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Point Surfel Transformer Network for Semantic 
Segmentation of Large-Scale ALS Point Clouds 

XINLONG ZHANG1, RUIHANG XUE1, MICHAEL KÖLLE1 & UWE SÖRGEL1

Abstract: Automated semantic segmentation of point clouds plays an important 
role in 3D scene perception. The definition of relevant features is usually key for 
segmentation and classification, with automated workflows presenting the main 
challenges. Point Transformer networks based on self-attention operator, which is 
invariant to permutation of the input elements, can describe the essential 
attributes of disordered point clouds well. However, the application to large-scale 
Airborne Laser Scanning (ALS) point cloud scenes is not trivial. Naive Point 
Transformer lacks the ability to describe local features, therefore most of the 
established methods focus on small simple scenes. In this work, the Point-Surfel 
Transformer (PS-Transformer) network based on not only point features but also 
local surfel features to strengthen the local perception, is proposed. Our approach 
is evaluated on the Hessigheim High-Resolution 3D Point Cloud (H3D) 
Benchmark and achieves state-of-the-art 89.19% overall accuracy. Furthermore, 
our proposed PS-Transformer approach outperforms outperforms naive point 
transformer by a large margin of 4.64 percentage points. 

1 Introduction 

Driven by the fast development of depth sensors and 3D scanners, the automatic 
processing of point clouds has played an indispensable role in the fields of mapping 
geographic information, autonomous driving and robotics (CHEN et al. 2020). As a key 
step of understanding 3D scenes, semantic segmentation of point clouds has attracted 
extensive attention from researchers. 
Current methods can be generally grouped into two categories: the models based on 
handcrafted features and the models based on deep learning. In the first category, 
manually designed features require expensive calculation and suffer from poor 
generalization (LECUN et al. 2015). On the contrary, the data-driven features extraction 
based on deep learning does not need hand-designed feature extractors, and can 
automatically learn better representations of objects (LECUN et al. 2015). Compared 
with the regular grid structure of image data, the disordered distribution of point clouds 
makes 3D semantic segmentation a challenging task. 
In recent years, a large number of models based on deep learning have been proposed 
for 3D semantic segmentation. Inspired by 2D convolutional neural networks (CNNs), 
VoxNet (MATURANA et al. 2015) voxelizes point clouds to make the data structure 
suitable for 3D CNNs. But the sparsity of point clouds leads to the low efficiency of 
voxel grid arrangement and the high computational burden. To alleviate this problem, 
the sparse convolutional network (LIU et al. 2015) and its 3D application (VERDOJA et 
al. 2017) operate only on voxels that are not empty. However, such methods only 
depend on the voxel boundary and ignore the local geometric structure. PointNet++ (QI 
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et al. 2017) effectively solves the problem of extracting local features by combining 
sampling-grouping layer and PointNet (QI et al. 2017) layer. Due to the network’s 
pooling operator, features in each individual dimension have the same weight. The self-
attention based Point Transformer (ZHAO et al. 2021) weights each element adaptively. 
Due to this set operation the network is invariant to permutation of the input elements 
(JADERBERG et al. 2015), which is consistent with the disordered distribution of point 
clouds. Nevertheless, the relationship between points in sets is not taken into 
consideration. 
In complex large-scale point clouds, naive Point Transformer usually fails to extract 
sufficiently effective semantic features and performs poorly, because of weak local 
features. Surface element (surfel) features on the other hand (PFISTER et al. 2000) 
comprise normal, curvature, scale and others, which can provide the attributes of the 
local approximate surface of each point (WEINMANN et al. 2013). This kind of 
geometric adjacency information can strengthen the network's perception of local 
regions. 
In this work, the Point-Surfel Transformer (PS-Transformer) network, based on not 
only point features but also surfel features, is proposed. First, the local surfel features 
are generated from point coordinates. Then, the surfel features are mapped to the 
original point feature space to obtain the point-surfel features. Subsequently, the 
enhanced features are fed to the PS-Transformer network to generate point-wise feature 
vectors in an encoder-decoder architecture. Finally, a multi-layer perceptron (MLP) 
maps each feature vector to the final logits, which are used to predict the class 
probability of each point. 

2 Point Surfel Transformer Network 

2.1 Surfel Features Extraction 

Surfel features of each individual point p are extracted from the raw XYZ coordinates 
of point clouds, which can be expressed by one 6-tuple 

  F ( , , , , , )p px py pz p p pn n n d f r    (1) 

where , ,px py pzn n n   are the parameters of the normal vector, pd   is the distance from 

the origin to the fitted plane of point p , pf   is change of curvature, and pr   is the 

residual from point p  to its fitted surface. Normals distinguish flat and inclined 

surfaces,  pd  is the association with global information, pf  represents the local 

surface variation and pr  describes the local roughness. 

 
These local features of each point ( , , )p p pp x y z   are calculated as follows. Firstly, the 

covariance matrix 3 3M   is constructed via the Eq. (2). 

  3 3

1
( ) ( )T

i iM p p p p
k        (2) 

Where ip   is the K Nearest Neighbour(KNN) of point p , and p   represents the 

mean vector of the point p and its KNNs. Then eigenvalues and eigenvectors of 3 3M   

are calculated by Singular Value Decomposition (SVD) as Eq. (3) and Eq. (4). 
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  3 3V M V     (3) 
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where    is the vector of eigenvalues of the covariance matrix and V   is the set of 
eigenvectors of the covariance matrix. The local features of point p   are calculated as 
Eq. (5). 
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   (5) 

 
The extracted surfel features composed of low-level descriptors contain rich local 
information, which will be used for the following processes. 

2.2 Point Transformer Networks 
The overall structure of the proposed PS-Transformer is shown in Fig. 1, where the 
generated surfel features are firstly concatenated with the point features (coordinates 
and RGB values), and then a U-Net-like (RONNEBERGER et al. 2015) point Transformer 
is implemented for feature fusing and learning. The U-Net-like Transformer is 
composed of point transformer block, transition down and transition up modules. 
Connecting them alternately could obtain an 8-layer network, where the first 4 layers 
are encoders, and the last 4 layers are decoders. In the first layer, a multilayer perceptron 
(MLP) is applied to fuse the point-surfel features. Besides, each feature encoder layer 
has a point transformer block connected by a transition down module. Moreover, each 
feature decoder layer has a point transformer block connected by a transition up 
module. Finally, the encoder-decoder structure together forms a U-Net-like network to 
fulfill the semantic segmentation task. 
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Fig. 1: Overall structure of the proposed PS-Transformer 

As the core of the proposed network, the point transformer block is formed by cascading 
two linear mappings and a self-attention calculation. The linear mapping converts the 
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input-output dimension, and the self-attention estimates the internal relationship among 

the input points. For the input points set X , the subset iX X  is the neighborhood 

of the point ix , which is obtained by the KNN algorithm, where 1, 2,...,i N  and the 

number of neighborhood points is N . Hence the self-attention calculation of the point 

ix  is defined as: 

         pos pos
j i

i q v
x

i j
X

k jy x x x   


    e    (6) 

where iy  is the output feature vector,   is the softmax activation function, and   

is the attention mapping function, which is implemented by a MLP, i.e. 2 linear layers 

and a ReLU (GLOROT et al. 2011) activation function. k , q  and v  are all linear 

mappings for adapting to different feature dimensions, and e denotes an elementwise 

multiplication. pos  is the positional coding, which is a linear mapping from the 

relative coordinate of the points: 

   pos p i jcor cor      (7) 

where icor  and jcor  are respectively the 3D coordinates of the point ,i j , p  is a 

MLP.  
Transition down module realizes the down-sampling of the local point cloud, which is 
implemented by the farthest point sampling and KNNs searching. Then the feature 
vectors of the sampled subset are obtained by local max-pooling. Transition up module 
realizes the up-sampling of the local point cloud, where the number of points is 
increased by trilinear interpolation. Then the features of the corresponding encoder 
layer are added to the up-sampled new point set, which is also the U-Net-like 
connection. The feature decoder has a symmetrical configuration with the encoder as 
shown in Fig. 1, where (32,2048) represents that in this layer, the feature dimension is 
32 and the output point number is 2048. 
For the semantic segmentation task, the PS-Transformer network should have an output 
label for each point. The 4-by-4 symmetrically designed encoder and decoder could 
exactly guarantee the correspondence between the input point-surfel features and the 

output labels. At the last layer, a MLP maps the point feature to the label space ky , 

and all the learnable parameters of PS-Transformer could be updated by optimizing the 
cross-entropy loss function: 

 
1 1

Loss( ) ln ( , )
N K

ki k i
i k

t y X
 

 w w     (8) 

where K  denotes to the number of categories, kit  denotes to the one-hot truth 

corresponding to the i th point, and w   denotes to the set of learnable parameters. 

3 Experiments 

In this section, we conduct comparative experiments to evaluate our PS-Transformer 
networks. The experiments are based on the Hessigheim High-Resolution 3D Point 
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Cloud (H3D) Benchmark (KÖLLE et al. 2021). The dataset was collected by a Riegl 
VUX-1LR Scanner and two oblique-looking Sony Alpha 6000 cameras integrated on a 
RIEGL Ricopter platform. The mean point density is 800 points/m² enriched by RGB 
colors and the ground sampling distance (GSD) of images is 2-3 cm. In addition, the 
points have been manually labeled with the following 11 classes: Low vegetation, 
Impervious surface, Vehicle, Urban furniture, Roof, Facade, Shrub, Tree, Soil/Gravel, 
Vertical surface, Chimney. 
In order to reduce the computational burden, the training data and the test data are 
cropped into 49 splits and 22 splits, respectively. Our implementation of the PS-
Transformer is realized in PyTorch. The Adam optimizer is employed in the network, 
and we train the network for 20 epochs with an initial learning rate of 0.0005. The 
segmentation results are evaluated by overall accuracy (OA), recall, and F1-score. 
 

 
(a) naive Point Transfomer            (b) our PS-Transfomer approch 

Fig. 2:  Detailed H3D test set segmentation results from the comparative experiment: (a) 
naive Point Transfomer (b) our PS-Transformer approach 

We compare against the naive Point Transfomer to showcase the benefits of surfel 
features, and the results are shown in Fig. 2. Our approach achieves state-of-the-art 
89.19% overall accuracy, which outperforms the naive Point Transformer (84.55%) by 
a large margin. Furthermore, the recall of fine-grained classes is greatly improved, the 
recall of urban furniture increases from 38.06% to 62.02%, and the recall of soil/gravel 
increases from 29.85% to 68.18%. 
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(a) ground truth (b) prediction 

     
(c) RGB texture (d) class catalog 

Fig. 3:  Comparison of our prediction and ground truth on H3D: (a) ground truth (b) 
prediction (c) RGB texture (d) class catalog 

Fig. 3 displays an example of our prediction, ground truth and RGB texture. Although 
chimneys are interpreted as roofs more frequently, they are less often classified as 
facades or vertical surfaces. The difficulties mainly exist between vehicles and urban 
furniture, and soil/gravel are often inferred as impervious surface. The ambiguities are 
caused by their limited inter-class distances and scarce appearances. 

4 Conclusion 

We have presented PS-Transformer, a surfel features enhanced network for semantic 
segmentation of large-scale ALS point clouds. The proposed PS-Transformer utilizes 
geometric adjacency information to strengthen the network's local perception, and 
achieves state-of-the-art 89.19% overall accuracy on the H3D Benchmark. Future work 
will be focused on semantic segmentation for fine-grained objects (such as vehicles), 
while being aimed at models in the case of imbalanced samples. 
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