring capabilities (FER et al. 2021). The ultimate goal of space assets 
such as EO is to convert these “big Earth data” to valuable information in order to contribute 
to the understanding of - inter alia - natural processes (SUDMANNS et al. 2020). When it comes 
to the monitoring of early stress factors for vegetation, the temporal availability of satellite data 
is of particular importance. In this study, we developed a method to detect early infestation 
stages of the European Spruce Bark Beetle (Ips typographus L.) using semantically enriched 
Sentinel-2 time series and spectral vegetation indices (SVI’s). Bark beetle infestation impacts 
forest ecosystem dynamics and consequently affect ecosystem services. Although insect 
disturbances lead to disrupted structures and alter the composition of the ecosystem, they also 
foster diversity on the landscape and thus contribute to a various number of ecosystem services 
(THOM & SEIDL 2016). Regardless whether considering such disturbances an opportunity or a 
risk, installing a monitoring system is key to gain knowledge about the ecological processes or 
to limit the ecological damage caused by bark beetle infestations. Both scenarios depend on 
the management strategy of the respective site, which can be either more conservation or usage-
oriented. The present study was conducted in the Berchtesgaden National Park (southern 
Germany), as a highly protected area. The major challenge in detecting infested trees timely is 
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the fact that they appear physiologically green and do not show symptoms clearly observable 
by the human eye (ABDULLAH et al. 2019a). Nevertheless, biochemical changes during the 
initial phase of bark beetle infestation become visible due to the interaction between 
electromagnetic (EM) radiation of the sun and the leaves of the trees. Thus, certain portions in 
the EM spectrum can be used as stress indicators (HENDRY et al. 1987).  

2 Material and Methods 

2.1 Data 
Input satellite data are Copernicus Sentinel-2 level 2A and level 3 data. We used best-available 
pixel composites between March and October only where illumination conditions for mono-
temporal imagery were unfavourable. The 13 channels of Sentinel-2 are optimized for land 
surface observations and the high resolution of up to 10 m and the swath width of 290 km are 
ideal for detecting changes in vegetation. The revisiting time of these satellites is about five 
days (ESA 2017). In total, ten Sentinel-2 scenes from March to October 2020 were used (for 
concrete dates of data acquisition, Fig. 3). When atmospheric conditions permitted, two images 
per month were acquired. As reference data, we used aerial imagery from the management 
zone with a spatial resolution of 0.2 m from 2020. Grey-attack stages were derived by a 
supervised machine learning approach using a Random Forest ensemble model in R’s machine 
learning package SuperML. The resulting dataset – the grey-attack detection – shows the state 
at the end of 2020. This means that sometime between April and August, the early stage of 
bark beetle infestation must occur on these plots, as this is the period when climatically optimal 
conditions for an outbreak are prevalent. Exactly this knowledge is essential if certain 
indicators are to be derived later. The plots classified as grey-attack are referred to as "test 
plots" from here on. Besides that, ground truth data was included. Search teams walk the same 
spots in the management zone every four weeks and enter bark beetle detections into this app. 
Field workers identify early-infested trees by opposite slope observation, paying particular 
attention to minimal changes in the colour of the spruce trees. Once such a tree is identified, an 
in-situ sighting is carried out, looking for possible dry dust and holes in the bark. These are 
ground-based signs of early infestation. Once early-infested plots are recorded with the app, 
data can be exported as a table and visualized in a GIS. Here, we used this information to assess 
the temporal accuracy of the developed method.  

2.2  Software 
The indices-based computations and the feature engineering were both conducted using the 
statistical software R (version 3.6.2) and the packages sen2r and SuperML, which provides a 
fit to Python’s “scikit learn” package (R CORE TEAM 2021; RANGHETTI et al. 2020). Besides 
that, we applied a knowledge-based approach using the software SIAM™. This software – as 
opposed to the indices – considers the entire feature space of an image and divides it into so-
called spectral-based semi-concepts (pre-classes). SIAM™ (release 88v7) stands for Satellite 
Image Automatic Mapper and executes a preliminary, spectral rule-based classification, which 
is a discrete finite set of mutually exclusive and totally exhaustive spectral-based semi-concepts 
also referred to as spectral categories. It considers the bands Blue, Green, Red, NIR, SWIR-1 
and SWIR-2. The benefit of SIAM™ for the purpose of this study is the capability to categorize 
satellite data into 96 spectral-based semi-concepts (BARALDI 2011). In this way, even minor 
changes in the "greenness" of vegetation can be detected and computed together with the 
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changes in biophysical properties, represented by indices. These semi-concepts convert the 
continuous sub-symbolic variable “reflectance” into a given set of discrete categorical 
variables, whereas this process has to be reversible (BARALDI & BOSCHETTI 2012). However, 
these classes do not claim absolute uniqueness; several semantic categories may be valid 
options derived from one and the same pixel colour, like water or shadow.  

 

Fig. 1:  Spectral-based semi concepts of the SIAM output (most important ones for this study 
in the red box), source: BARALDI et al. (2006) 

As input, SIAM™ expects at least top-of-atmosphere (ToA) corrected data, meaning satellite 
data that is radiometrically calibrated into ToA (BARALDI 2011). For Sentinel-2 Level 2A data 
exhibiting bottom-of-atmosphere (BoA, also referred to as “SURF”) correction, this 
requirement is given. In order to execute the SIAM™ software, Sentinel-2 Level 2A data were 
pre-processed including spatial resampling, image stacking and conversion to 8-bit ENVI 
format, the creation of an artificial thermal band as well as a noData mask. Finally, a SIAM 
batch file was created to calculate the spectral categories of the input data in batch mode.  

2.3 Study Design 
The core of this knowledge-based approach is a feature space partitioning, temporal response 
patterns and SVI’s in combination with semantically enriched Sentinel-2 data (SIAM spectral 
categories). As a-priori knowledge is needed for first parametrization, the analyses were 
performed retrospectively for the year 2020. Grey attack test plots show where at the end of 
2020 trees are attacked by bark beetles but there is no information available when infestation 
took place. Nevertheless, the grey-attack dataset is essential for further analysis. The two main 
processes during initial bark beetle infestation – subtle changes in the green tone of spruces 
and changes in the biochemical properties of trees – are represented by changes in the SIAM 
spectral categories and changes in pre-selected SVI’s respectively. Both changes were solely 
observed within the grey-attack test plots because there is assured knowledge, that these areas 
must be attacked within the course of the year (Fig. 2). Within the test plots, inter-annual 
trajectories of pixels were observed. Besides the SIAM-based change detection, we developed 
a comprehensive set of six SVI’s by applying a Principal Component Analysis (PCA) on 23 
potentially suitable water stress and chlorophyll-related indices found in a literature research. 
Selected SVI’s are shown in Fig. 5. As opposed to other methods, we defined index-specific 
thresholds based on statistical measurements. For this, we started three model runs using a set 
of descriptive statistics (min, max, quartiles and IQR) as potential thresholds. For each model 
run, the SVI change detection output was reclassified according to the thresholds. We found 
the minimum value serves best as lower threshold, while the 3rd quartile led to the best results 
for the upper threshold. The two basic assumptions are that (1) changes occuring in the SIAM 
spectral categories indicate bark beetle infestation at an early stage. This means that SIAM 
change detection values act as predictors and all changes in SIAM spectral categories within 

"High" leaf area index (LAI) vegetation types (LAI values decreasing left to right)
"Medium" LAI vegetation types (LAI values decreasing left to right)
Other types of vegetation (e.g., vegetation in shadow, dark vegetation, wetland) 
Bare soil or built-up
Deep water, shallow water, turbid water or shadow
Thick cloud and thin cloud over vegetation, or water, or bare soil
Thick smoke plume and thin smoke plume over vegetation, or water, or bare soil
Snow and shadow snow
Shadow
Flame
Unknowns
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the test plots are considered as potentially early infestation pixels. (2) the interplay with SVI’s 
concretise these first hints from the SIAM change detection by determining whether changes 
occur due to bark beetle infestation or due to other factors such as phenology, poor illumination, 
pixel shift or non-stationary surface type properties. In order to address only the host trees of 
bark beetles, the norway spruce tree (picea abies) is masked out by grouping SIAM spectral 
categories. This compensates for a missing data set for tree identification at the species level. 
At the end, conditional statements classify a raster cell as early-infested, applying following 
decision rule: 

 
Early infested =  
 

 
Fig. 2:  Panel 1: SIAM-based analysis; a) Test plots within change detection is carried out, 

b) SIAM change detection, here for two time stamps, c) coniferous mask d) 
reclassified SIAM predictor values within test plot (black outline). Panel 2: Indices-
based analysis: Change detection of chlorophyll-related indices (greenish) and water 
stress-related indices (blueish), based on which the thresholds are derived. Panel 3: 
Location of the study site and final infestation map, here for the entire year 

All cells classified as early-infested are double-checked in order to minimize the potential error 
that may result from pixel shift or adverse illumination conditions. Then, in the second 
iteration, it is not only checked for which cells conditional statements are true, but also whether 
a particular cell has been classified as early-infested in the previous time step. If this hold true, 
the cell is considered infested; otherwise, it is reset to healthy. Finally, the impact of the six 
selected SVI’s was analysed by computing feature importance based on random forest (RF). 

b) 

d) 
a) 

threshold definition 
via statistics 

change 
detection 

 

1 2 

c) 

3 

1, if SIAM predictor || SIAM coniferous || index A || index B || 
index C || … = 1, 0 otherwise 
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3  Results  

3.1 Spectral separability and temporal variation of canopy reflectance under 
bark beetle infestation 

In total, 350 randomly selected pixels for each of the classes healthy, early-infested and grey-
attack were included into the analysis; their spectral reflectance (median) was plotted together 
with the error bands. 

 

Fig. 3:  Spectral behaviour of green-attack-, grey-attack and healthy pixels in the 
electromagnetic spectrum 

Fig. 3 shows that healthy pixels differ significantly from grey-attack pixels in terms of their 
spectral behaviour. Especially in the red-edge bands and in the NIR and SWIR part of the EM 
spectrum (bands 5 to 12) the differences are clearly visible. The signal is much weaker in the 
VIS range. When comparing healthy pixels with the pixels classified as early-infested, there 
are significantly smaller differences, both in the VIS as well as in the red-edge, NIR and SWIR 
range. The greatest distinguishability between the two stages is seen at band 8 and 8A, where 
early-infested pixels have lower reflectance values and at bands 11 and 12, i.e. in the NIR-1, 
NIR-2 and SWIR range, where reflectance is higher compared to healthy pixels. By analysing 
single time stamps, inter-annual differences can be observed. Particularly big differences of 
reflectance per time stamp emerge for bands 8, 8A, 11 and 12 (Fig. 4).  
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Fig. 4:  Reflectance for healthy and early-infested pixels per band and time step. There is 
stronger scatter for healthy pixels, whereas the signal appears clearer for early-
infested pixels 

In these wavelength ranges, the reflectance for pixels classified as early-infested differs 
significantly from the class healthy as also shown by a t-test (see Tab. 1). 

Tab. 1: Significance levels for the bands 8 (NIR-1), 8A (NIR-2), 11 (SWIR-1) and 12 (SWIR-2).  
p-values are computed by applying a student-t-test 

Date p-value B8 p-value B8A p-value B11 p-value B12 
2020-05-08 0.211 0.102 < 0.001 < 0.001 
2020-05-18 0.101 0.034 < 0.001 0.002 
2020-06-12 0.020 0.026 0.013 0.004 
2020-06-27 < 0.001 0.003 0.065 0.002 
2020-07-27 0.005 0.001 0.205 0.004 
2020-08-21 0.195 0.020 < 0.001 < 0.001 
2020-09-15 0.306 0.172 < 0.001 < 0.001 
2020-10 0.003 0.004 0.667 0.938 

* in bold values with p < 0.05 
 
Tab. 1 shows significance levels for bands 8, 8A, 11 and 12. Especially for bands 8A, 11 and 
12 – NIR-2, SWIR 1 and SWIR 2 – the p-value mostly is below the significance threshold of 
0.05. That means the null hypothesis – there are no significant differences between healthy and 
early-infested pixels – should be rejected. For NIR-1 (band 8), differences seem to be less clear 
as it is the case for the NIR-2 and SWIR region. Only four time steps fall below the significance 
threshold of 0.05 and can be considered significantly different. The remaining p-values > 0.05 
give evidence that differences between healthy and early-infested pixels are not significant. 
This is particularly true for band 8 and reflects the findings in ADAMCZYK AND OSBERGER 
(2015) who claim that the NIR range is particularly useful for detecting advanced stages of 
bark beetle infestation but not that much for early stage detection. 
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3.2 Impact of indices on classification result based on impurity-based feature 
importance 

The results of the impurity-based feature importance (Gini-importance) for the whole year 
shows that DSWI is the most relevant index for the model output. It is followed by NDI45 and 
NDWI. The impact of TCW and especially NDRE3 and NGRDI is relatively low (Fig. 5a).  

 

Fig. 5:  a) Feature importance computed for the whole year. b) Relationship between the 
single time steps satellite data was acquired (top), the according indices (bottom) 
and the feature ranking (indicated by the thickness of the connecting lines) 

When comparing predictor importance for the single time steps (Fig. 5b and 6), it can be 
observed that the order of indices is swapping. The chord chart (Fig. 5b) shows the interrelation 
between the time stamps of the satellite data, the SVI’s and feature importance of SVI’s. 
Thicker lines indicate a higher ranking of the corresponding index depending on the date. It is 
striking that for the months April to May the pigment- and chlorophyll-related indices (in 
green) dominate the top ranking positions, while from June onwards the water stress-related 
indices (in blue) get more important. This is also shown in Fig. 6.  

 

Fig. 6:  Feature importance computed for single time steps. Inter-annual differences in the 
feature ranking is observable 

a) b) 
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Tab. 2: Accuracy of the RF model for determining feature importance 

 

 

 

 

 

 

 

The seasonal dependence of SVI's on predictor importance is a key finding and should be 
considered in follow-up studies. The predictive performance of the RF feature importance 
model for the whole year is 61.8%. This value seems to be relatively low, but can be explained 
when evaluating feature importance and accuracy for each single time stamp, which is just like 
out-of-bag (OOB) error, quite variable as shown in Tab. 2. In summary, intra-annual 
differences in predictor importance and accuracy as well as out-of-bag (OOB) error are 
noticeable. The rather low accuracy of the model for April and October can be attributed to the 
poorer illumination conditions of the satellite data in these months. 

3.3 Validation 
Both spatial and temporal dimensions were considered in the validation process using the grey-
attack dataset and ground truth data as reference data (cf. chapter 2.1). Notably, the data 
situation is not good enough for an all-encompassing and fully representative accuracy 
assessment. Reference data is only available for the so-called management zone of the 
Berchtesgaden National Park, which accounts for less than one third of the entire area (~ 6,300 
ha). Nevertheless, based on available data, we will evaluate the spatial and temporal 
performance of the method. 
From a spatial perspective, the method we developed in this study detects early bark beetle 
patches with an accuracy of 76% compared to the grey-attack reference dataset. For better 
comparability, we rasterized the polygons of the grey-attack dataset and assessed for both, on 
pixel and on plot level, where plots refer to a group of more than four individual trees. That 
means that all single trees classified as early-infested were excluded for plot level accuracy 
assessment. We found out two main error sources: (1) the method generally includes too many 
pixels that should not be considered early-infested according to the reference data (error of 
commission); (2) single infested trees cannot be detected but only patches – meaning an 
accumulation of trees. Reasons leading to these sources of error are discussed in the following 
chapter. 
From a temporal perspective, earlier respectively later detection scatters from three weeks 
earlier until three weeks later as compared to ground truth data. The results of the temporal 
accuracy assessment show that there are no trends in temporal accuracy between months. Thus, 
bark beetle infestation is not recorded particularly early or late in any of the time steps. 
Accordingly, the temporal differences are most likely due to data availability, but not due to 
data quality. Overall, the temporal agreement between the reference data and the modelled 
results is good. A high proportion of the predicted values indicate bark beetle infestations prior 
to the findings in the field. The maximum deviation in negative direction, i.e. temporally after 
the detection in the field, is three weeks. Undoubtedly, there is a high dependency between 

Time step Accuracy OOB error 
April 23rd  36.22% 0.673 
May 8th 54.667% 0.231 
May 18th  72.00% 0.158 
June 12th 62.50% 0.273 
June 27th 81.667 0.108 
July 27th 66.667% 0.237 
August 21st 70.588% 0.143 
September 15th  78.286% 0.114 
October 37.99% 0.683 
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accuracy and data availability such that the timing of data acquisition is a major driver when it 
comes to an early detection. 

 

Fig. 7:  Graphical representation of the temporal accuracy. The dashed line indicates the date 
of ground truth recording. All entries left from ‘0’ mean earlier detection compared 
to ground truth data, all entries right mean later detection 

4 Discussion 

4.1 Methodological perspective 
The method presented in this study is able to detect early stages of bark beetle infestation with 
the help of the lightweight software SIAM™ and the use of spectral vegetation indices. Both 
calculations can be realised within a very short timeframe, as an important feature when it 
comes to the operational use of this approach. Compared to field sights, the presented method 
detects bark beetle attacks up to three weeks earlier or later than the field workers do. The fairly 
wide range may be attributed to data availability. It is challenging to determine whether the 
method is really capable to detect green-attack stages. The whole workflow is based on 
alterations in SIAM spectral categories. Undoubtedly, the software can only indicate changes 
when changes already occur in the spectral range. Therefore, the term green-attack may be 
misleading here, which is why we use the term early detection in this study. On the other hand, 
the field sightings are also based on minimal spectral changes, which is why green-attack is 
not quite correct there either, but commonly used in fact. In summary, the term green-attack is 
a matter of definition and even in literature not always consistent. Moreover, bark beetle attacks 
are a continuous process, meaning that various environmental factors drive this particular forest 
ecosystem dynamic in time and space (BÁRTA et al. 2021). Furthermore, indices used as 
proxies, always need to be viewed critically, regardless of whether they are multi-dimensional 
indices such as the Tasseled Cap Components or unidimensional indices. This “lack of 
confidence” is attributable to the difficult understanding and interpretation of them. Of course, 
they give hints to facts like a decrease in the water availability. However, they also reflect 
atmospheric and landscape variations that are extremely difficult to impossible to filter out or 
to map them to fixed points on the index scale (MOFFIET et al. 2006). The information content 
of spectral vegetation indices is therefore limited. On the other hand, the use of indices has 
already proven its great potential in a variety of applications. Thus, they definitely have their 
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right to exist in remote sensing, but at the same time, their limitations must be known and taken 
into account.  

4.2 Resolution, data quality and data availability 
Concerning the effect of data resolution, there will always be mixed pixels at a spatial 
resolution of 10 m. Detection methods – no matter if early detection or grey-attack detection 
may come to its limit when there are pixels that do not purely represent spruce stands 
(MEDDENS et al. 2013). An evaluation of spectral mixture effects would require very high 
resolution (VHR) data, i.e. UAV data or the application of a radiative transfer model like the 
DART model, which can be used for sensitivity analysis of forest reflectance (BÁRTA et al. 
2021). Generally speaking, high spatial resolution is necessary when bark beetle infestations 
occur at endemic levels, as the infested areas are usually isolated patches. In contrast, the 
relevance of spatial resolution decreases when the infestation is epidemic, since the infested 
areas are then mostly large, contiguous patches (FERNANDEZ-CARRILLO et al. 2020; KAUTZ et 
al. 2011). In addition, radiometric resolution is a potential source of error, as it affects the actual 
information content, and the ability to differentiate between slight differences in EM 
reflectance. This is especially important for this application purpose. It could be argued in this 
context that a better result could have been achieved if the input for SIAM™ did not have to 
be scaled down to 8 bit. However, since 8-bit data is a practical constraint for using SIAM™, 
such an assumption cannot be verified. Finally, it must also be remembered that high 
radiometric resolution alone is not sufficient to detect early-infested bark beetle trees. 
ABDULLAH et al. (2019b) proved that in a comparison of Sentinel-2 and Landsat data. 

4.3 Accuracy 
The high error of commission (39%) in the spatial accuracy assessment can primarily explained 
by the relatively early image flight campaign (early September), to which the grey-attack 
machine learning approach is applied and from which the grey-attack reference dataset results. 
Especially from July onwards, the accuracy assessment is subject to uncertainties, as it is highly 
likely that trees will not have discoloured when reference data was acquired and thus will not 
be detected by the grey-attack algorithm, even if these trees are infested. All pixels classified 
as early-infested from July and later, but not appearing in the grey-attack dataset, would thus 
require re-analysis with data from subsequent years. When evaluating the temporal accuracy, 
it should be mentioned that field recording of early infestation is not “obvious”, meaning that 
even in the field the error is relatively high. Thus, the absence of reference data on a spot 
classified as early-infested does not necessarily indicate an error of omission, but may equally 
be due to difficulty in locating infested spruce trees, especially in a challenging terrain such as 
in the Berchtesgaden National Park. Finally, accuracy may be improved by the availability of 
data that classifies forest stands at the species level. At the moment, our approach is applied to 
all coniferous stands, no matter if there is Norway spruce or any other coniferous tree present.  

5 Conclusion and Outlook 

Our proposed method provides a novel prototypical tool to detect forest stress from bark beetles 
by considering space, time and spectral characteristics of remotely sensed data. The method 
can be considered a form of “hybrid AI”, i.e. combining a deductive, learning-from-rules 
approach with an inductive, learning-from-samples method. The distinctive feature of the 
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method is the use of semantically enriched Sentinel-2 data via the highly advanced, knowledge-
based software SIAM™ and the derivation of predictor values, which contributed significantly 
to the success of this study. Unlike the use of SVI's alone, spectral categories of SIAM™ 
include the complete feature space, so that no – possibly relevant – information is lost. This 
unique research design outperforms conventional methods of early bark beetle detection, both 
in terms of the time aspect of fieldwork and the accuracy of other remote sensing approaches. 
Further advantages of using SIAM™ is the complete automation of the software, which does 
not require any parameters from users or samples. The high level of automation also contributes 
to the robustness to changes in input data. In addition to Sentinel-2 data, all other at least top-
of-atmosphere corrected optical satellite can be used as input, including VHR data exhibiting 
infrared bands. Thus, the workflow can also be adapted for other scale levels. A shortcoming 
of this method is that single trees cannot be detected due to the resolution of Sentinel-2 data. 
In addition, at least two satellite scenes per month are required to monitor the early stages of 
bark beetle infestation reliably. Otherwise, temporal accuracy decreases significantly. Results 
from this approach proved that especially water-stress related indices as well as the vegetation 
red-edge and the SWIR ranges of the EM spectrum show high sensitivity for early bark beetle 
detection. Future development shall focus on building up a samples database in order to apply 
more sophisticated and self-adaptive deep learning algorithms, which are currently state-of-
the-art in recognition performance. This allows also to run the tool in real-time, i.e. without a-
priori data (here the grey-attack dataset). Alternatively, this approach can be repeated for 
several years to derive more robust index-specific thresholds, thus staying with a purely index-
based method. Regardless of the choice of the methodology, a monitoring system that detects 
bark beetle infestations at an early stage makes an important contribution both to the prevention 
of large-scale tree mortality and to ecological research. The interaction of modern, satellite-
based technologies and the on-site knowledge of forest experts proves to be very beneficial and 
shows that ecological field research and remote sensing-based monitoring complement each 
other very well and profitably.  
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