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Comparison of different 2D and 3D Sensors and Algorithms 
for Indoor SLAM on a low-cost Robotic Platform 
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Abstract: Mobile robots are becoming a fairly important part of people’s lives. Whether they 
are service robots that assist people in daily life, such as robot vacuums or robots in industry. 
Simultaneous localization and mapping (SLAM) is one of the most fundamental capabilities to 
perceive the surroundings and keep track of the robot’s position while constructing a map 
incrementally. SLAM-based surveying equipment is also increasingly used for areas without 
GNSS availability e.g. mining or indoor cartography. For this purpose, there is a wide range 
of products from different manufacturers. In practice, depending on the application 
requirements, different sensors are deployed for this task. Furthermore, with the rapid 
development of this field in recent years, more new methods have emerged and pushed the 
boundaries of sensor performance. We noticed a lack of widespread discussion and consensus 
on which sensor or algorithm is more suitable for a low-cost indoor robotic platform. 
Therefore, this work aims to compare different low-cost environmental sensors and different 
advanced algorithms for each of the sensors with the ultimate goal of being able to help make 
decisions when it comes to choosing sensors and algorithms for a specific robot application. 
In order to achieve a fair comparison, third-party unbiased reference data is needed. For this 
purpose, we utilize a wide-angle camera mounted on the ceiling and ArUco marker to achieve 
a bird’s view tracking of the robot’s poses serving as reference data. We compare the results 
of different sensors and algorithms quantitatively against the reference trajectory. In addition 
to trajectory comparison, another product of the SLAM method is the constructed 2D and 3D 
maps, which are compared and analyzed qualitatively. 

1 Introduction 

Mobile robots are widely used in various application domains. They can replace human beings in 
industry, agriculture and service industries to a certain extent. In addition, they can also be 
employed in many dangerous environments, such as emergency rescue, space exploration, 
construction exploration, etc.. In the research of intelligent mobile robots, many technologies are 
included, such as SLAM, path planning, and navigation. Among them, SLAM technology has 
always been a research focus in this field.  
In an unknown environment, the task of SLAM methods is to obtain an accurate map of the 
surroundings and localize precisely the robot’s position within the environment. Measurements of 
different 2D and 3D sensors can be used as input for SLAM. As a low-cost robotic platform, we 
choose the affordable 2D Lidar and 3D depth camera for comparison. With decades of 
development of SLAM technology, numerous algorithms for each sensor have been developed. 
For the 2D Lidar, the Matlab Lidar SLAM and ICP graph SLAM methods are selected. As for 
visual SLAM methods, there are distinctions between keypoint-based, direct, and dense methods. 
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For this reason, one representative method for each paradigm is selected, which are the ORB-
SLAM, the Stereo-DSO, and the DROID-SLAM methods. 
For the experiment, a low-cost robotic platform is assembled, consisting of a 2D Lidar and 3D 
depth camera. Additionally, to provide a reference for comparison, an ArUco marker is appended 
on top of the platform as illustrated in Fig. 1. We employed a wide-view GoPro camera on the 
room’s roof to keep tracking the position and orientation of the robot. The experimental results 
show that the recent deep learning-based DROID-SLAM method performs best with an ATE error 
of 2.9 cm. Nevertheless, thanks to the high precision of direct distance measurements, the 2D 
Lidar-based SLAM provides a more consistent 2D occupancy map. Besides, the Lidar map covers 
more spaces because of the greater measurement range. By contrast, the resulting 3D map of the 
visual system contaminates more clutter due to the insufficient accuracy of depth estimate. 

2 Methods 

This section first explains the low-cost robotic platform, which has a modular structure consisting 
of three subsystems. Then each applied sensor is introduced. After that, the SLAM algorithms of 
each sensor modality are elaborated in detail. 

2.1 Plattform 
Fig. 1 presents an overview of the used low-cost robotic platform and the module diagram 
consisting of three subsystems, which are the Raspberry-Pi centric robot control and 2D Lidar 
scanning subsystem, the 3D stereo camera subsystem with the Jetson Xavier NX board as the 
computing unit, and the reference data provider using a GoPro camera and ArUco marker fixed on 
top of the robot body. Tab. 1 presents the hardware specification of the two central processing 
units of 2D Lidar and 3D camera systems. 

   
Fig. 1: The low-cost robotic platform and the module diagram 
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Tab. 1: Hardware specification of the two processing units on the low-cost robotic platform 

 Raspberry Pi 3 Jetson Xavier Nx 

Processor Broadcom ARMv8 4-cores Nvidia carmel ARMv8 6-cores 

GPU VideoCore IV Nvidia vota 384 cores/48 tensor-cores 

RAM 1GB 8GB 

Sensor RPLidar, rotary encoder Zed2 camera 

OS Ubuntu 16.04 Ubuntu 18.04 

ROS ROS Kinetic ROS Melodic 

2.2 Sensors 
This section introduces three different sensors applied in our platform, whose measurements are 
used to estimate the robot’s trajectory.  

2.2.1 Wheel Encoder 
The wheel encoder is equipped on each stepper motor of the two front wheels, and it measures the 
angular velocities of the left and right wheels. With the available wheel radius and the baseline 
length between the wheels, the moving and steering speed of the robot platform can be derived, 
and then the 2D movements can be integrated. 

2.2.2 2D Lidar 
The 2D Lidar of the model RpLidar A1 transmits laser beams to the 360-degree surrounding. With 
an angular resolution of 1 degree, one full spin takes exactly a point cloud of 360 points. The spin 
frequency is adjusted to 5 Hz so it can sample up to 3600 points per second. Two different Lidar 
SLAM algorithms are applied to the 2D Lidar data, and the estimated trajectories are compared 
against the reference. 

2.2.3 Camera 
The ZED2 stereo camera with a baseline length of 12 cm is applied to capture the color view and 
3D information of the environment. The camera is connected to the Jetson Xavier NX board, on 
which runs the Ubuntu 18.04 operating system. Based on the ROS wrapper provided by the 
manufacturer, the left and right images and stereo depth estimates by ZED SDK are recorded in a 
rosbag file. The image resolution is set to 672x376 and recorded at 15 Hz. We choose the 
representative methods to verify the state-of-the-art performance of current visual SLAM methods. 

2.3 SLAM Algorithms  
Different SLAM algorithms are selected to produce the state-of-the-art performance of each 
modality. For 2D Lidar, we use Lidar SLAM implementation in the Matlab navigation toolbox 
and a self-implemented ICP-graph SLAM. According to (TAKETOMI et al. 2017), for visual SLAM, 
based on whether the image data is directly used for tracking or indirectly via feature extraction, 
there are two mainstream types of visual SLAM algorithms: the feature-based indirect and the 
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photo-consistency based direct method. Furthermore, with the recent advances from the 
application of deep learning, a new visual SLAM paradigm emerges and is represented by the 
work DROID-SLAM, which we include for comparison. 

Tab. 2: Different characteristics of the evaluated Lidar and visual SLAM methods 

Method Sensor Matching Loop closure Map  

Matlab-Lidar-SLAM 2D Lidar Ceres optimization Submap alignment 2D occupancy 

ICP-graph-SLAM 2D Lidar ICP ICP close distance 2D point cloud 

ORB-SLAM Stereo Keypoint-based Bag of Words Sparse point cloud 

Stereo-DSO Stereo Photometric-based None Semi-dense point cloud 

DROID-SLAM Mono,RGB-D Optical-flow-based Visual view overlap Dense point cloud 

2.3.1 Matlab Lidar SLAM 
One of the Lidar-SLAM algorithms investigated in this work is the one provided by Matlab. It is 
an implementation of the Google Cartographer (HESS et al. 2016). The Google Cartographer is a 
2D Lidar SLAM system. The system combines local and global scan matching methods. Newly 
generated scans are matched locally against a submap using the Ceres solver (AGARWAL & 

MIERLE, 2010). Many individual submaps are created and stored as map representations. To find 
loop closures, submaps are compared using a branch-and-bound approach. After a loop is detected, 
global nonlinear optimization of the residues is performed using the Ceres solver. Since Google 
Cartographer is available as an open-source project, it is widely used and very popular.  

2.3.2 Lidar ICP Graph SLAM 
The ICP Graph SLAM is, as the name suggests, a simple self-implemented ICP-based 2D Graph 
SLAM algorithm. As for map representation, single downsampled scans are stored as keyframes. 
Newly acquired scans are first downsampled. Then they are matched with the last keyframe using 
the classical ICP algorithm (BESL & MCKAY 1992). Loop Closure candidates are selected based 
on the distance to the current keyframe. Old keyframes that are within a certain distance of the 
current keyframe are compared to the current keyframe using the ICP algorithm. If the residual 
falls below a threshold, the loop is closed. If a loop closure is found, a global pose graph 
optimization is performed using the g2o framework (KÜMMERLE et al. 2011). The method was 
created to provide a second Lidar-based option when comparing the algorithms. Two variants of 
the method were investigated: one with the raw Lidar data and one with the de-skewed Lidar data. 
De-skewing means the correction of distortion of the points induced by movement of the scanner. 
In our case, only rotation rates are taken into account. Velocities can be neglected due to the low 
vehicle speed. For this purpose the rotation rate of the robot was determined using ICP from two 
consecutive scans. 

2.3.3 Stereo-ORB-SLAM 
ORB-SLAM (CAMPOS et al. 2021) is a feature-based method, which extracts ORB features for 
tracking and creates a sparse point cloud as the map. It was first introduced to run in a monocular 
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mode. The following extensions include a stereo mode, which amongst others provides an absolute 
scale for the resulting map. Due to the availability of a depth map from the stereo images, the 
system can initialize faster without the need of moving the camera for the triangulation of initial 
map points. Thanks to the loop closure detection module and global pose optimization (bundle 
adjustment), it is a complete SLAM system widely used in robotic applications. 

2.3.4 Stereo-DSO 
Stereo Direct Sparse Odometry (DSO) is a direct method (WANG et al. 2017), which minimizes 
the photometric consistency error for the pixels with sufficient intensity gradient. Within a sliding 
window, the selected pixels are tracked across multiple frames. While camera poses are tracked, 
the 3D locations of the pixels are iteratively estimated. Although there is no loop closure and global 
optimization, it still produces a good result with a much denser map than the ORB-SLAM result. 
Like ORB-SLAM, a stereo setting can provide initial depth estimation at the initial phase and thus 
facilitate the system initialization. 

2.3.5 DROID-SLAM 
DROID-SLAM (TEED & DENG 2021) is a dense optical-flow-based method, which minimizes the 
reprojection error with the optical flow prediction by a pre-trained neural network as the 
reprojection targets. The neural network extracts multi-level feature maps from color images. To 
predict an update of optical flow, the current flow is firstly computed based on the current pose 
and depth estimates, i.e. the dense projection of the pixel array between two frames with overlap 
view. With that, the local features at the source and reference frame can be looked up from the 
extracted feature maps. The local features from both frames are processed via CNN and GRU 
subnetwork to predict an updated optical flow. For efficiency, the keyframes are selected based on 
the mean motion of the optical flow, and the depth maps are down-sampled to 1/8 resolution as 
estimation variables. The poses and low-resolution depth maps of keyframes are jointly optimized 
via bundle adjustment with the Gauss-Newton algorithm. In the following experiment, the 
DROID-SLAM will be tested with monocular and RGB-D settings. For the former setting, only 
the left camera image is fed into the system. For RGB-D, the depth estimate produced by ZED 
SDK is used as additional depth prior to the bundle adjustment. 

2.4 Ground Truth 
In order to compare the different trajectories to each other a ground truth is needed. We opted to 
use a wide-angle camera on the ceiling to track a squared fiducial marker (ROMERO-RAMIREZ et 
al. 2018), mounted on top of the robot. In order to undistort the fisheye camera’s images, a 
rectification to a rectilinear image was applied (SCARAMUZZA et al. 2006). Since all marker 
positions are on the same plane, a homography (HARTLEY & ZISSERMAN 2004) was applied to 
remove the projective distortion from the perspective linear image of this plane into a rectangular 
image (Fig. 2). These rectangular images are used to detect the fiducial marker’s pixel coordinates 
and heading. By placing the rover on top of known points, a transformation from pixel coordinates 
to object coordinates can be computed.  
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Fig.2:  Workflow of reference data generation. The raw distorted images are transformed into 

rectilinear ones, using a fisheye camera calibration model. A homography was used to 
transform the marker’s plane into a rectangular plane that allows measuring the rover's position 
in pixel coordinates, which can be transformed into object coordinates by placing the rover onto 
fixed points with known coordinates 

2.5 Evaluation Metric 
To evaluate the estimated trajectory Q1:n by different methods, we compute the absolute trajectory 
error (ATE) (STURM et al. 2012) against the ground truth trajectory P1:n. Due to the difficulty of 
synchronizing the time of the ground truth system and sensor-specific system, the corresponding 
pose Qi is found via the nearest neighbor search for each ground truth pose Pi. Let trans() refers 
to the translational part of the relative pose, the error at a timestamp i can be computed as 

𝐸௜ ൌ 𝑡𝑟𝑎𝑛𝑠ሺ 𝐐୧
ିଵ ⋅ 𝐏୧ ሻ            (1) 

From the pose errors of all timestamps, the ATE can be derived by taking root mean square over 
the entire trajectory as follows: 

𝐴𝑇𝐸 ൌ ටଵ

௡
∑ ห|𝐸௜|ห

ଶ௡
௜ୀଵ           (2) 

The ATE and the maximum of 𝐸௜ (Max) are used as the metrics to indicate the average and worst 
performance. 

3 Results 

The estimated trajectories are presented in Fig. 3. For clarity, each modality is plotted in a separate 
subplot. The trajectory estimated by the wheel odometer has the largest deviation from the ground 
truth, as it suffers from the accumulated error during the movement integration over time. It should 
also be noted that all methods except wheel odometry and Stereo-DSO can detect loop closures by 
design and have detected them successfully. Since the trajectory consists of two loops, this can 
improve the result. For 2D Lidar-based systems, the evaluated trajectories are shown in Fig. 3b) 
and the evaluation results are shown in Fig. 4 and Tab. 3. Comparing the two Lidar-based SLAM 
approaches, it is seen that the Matlab SLAM performed marginally better than the ICP Graph 
SLAM.  
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Fig. 3:  Experimental results. a) shows the estimated trajectory given by the wheel odometer, b) shows 
the results of Lidar algorithms. c) is the estimated trajectories of visual algorithms in comparison 
to ground truth (GT). Note mono* method has scale ambiguity and its scale is adjusted to the 
GT scale. 

 

Fig. 4:  Quantitative evaluation results with respect to the translational errors for different methods 
compared to the GT poses. The red lines mark the median in each case. The boxes mark the 
range between the 25th percentile and the 75th percentile. 

Tab. 3: Evaluation results of different methods. Bold font indicates the best result for each metric 

 Wheel Matlab-
Lidar-
SLAM 

ICP-graph-
SLAM 

ICP-graph-
SLAM de-
skewed 

Stereo- 
DSO 

ORB- 
SLAM 

DROID- 
mono 

DROID- 
rgbd 

Data Wheel 
Encoder 

2D-Lidar 2D-Lidar 2D-Lidar Stereo 
image 

Stereo 
image 

Mono  
image 

Left 
image 
+depth 

Loop Closure - + + + - + + + 
#Pose 1663 167 125 125 2453 2554 853 853 

Max Error [m] 0.567 0.369 0.322 0.249 0.325 0.136 0.068 0.069 
ATE [m] 0.201 0.121 0.118 0.103 0.104 0.065 0.034 0.029 

 
The results of the camera-based methods are shown in Fig. 3c). It can be seen that each of the 
camera-based methods performs better than the Lidar-based methods. For Lidar-based methods, 
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de-skewing also significantly improved the result of the ICP-graph-slam. Furthermore, in Fig. 3 it 
looks like the trajectories determined by the Lidar-based methods deviate similarly in direction 
and magnitude from the ground truth. This may be due to a systematic measurement error of the 
Lidar. Within the camera-based methods, the DROID-rgbd achieves the best results. The second 
best results can be achieved with the DROID-mono SLAM. It should be noted that the produced 
result by DROID-mono is not in metric scale, which is an inherent problem of monocular SLAM. 
Thus the trajectory is aligned in addition by a scale factor of 1.2 to GT. The largest deviations in 
the camera-based methods are observed in the stereo-DSO method. The result of the stereo DSO 
is however remarkable in so far as it has no loop closure functionality. Thus, the errors were 
continuously integrated in both loops. Nevertheless, it achieves lower ATE than the Lidar-based 
methods as present in Tab.3. The accuracy of the ORB-SLAM is in the midfield. Nevertheless, the 
magnitudes of the ATE are interesting at this point. Both the ATE of the ORB-SLAM and the 
maximum deviation from the trajectory are twice as large as for the determined favorite DROID-
rgbd. 

 
Fig. 5:  Different map representations, which are 2D Lidar map, 3D point cloud map, and 3D dense 

volumetric map respectively 

Fig. 5 shows different map representations of the applied methods. The 2D Lidar-based method 
produces a 2D occupancy map. As shown in Figure 5a, this 2D Lidar map is globally consistent 
with visually sharp edges of the room walls and furniture. By contrast, the reconstructed maps by 
visual SLAM methods are in 3D, whether presented as a point cloud or dense volumetric map. 
Compared to the Lidar map, the map reconstructed by the applied stereo camera has more clutter 
due to the inaccurate depth estimation. Furthermore, the space covered by the camera map is 
smaller than that of the Lidar map, as the camera depth range is limited by the baseline length of 
the stereo camera. 

4 Conclusion 

In our test scenario, it was shown that camera-based methods are superior to Lidar methods in the 
context of the used accuracy metrics. The reasons for this can be the more precise capture of the 
environment due to the higher resolution of the camera pixels compared to the Lidar resolution. 
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Nevertheless, Lidar-based methods have other advantages that do not apply in the selected 
scenario. These are for example the robustness in very homogeneous and featureless environments, 
e.g. large white walls. 
It is also important to note that based on the chosen comparison scenario, no conclusions can be 
made about large-scale routes and the ability to detect loop closures there. Furthermore, the 
environment within the scenario is limited to an indoor office environment.  
For future work, we believe that a more robust system can be achieved by combining the 
information from the 2D and 3D sensors, and also the valuable information from the inertial sensor 
and wheel odometer to compensate for the respective shortcomings. Moreover, towards a more 
intelligent robotic system, we will investigate how to derive higher-order semantic information 
from the constructed 2D and 3D maps. 
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