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Multi-Target Multi-Camera Drone Tracking 

YUCHANG JIANG1 

Abstract: The use of drones has increased dramatically in recent years. To monitor different 
use cases of drones, a visual tracking system for multi-target multi-camera (MTMC) drone 
tracking tasks is required. Yet intensive studies have been conducted in the field of MTMC, 
most of them focus on pedestrian tracking or vehicle tracking, leaving drone tracking 
underexplored. To tackle this problem, we have proposed an approach to track multiple 
drones in a roughly synchronized static camera network with unknown camera poses. This 
setting simulates practical applications, such as monitoring drones in a public webcam 
network. First, the existing method developed for pedestrian tracking is evaluated on our 
drone data to generate single-camera tracking results. Then cross-camera matching is 
formulated as an optimization problem with the single-camera tracking result as input. The 
results of single-camera tracking show that we can apply methods developed for pedestrian 
tracking to drone tracking. Besides, the experiments of cross-camera association demonstrate 
the limits of visual features in the drone tracking scenario and prove the utility of geometry 
features extracted from drone trajectories.  

1 Introduction 

Due to the increasing popularity of drones in recent years, drone monitoring is eagerly in demand. 
UAV-related accidents have been reported more often recently because it is hard to observe a small 
drone and a missing alarm can lead to catastrophic results. Therefore, it is an essential and urgent 
task to develop a reliable drone tracking system. Furthermore, thanks to the widely-installed public 
camera networks, achieving drone surveillance with a multi-camera network is cost-effective, 
scalable, precise, and desired in real applications or commercial projects.  
To perform drone surveillance in practical applications (e.g. drone monitoring in the airport), a 
high-level task, multi-drone multi-camera tracking (MDMCT), is required but needs further 
investigation. The common application domain of multi-target multi-camera tracking is pedestrian 
tracking. Its classic solution is a two-step approach: firstly tracking objects in each camera view 
independently and then associating objects across cameras to find their global identities. For the 
first step, we can reuse the single-camera tracker designed for pedestrian tracking in our drone 
tracking task. However, it is hard to directly utilize the commonly used features like appearance 
and geometry in the multi-camera association step in our drone tracking task. The primary 
challenges come from the small, fast-moving drones and the public camera network with unknown 
camera poses. The target objects, drones, are usually blurry and small in camera views, creating 
obstacle to gain enough information from appearance. Therefore, appearance features are of 
limited usefulness for drones. The second challenge is caused by unknown camera poses in camera 
networks. Although it is common to leverage geometric relationships to associate tracks across 
camera views, the use of geometric features requires camera poses, which are unknown in most 
practical cases (e.g. outdoor webcam data).  
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This presented work focuses on building a tracking system for multiple drones in a camera network 
with overlapping views. To simulate real applications like drone surveillance in an airport, we 
consider the camera network consists of synchronized stationary cameras without spatial 
calibration. This work builds a two-step approach to track multiple drones in a synchronized 
camera network without knowing camera poses. As shown in Fig. 1, single-camera tracking (SCT) 
is performed independently on each camera view and then in the multi-camera tracking (MCT) 
stage, resulted single-camera tracks are fed into multi-camera matchers to figure out their global 
identities. In the single-camera stage, an established multi-object tracking (MOT) method from 
pedestrian tracking is applied to generate tracking results and a post-processing procedure is 
utilized to produce more robust long tracks. Then, both geometric and visual features are employed 
to match tracks across camera views in the multi-camera stage. In the end, this work generates 
tracking results for drones in a synchronized camera network.  

 

 

Fig. 1: Pipeline of the proposed method 

2 Methodology 

2.1 Data 
Our dataset consists of video sequences from four synchronized static cameras. The four cameras 
are Sony a5100, Sony G, Samsung S10, and Sony nex5n. This challenging dataset contains three 
drones in a snow-covered background. Three drones are Pixhawk drone, DJI Phantom, and DJI 
Mavic. Annotations (ground truth tracks of drones) of acquired video sequences are labelled by 
human operators. For each camera, the whole video sequence is around 10 minutes. After 
synchronization, 16414 image frames for each camera are split into 1642 train images and 14772 
test images. To observe different cases such as single-drone cases and multi-drone cases efficiently, 
the test set is further divided into six subsets and each subset has around 2461 frames. All train 
images are used to train the deep learning-based single-camera tracker, while all test images are 
utilized for evaluation. Several examples images are presented in Fig. 2 and Fig. 3, which shows 
the main difficulties of this dataset: homogeneous snow-covered background and small fast-
moving objects. The homogeneous background adds the difficulty to extract distinct keypoints for 
camera calibration while small fast-moving objects complicates object detection and tracking.  
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Fig. 2: Examples of images containing large objects from four cameras 

 

Fig. 3: Examples of images containing small objects from four cameras (different colors stand for 
different drones) 

2.2 Generating Multi-Object Single-Camera Drone Tracks  
The established tracker, Chained tracker (CTracker) (PENG et al. 2020) is utilized to track drones 
in each camera view. Since it raises the concept of node chaining to leverage temporal information 
of tracks, it is suitable to track fast-moving objects, drones. As indicated in Fig. 4, node chaining 
means treating a pair of consecutive frames as a node and defining a pair of successive nodes as a 
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node chaining. If the objects detected in the common frame (𝐹௧) are highly overlapped based on 
Intersection-over-Union(IoU) score, the related detection in this node chaining (𝐹௧ିଵ, 𝐹௧, 𝐹௧ାଵ) 
should belong to the same track.  

 

Fig. 4: Concept of node chaining (PENG et al. 2020) 

 

Fig. 5: Network architecture of CTracker (PENG et al. 2020) 

More specifically, the detailed structure of CTracker is sketched in Fig. 5. It takes a pair of 
consecutive image frames as input and uses a pretrained neural network to extract features for each 
image. Then features from both images are concatenated and fed into two sub-models: a 
classification model to classify whether the detection contains the foreground and a re-
identification (ReID) model to check if the detection from two frames belongs to the same object. 
After that, a joint attention mechanism is designed to extract useful information from two sub-
models. Then a regression layer is employed to output a pair of bounding boxes (position of a 
bounding box in 𝐹௧ିଵ and its corresponding position in 𝐹௧). During inference, the paired bounding 
boxes from a node chaining are used to compute the IoU score and decide whether they should be 
connected. The structure of CTracker and the concept of node chaining seem applicable to drone 
tracking tasks because the temporal information between consecutive frames is considered, which 
handles the fast movements of drones.  
After applying the single-camera trackers, tracking results for each camera are obtained. However, 
these tracking results are usually a large number of short tracks, which will increase the 
computational burden for camera association in the MCT stage. Since connecting short tracks into 
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long trajectories before cross-camera association helps to reduce the computational burden, post-
processing is performed to connect short tracks and remove noisy detection.  

2.3 Generating Multi-Object Multi-Camera Drone Tracks  
With single-camera tracking results, the multi-camera association aims to assign global identities 
to tracks. The MCT stage has two main components: a pairwise camera association method and a 
post-processing method. The pairwise camera association extracts features from a pair of cameras 
to match tracks from these two cameras. Then post-processing method is performed to merge 
pairwise matching results and resolve conflict to assign global identities to all tracks. Here we 
adopt a centralized way in the multi-camera tracking: one camera is defined as the reference 
camera and then the pairwise association is performed between the reference camera and each of 
the remaining cameras. Based on the matching results, global identities are assigned.  
In the single-camera multi-object problem, optimization methods like Hungarian algorithm (KUHN 

1955) are usually chosen to find the one object-to-one object (1V1) assignment and match objects 
in consecutive frames. As one object from the previous frame can match to at most one object in 
the current frame, this is a standard assignment problem. However, in the multi-camera scenario, 
associating tracks from two cameras is more complicated since a long track in camera A can be 
matched to multiple short tracks in camera B, making pairwise camera association an NP-hard 
problem. To fulfil this multiple track-to-multiple tracks (NVN) requirements approximately and 
simplify the optimization problem, we split the whole time domain (e.g. 2000 frames) into equal-
sized sliding windows (e.g. 300 frames) and then solve the 1V1 assignment problem for each 
sliding window independently. The assumption is that the 1V1 relationship is approximately 
preserved in a short sliding window. With this assumption, we can extract features to compute the 
cost or affinity between tracks and then perform the classic Hungarian algorithm to solve the 
assignment problem in each sliding window. The pseudo-code of this algorithm is listed in Alg. 1. 
This algorithm takes two sets of tracks from two cameras as input and outputs the matches of 
tracks. 

 

Alg. 1: Algorithm of pairwise camera association 

In each sliding window, the track-to-track cost matrix 𝐶 ∈ ℝ௡ൈ௡ is formed (𝑛 is the total number 
of tracks in this sliding window) and each element 𝑐௜,௝ contains the distance or affinity measure of 

two tracks, 𝑖 and 𝑗. During the computation of the cost matrix, dustbin nodes are concatenated to 
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deal with objects that only appear in one camera view, motivated by the dustbin concept in (SARLIN 

et al. 2020). Then Hungarian algorithm is applied to the cost matrix to find tracks belonging to the 
same object. 
To measure track affinity (Ψ௔௙௙௜௡௜௧௬), two types of features, appearance (Ψ௔௣௣) and geometry 

(Ψ௚௘௢ ), are considered. The pretrained ReID component from CTacker extracts appearance 
features of detections in each track. The average appearance feature of each track is defined as the 
representative feature and the Euclidean distance between any two tracks are computed as 
appearance cost. Compared to visual features, geometric features are more complicated. To 
leverage geometric relationships, camera poses are usually required, which is unknown in our case. 
A natural solution is to extract keypoints and then compute fundamental matrix to obtain geometric 
relationships. However, in the practical scenario of drone tracking, the outdoor background of 
video sequences is usually sky or ground. Hence, it is hard to find robust and distinctive keypoints 
from the static background. Inspired by the previous work (LI et al. 2020),  we consider the 
dynamic part, the detected drones, as keypoints. For a pair of tracks, center points of detection 
from temporal-overlapping frames are treated as corresponding points. Geometric relationships 
such as fundamental matrix and homography are obtained from these detections. There are two 
affinity measurements for geometric features: homography error (H) and epipolar line error (F). 
Homography of two tracks can be computed with the RANSAC method (FISCHLER & BOLLES 

1981). Then points in image 2 can be transformed to image 1 to calculate Euclidean distance as 
affinity score. Similarly, the fundamental matrix of two tracks can be computed and then the 
epipolar line error can reflect the affinity between two tracks. To combine both features, the 
affinity score is defined as Eq. 1, which means the affinity score prefers appearance feature more 
if the object's bounding box is close to the defined size of 'large' drones, 𝜆௕௢௫. This equation is 
based on the assumption that larger objects usually provide richer visual features while small 
objects can be considered as points to utilize geometry features. 

Ψ௔௙௙௜௡௜௧௬ ൌ 𝑤௔௣௣Ψ௔௣௣ ൅ ሺ1 െ𝑤௔௣௣ሻΨ௚௘௢ 

𝑤௔௣௣ ൌ 𝑚𝑖𝑛ሺ
𝑏𝑜𝑥 𝑠𝑖𝑧𝑒
𝜆௕௢௫

, 1ሻ 

(1) 
After accomplishing pairwise camera association, a post-processing procedure is designed to 
combine these matching results across all cameras and resolve possible conflicts to build 
trajectories with global identities. In the end, each track is assigned with a new global identity and 
across-camera tracking is achieved.  

3 Results and Discussion 

For evaluation, IDF1 (identity F1 score) is adopted as the primary metric. It penalizes false 
negative and false positive predictions based on a bijective mapping between trajectories and 
ground truth tracks. In experiments, all test sets are evaluated and their average IDF1 values are 
summarized for both single-camera tracking and multi-camera tracking stage. 
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Fig. 6: Visual results of single-camera tracking (left: before post-processing, right: after post-
processing) 

In the single-camera tracking stage, it is noticed that CTracker tends to produce short tracks but 
these tracks can be connected into longer ones with a post-processing method. For example, from 
Fig. 6, several short tracks in the left image (before post-processing) are combined into a longer 
one in the right image (after post-processing), which shows the effect of post-processing and the 
result single-camera tracking. At the end of single-camera tracking, the IDF1 can achieve 65.27%. 

With single-camera tracking results, different features are adopted to realize multi-camera 
association. In Tab. 1, results of using appearance feature only, geometry feature only, and the 
combination of both features are summarized. It proves the effectiveness of geometry features in 
the drone tracking application.  

Tab. 1: Result of multi-camera trackers with different affinity measures 

 Appearance Geometry 
(H) 

Geometry 
(F) 

App + Geo 
(H)  

App + Geo 
(F)  

 
IDF1 40.55 % 43.29 % 43.50 % 50.04 % 43.45 % 

4 Conclusion 

The proposed pipeline can partially solve the multi-drone multi-camera tracking problem. It can 
generate single-camera tracks with the existing algorithm and then associate tracks with 
appearance and geometric features. The contributions of this work include: evaluate the state-of-
the-art tracker on a drone dataset, explore possible features in multi-camera drone tracking 
scenarios, and leverage geometric features in a camera network without camera calibration. 
However, the proposed solution in the multi-camera association step approximates the 1-to-N 
association problem with temporal windows. Still, the information in all frames from all cameras 
remained underexploited, suggesting the possibilities to reformulate the problem exactly in order 
to fully use the information. Besides, more training data can improve the single-camera tracker's 
performance and the results of the multi-camera association. 
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