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Semantic UAV Image Segmentation of Mixed Cropping Fields 

QUSAI MARASHDEH1, LUKAS DREES1 & RIBANA ROSCHER1 

Abstract: Mixed cropping became an important research topic in the area of sustainable 
agriculture, aiming on novel insights on how different plants interact with each other in the 
same agricultural field. Convolutional neural networks show remarkable capabilities to solve 
tasks like semantic segmentation and have been successfully used for agricultural 
applications. However, performing such tasks for fields with mixed crops is particularly 
challenging, especially when only a small number of reference images are available for 
training and testing neural network models. In this paper, we present a study conducted in the 
Cluster of Excellence "PhenoRob - Robotics and Phenotyping for Sustainable Crop 
Production" in which 320 unmanned aerial vehicles (UAVs) images of mixed crop fields from 
the experimental site Campus Klein-Altendorf are analyzed. Specifically, we perform semantic 
segmentation using a convolutional neural network with U-Net architecture to distinguish 
between the mixed crops faba bean and spring wheat. We use two different approaches to 
create annotation masks which are used to learn our model for segmentation. The goal is to 
quantify the heterogeneity based on the segmentation results and to analyze the influence of 
different segmentation masks. We evaluate our results by means of a mean confusion matrix 
and a visualization of our results comprising the estimated biomass of the two plants and total 
yield. Preliminary results show an overall accuracy of classified faba beans of 68% and an 
overall accuracy of classified spring wheat plants of 87%.  

1 Introduction 

Crop production is an active research area due to the demand of an increased sustainability while 
ensuring food for a growing population (YADAV et al. 2021). Objectives are focusing on different 
ways to increase food production considering various aspects such as the limited area, high input 
cost, saving the soil quality, the effect of pests infestation, and other threats that affect efficient 
crop production, for instance, climate change. Several studies investigate the statistical analysis of 
data from intercropping interaction (PEARCE & GRILLIVER 1978). One way is to take advantage of 
machine learning to analyze observational data to gain insights into the plants’ behavior and their 
interactions. Recently, one successful approach is the use of convolutional neural networks, which 
have already shown success in related applications such as weed detection or disease detection 
(KAMILARIS et al. 2018; LOTTES et al. 2018). 
In this paper, we present a study conducted within the Cluster of Excellence "PhenoRob - Robotics 
and Phenotyping for Sustainable Crop Production". In this study, 320 orthophotos were calculated 
from UAV images acquired over a four-month period from April to July at the experimental field 
Campus Klein-Altendorf in 2020. The goal of this study is to monitor the mixed plants and derive 
relevant phenotypic traits such as the yield efficiently at different time points, as shown in Fig. 1. 
We achieve our goal by performing semantic segmentation using a convolutional neural network 
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with U-Net architecture to distinguish between the mixed crops faba bean and spring wheat. We 
use the segmentation results to estimate the heterogeneity from which insights about different 
mixing ratios can be derived. We face challenges such as a limited spatial resolution, differences 
in the texture and spectral signature of mixed plants, and the overlap between the mixed 
components occurring at later growth stages. 

 

Fig. 1:  UAV image patches showing the same area of a mixed cropping field with spring wheat and 
faba bean at different time points: early growth stage (left), intermediate growth stage with which 
we train our model (middle), and late growth stage (right). 

In our experiments, we show that neural networks are able to distinguish between different plants. 
We evaluate our results in different ways. First, by estimating the confusion matrix for comparing 
two annotation methods of mixed crop images. Second, we visualize our obtained results with a 
specific focus on the heterogeneity with respect to the yield.  

2 Data 

Data was acquired within the currently running cluster of excellence PhenoRob, specifically in the 
core project ‘New Field Arrangements’, which aims to estimate and evaluate how different crops 
evolve in mixed cropping fields.  

2.1 Study location and sensor measurements 
Our study site is located at Campus Klein-Altendorf close to Rheinbach in North Rhine-
Westphalia, Germany. The experimental field consists of 320 plots, each of 15 m2, arranged in 10 
rows and 32 columns. On these plots, 8 different wheat varieties are combined with 2 different 
arable varieties at varying seed density, resulting in 197 mixture plots, 92 spring wheat and 31 faba 
bean monoculture reference plots. RGB images were acquired with a UAV at approximately 10 
meter flight altitude on a weekly basis during the growth period from April to July 2020. From the 
images, RGB orthomosaics were computed with 3 mm GSD.  

2.2 Patch extraction and data annotation 
Each of the 320 plots, with the size of 2700 × 480 px is split into 6 quadratic patches of size 450 
× 450 px. We annotated 9 mixed crop plots for training and testing our proposed method, where 5 
patches from each mixed crop plot are used for training (in total: 45) and one for testing (in total: 
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9). For all monoculture plots, we performed the annotation semi-automatically in two different 
ways: 
1- Application of vegetation indices (VI): We estimate the RGB vegetation indices (RGBVI) value 
for each pixel in the image and set an appropriate threshold to differentiate between the vegetation 
pixels and the background pixels. 
2- Application of a pre-trained Gaussian classifier: We use a pre-trained model, which was trained 
using a set of plant images. The images were collected using two cameras, a Canon 7D and a high-
end mobile phone (Sony XPeria Z3 Compact). Twenty images were collected by each of the 
cameras (40 images overall), capturing images of a fallow field farm in Gatton, Queensland, and 
garden beds in Brisbane, Queensland as described in (BAWDEN et al., 2017). The images are 
divided into three sets, 14 images for training, 14 images for validation, 12 for testing. We apply 
it to our data to differentiate between vegetation and background. 
For images with mixed crops, we annotate in 2 steps: First, we annotate faba beans manually and 
second, we use the described procedure for monoculture images to annotate spring wheat plants. 
We combine both annotations by overlaying VI respectively Gaussian derived masks with the 
manual labeled masks as illustrated in Fig. 2. 

 
Fig. 2:  Steps of producing the label mask. Top: Original image. Middle right: Resulting mask using a 

pre-trained Gaussian classifier for spring wheat. Middle left: Manually annotated mask for faba 
bean. Bottom: Combined mask for faba bean and spring wheat. 

3 Methodology 

We use U-Net architecture (RONNEBERGER et al. 2015) which already showed success for similar 
applications, and the number of parameters is comparably low.  

3.1 U-Net: Convolutional network architecture 
The architecture of the U-Net is illustrated in Fig. 3. Our implementation was performed with 
PyTorch in Python, which is an open-source library based on the Torch library. 
The architecture contains two paths: encoding path and decoding path. In the encoder, a lower-
dimensional representation of the data is computed to capture the most relevant patterns, while in 
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the decoder, the representation is mapped back to an intended outcome such as a segmentation 
mask. The intermediate results, which are obtained after each operation in the network are called 
feature maps. 
1- Encoding path: This part consists of four repeated blocks, each containing two 3×3 convolutions 
with a rectified linear unit (ReLU) activation applied after each convolutional operation and a 2×2 
max pooling operation for downsampling purposes. In each block, we double the number of 
convolutional filters in comparison to the previous block. 
2- Decoding path: The decoder has a symmetric structure to the encoder, however, instead of 
downsampling operations we use upsampling operations. The final outcome has the same number 
of rows and columns as the input image. Each block contains an upsampling of the feature map 
with a 2×2 convolution, where the number of convolutional filters is reduced by 2 in comparison 
to the previous block. The architecture contains skip-connections, which means that the output of 
a previous block in the decoder is concatenated with the corresponding feature map in the encoder 
before applying the operations in each block, which are two 3×3 convolutions with ReLU after 
each of them. In the final layer, we use a 1×1 convolution layer to project the input channels to the 
desired output channels according to the class number, and a softmax activation function. 

3.2  Evaluation metrics 
We evaluate the segmentation results in two different ways. First, by means of a confusion matrix 
containing the three classes spring wheat, faba bean, and background. The matrix estimates the 
deviation between the reference mask and the predicted one. Moreover, we present the average 
confusion matrix. Further, we show the correlation of our estimation of the heterogeneity of the 
mixed plants by counting the number of pixels of each class and the total yield for each class. 

 

Fig. 3:  U-Net architecture with skip connections (gray arrows) used for semantic segmentation. The 
architecture consists of an encoder (left part of the architecture) and a decoder (right part of the 
architecture). All arrows represent different mathematical operations. 
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4 Experiments 

4.1 Experimental setup 
We perform various experiments to evaluate (1) the influence of different annotation methods, (2) 
the capability to apply our model to monoculture images of the mixture components, and (3) how 
close we get with the mixture ratio derived from the segmentation images to in-situ reference 
measurements performed in the field.  
For training the U-Net, we use cross-entropy loss with an Adaptive Moment Estimation (Adam) 
optimizer and a batch size of 1. Using one-side padding allows us to get an output image size equal 
to the input size. As data augmentation methods, random horizontal and vertical flipping as well 
as cropping are used, which help to avoid overfitting. Using all 45 mixed image patches of the 
training set, the training starts to converge after 200 epochs and thus takes about 2.5 hours. Since 
there are many monoculture images available that are easy to annotate, in initial experiments, we 
used an extended training dataset that includes both annotated monocultures and mixed cropping 
images. However, it has been found that the convergence time takes longer without improving the 
model, so the monocultures are only used for evaluation.  

4.2 Results and Discussions 
In Fig. 4, we first compare the confusion matrices of the two annotation methods using VI and a 
pre-trained Gaussian classifier, where the matrices are split into the classes background, faba bean 
(FB), and spring wheat (SW). The highest score in both cases is for the class background, which 
is reliably segmented in more than 95%. This is followed by SW, which is captured slightly better 
by the model trained using VI (92% compared to 87%). In return, the Gaussian trained model is 8 
percentage points better for FB, although at a lower level than SW (68% to 58%). For the Gaussian 
results, we notice that most of the incorrectly predicted SW pixels are labeled as FB (11%), and 
vice versa most of the incorrectly predicted FB pixels are labeled as SW (20%). For VI results, the 
incorrectly predicted pixels of the SW class are equally often confused with FB and background. 
Noticeably, the incorrectly predicted FB pixels are not equally distributed among the other classes, 
but mainly belong to SW (34%). 

 
Fig. 4:  Confusion matrix of semantic segmentation using the result of Gaussian annotation results (left) 

and VI annotation results (right) of training only 45 mixed patches to train our U-Net model (%). 
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Fig. 5 visualizes the differences of the annotation method on an exemplary mixture test patch. It 
is noticeable that the amount of annotated SW pixels varies significantly. While the result with the 
pre-trained Gaussian classifier contains less SW overall, the VI result contains more. Accordingly, 
this trend can also be seen in the segmentation. Although VI masks are controllable via selected 
threshold value, it is difficult to avoid annotating shadow areas: In the case of a too low threshold 
value, shadow areas are avoided, but a large number of holes on the plants are created. As a 
consequence, we have chosen a rather large threshold value in order to capture the plants 
completely, resulting in some false vegetation pixels in soil and shady areas than with the Gaussian 
classifier. 
We assume that the high threshold value contributes to SW having a higher accuracy with VI 
annotation. In contrast, one can see in the images that FB annotations are less suppressed in the 
Gaussian result, resulting in thicker segmentation for this approach. Remarkably, with both 
annotation methods, our model succeeds in detecting FB plants that were missed in the manual 
annotation or are heavily overgrown with wheat (top field-row in the images). 
To assess the stability of our model, we also applied the model to the monoculture images without 
training on them before. Fig. 6 shows an example of the results of the VI trained model on both 
types of monocultures, SW and FB. The results look promising: There are only minor outliers in 
the FB monoculture, while there are no FB outliers in the SW. It is worth noting that the model 
successfully segments contiguous FB plants, although the annotation is based on free-standing FB 
plants in the mixtures only. 
 

 
Fig. 5:  Segmentation results of a mixture test patch. The first row shows the segmentation result using 

the annotation obtained from the pre-trained Gaussian classifier. The second row shows the 
segmentation result using VI for training. From left to right: Image patches, reference annotation 
masks, and predicted segmentation masks. 
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Fig. 6:  Segmentation results of faba bean (top) and spring wheat (bottom) monocultures using VI-

based U-Net training. From left to right: Image patches, reference annotation masks, and 
predicted segmentation masks. 

To highlight the practical utility of the segmentations, we continue to use the VI model and intend 
to compare the results with in-situ measurements from the field. Approximately four weeks after 
the date the images were taken, the yield of the mixture components was manually measured in 
the field. With this, we assume a correlation between yield in the mixture and the mixing ratio, 
which we derive from the pixel ratio of the classes SW and FB in the segmentation image. 
Fig. 7 shows the R2 scatter plots in which the in-situ yield in gram (y-axis) of all mixture test 
images is compared to the respective FB and SW ratios derived from the images (x-axis). Thus 
each dot represents an image, and the R2 value (maximum 1) indicates how well the regression 
line is determined by the dots. For both FB and SW, the R2 values are rather low, but there is a 
clear trend indicating that a higher ratio also results in a correspondingly higher yield. Besides, the 
R2 plot can only be an approximation, on which two factors have a major influence. First, the 
temporal difference between the in-situ data and our model estimates, because the mixing ratio 
may still have developed differently after the image-taking date. Second, the perspective, as the 
2D image only considers the canopy surface, whereas 3D dimensional measurements can also 
count yields of beans and wheat grains that are located between the soil and the upper canopy. 
Nevertheless, the result indicates that our model is well suited to perform semantic segmentation 
in complex mixed cropping systems and can provide reasonable approximations for important 
phenotypic traits, such as the mixture ratio and yield. 
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Fig. 7:  The correlation between in-situ measured yield in gram (y-axis) and from segmentation images 
derived mixing ratio in percentage (x-axis) for faba bean on the left and spring wheat on the 
right. Segmentation images were obtained using VI-based U-Net training. 

5 Conclusion 

In this paper, we demonstrate a novel application of semantic RGB image segmentation using deep 
learning to highly complex mixed cropping environments. For this purpose, we use a neural 
network with the U-Net architecture, which is widely used in the field of semantic segmentation. 
Since it is time-consuming and difficult to perform manual annotations on such finely-structured 
and overlapping spring wheat and faba bean plants of a mixed cropping image, we compare two 
approaches for annotation generation, namely vegetation index-based annotation and annotation 
by Gaussian classifier. This allows us to manually annotate only the beans from the composite of 
mixed cropping partners, while wheat is labeled automatically. 
Our experiments show that at a medium growth stage we are able to segment wheat in mixtures 
with up to 95% and beans with up to 70%. It turns out that the choice of both annotation methods 
has benefits and drawbacks. The VI-based model over-interprets the vegetation because a rather 
high threshold is needed to close holes in the canopy, but thus shaded areas are also annotated. 
Hence, spring wheat is well segmented, while beans are often incorrectly segmented as wheat. 
Meanwhile, the Gaussian classifier provides a stronger separation between vegetation and 
background, resulting in a better segmentation result for beans, but less correctly segmented wheat. 
We further show that our model is able to segment monoculture images of mixing components 
with satisfactory results. Comparison of the mixing ratio derived from the image with in-situ 
measurements taken later in the field shows trends that automatized image segmentation using 
deep neural networks is useful in areas of mixed cropping to approximate agricultural yield. 
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