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Abstract: With the monitoring of management practices in agriculture we can assess the 
influence on the environment and evaluate the implementation of policies and guidelines. The 
timing of mowing or mulching events on fallow cropland is a critical factor in assessing the 
impact on biodiversity and a core environmental measure of the EU’s Common Agricultural 
Policy (CAP). Dense time series of remote sensing data have already proven to be valuable 
input for capturing management practices on grassland. Here we present a transfer learning 
approach using a 1D convolutional neural network trained on grassland management data to 
predict management practices on fallow cropland. Our results demonstrate the potential of 
the approach to provide valuable insights for future CAP decision-making. 

1 Introduction 

The area-wide monitoring of agricultural management practices is an important task that does not 
only help to assess the impact of agriculture on biodiversity but also to evaluate the implementation 
of policies and guidelines.  
The first management of fallow cropland within a year is an example of a practice whose timing 
is both related to the agricultural use intensity and increasingly relevant in the context of the 
growing environmental ambitions of the EU's Common Agricultural Policy (CAP) (EUROPEAN

PARLIAMENT 2021). Fallow cropland is usually mown or mulched, whereby after mulching the cut 
biomass is further shredded and remains on the field. For simplicity, we will use the word mowing 
in the following. 
Dense time series of remote sensing data have already proven to be a valuable data basis for the 
detection of management practices on the field level, including mowing events on grasslands (e.g., 
SCHWIEDER et al. 2022; DE VROEY et al. 2021; REINERMANN et al. 2020). The cutting of grass or 
similar vegetation, which means a removal of standing biomass, leads to abrupt changes in remote 
sensing signals. This makes them a good basis for the development of automatic detection 
algorithms. Yet, the various parameters and indices that can be derived from optical and radar 
imagery both contain complementary and redundant information (HOLTGRAVE et al. 2020). The 
selection and combination of these indices and parameters, therefore, play an important role and 
can improve but also impair the performance of mowing detection algorithms. This was recently 
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demonstrated by LOBERT et al. (2021), who systematically investigated the suitability of different 
combinations of Sentinel-1 (S1), Sentinel-2 (S2), and Landsat 8 (L8) time series to determine the 
occurrence, frequency, and date of mowing events.  
The objective of our research is to investigate the suitability of remote sensing time series for 
monitoring the timing of mowing practices on fallow cropland at the parcel level, which has been 
hardly studied. The actual timing of the first management of fallow cropland is of high importance 
since fallows serve as an important refuge for many species including ground-nesting birds (VAN 

DE POEL & ZEHM 2014). Area-wide information can therefore help to evaluate the biodiversity 
impact of agricultural policy measures. 
Reference data for training models on fallow management, however, are not available. Since we 
expected a similar remote sensing pattern of fallows and grasslands due to mowing, we decided to 
use a transfer-learning approach. Because fallows are allowed to be mown for the first time even 
later in the year than grasslands, we expected a remarkable signal here. We, therefore, trained an 
algorithm to detect mowing events on grassland parcels for which we have reference data available 
and applied it to fallows afterward. A one-dimensional convolutional neural network (1D-CNN) 
was the algorithm of choice for our study due to its high performance on time series related tasks 
(WANG et al. 2017). 

2 Study area and data 

2.1 Study area and reference data 

We examined two different types of land use in our analysis: grassland parcels with reference data 
to train the model and fallow parcels where we applied it. The data from the used grassland parcels 
are obtained from the Biodiversity Exploratories project that includes standardized grassland 
parcels in three parts of Germany with extensive information on management practices provided, 
including mowing events (FISCHER et al. 2010; VOGT et al. 2019). We used data from 2017 to 2019 
which yielded a reference dataset of 257 mowing events on over 60 different parcels. 
The study area chosen for the application of the model was the federal state of Brandenburg. Here, 
the boundaries of all agricultural parcels are contained in the Geospatial Aid Application data 
together with additional information, including the cultivated crop type and whether a field was 
declared as fallow in a given year in order to receive subsidies. The data is made openly available 
by the Ministry of Agriculture, Environment and Climate Protection Brandenburg. We selected 
the dataset from 2019, containing 8,255 fallows that are reported as ecological focus areas. A 
negative buffer of 20 m was applied to reduce edge effects. After excluding parcels smaller than 
1 ha, 3,107 parcels were left for analysis. 

2.2 Remote sensing imagery 

2.2.1 SAR imagery 

Two SAR parameters were used in this study, the interferometric coherence and the gamma naught 
(γ0) backscatter coefficient. Time series of coherence were observed to show significantly higher 
values after the cutting of grass on a parcel due to a temporally more stable and coherent scattering 
of short grass compared to long grass. The reaction of SAR backscatter time series to mowing 



Dreiländertagung der DGPF, der OVG und der SGPF in Dresden – Publikationen der DGPF, Band 30, 2022 

119 

events was observed to be indifferent, yet it showed to be of value for mowing detection LOBERT 
et al. (2021). 
The used data were acquired by the C-Band S1 constellation with dual-polarization in VV (vertical 
transmit and vertical receive) and VH (vertical transmit and horizontal receive) in the 
interferometric wide swath mode (IW). For the estimation of the interferometric coherence, both 
amplitude and phase information from the Single Look Complex (SLC) product type are needed. 
To process the SAR backscatter coefficient, the Ground Range Detected (GRD) product type, 
containing only amplitude information, is sufficient. Since the S1 constellation consists of two 
satellites (S1A & S1B), the interval between acquisitions from the same orbit is 6 days. We chose 
a single relative orbit for each parcel, which ensures a consistent acquisition geometry. For each 
orbit, we used all scenes for the months March to November from 2017 to 2019 for the grassland 
sites (414 scenes) and from 2019 for the fallows (180 scenes). We accessed the S1 data through 
the Copernicus Data and Exploitation Platform - Deutschland (CODE-DE; Benz et al. 2020). 
We computed the coherence data using the Graph Processing Tool (GPT) of the Sentinel 
Application Platform (SNAP). First, we formed image pairs from each SLC acquisition and its 
predecessor 6 days earlier. Then, we updated the exact orbit position and coregistered the image 
pair using back-geocoding. Afterward, we estimated the coherence using a window size of 2 pixels 
in azimuth and 10 in range direction to obtain approximately square pixel size. Finally, we merged 
the individual bursts of the coherence image followed by a terrain correction to a spatial resolution 
of 20 m using the Shuttle Radar Topographic Mission (SRTM) 3 arc-second global digital 
elevation model (DEM; FARR et al. 2007). 
To process γ0, we first applied border and thermal noise removal to the GRD acquisitions. We then 
calibrated and radiometrically flattened the data to obtain γ0 backscatter coefficient, which 
represents the ratio between the incident power and the scattered power for a reference area that is 
perpendicular to the line of sight from the sensor to an ellipsoidal model of the ground surface 
(Small 2011). The images were then terrain corrected and resampled to a spatial resolution of 10 m 
using the SRTM DEM. Finally, we converted γ0 from linear scale to dB. The GPT was again used 
for these steps. To exploit the information content of the backscattered signal in both polarizations, 
we calculated the backscatter cross-ratio (CR): 

𝐶𝑅 ൌ  𝛾௏ு
଴ ሾ𝑑𝐵ሿ െ 𝛾௏௏

଴ ሾ𝑑𝐵ሿ (1) 

which was observed to be strongly affected by structural changes in crops like winter cereals 
(HOLTGRAVE et al. 2020; VREUGDENHIL et al. 2018). Moreover, SCHLUND & ERASMI (2020) 
reported that the CR stays relatively stable in dense time series over longer periods when 
agricultural areas are observed, because the effect of terrain and soil properties on the radar signal 
is similar for both polarizations and, thus, the ratio reduces the impact of these factors on the CR 
signal. 

2.2.2 Optical imagery 

Optical vegetation indices (e.g., NDVI) are a common proxy for vegetation vitality and biomass. 
They were observed to show drops in time series related to mowing events and the resulting 
removal of green biomass and were therefore frequently used in mowing detection algorithms 
REINERMANN et al. (2020). 
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For our analysis, we used all available scenes from S2 and L8 that cover the study area and have 
a cloud coverage of less than 75%. We then corrected all data for radiometric and geometric 
effects, clouds, and their shadows using FORCE (FRANTZ 2019) and the Fmask algorithm (FRANTZ 
et al. 2018; ZHU et al. 2015; ZHU & WOODCOCK 2012). Then, we calculated the NDVI as follows: 

𝑁𝐷𝑉𝐼 ൌ  
ሺ𝜌𝑁𝐼𝑅 െ  𝜌𝑅𝐸𝐷ሻ
ሺ𝜌𝑁𝐼𝑅 ൅  𝜌𝑅𝐸𝐷ሻ

 (2) 

where ρNIR is the reflectance in the near-infrared band and ρRED is the measured reflectance in 
the red band of the respective satellite (TUCKER 1979). 

3 Methods 

3.1 Time series composition 

Our study based on the parcel level as the unit of prediction. We, therefore, derived the median 
values of all coherence, CR, and NDVI observations for each grassland and fallow parcel using 
the respective parcel boundaries. An equidistant time series dataset is a technical requirement for 
the 1D-CNN architecture we used in our study. Since the SAR data already come with an 
equidistant time interval of 6 days, we matched the NDVI time series with the dates of the SAR 
acquisitions using linear interpolation. Furthermore, the time series were standardized by parcel 
and year by subtracting the mean and dividing by the standard deviation. 

 

Fig. 1: Schema of the moving window approach applied to an exemplary excerpt of the time series of a 
grassland parcel in 2019. Depending on whether there was a mowing event on the middle time 
step of a resulting sequence, it is labeled as mown or not mown. 

We then decomposed the time series of each parcel into short overlapping sequences, using a 
moving window approach which allowed us to use a supervised classification algorithm on our 
dataset. The approach includes the stepwise moving of a window over the time series with a given 
size and creating new sequences out of the values that fall into the window at each step. 
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Subsequently, we labeled the sequences as mown or not mown depending on whether a mowing 
event occurred at the midpoint of the sequence (Fig. 1). The size of the window was five 
observations before and after the middle time step, respectively, resulting in a total length of 11 
observations. For each new sequence, it was moved by one time step (6 days). This ensured, that 
every observation is the middle time step of a sequence and can potentially be classified as a 
mowing event. 

3.2 Deep Learning model 

Machine learning algorithms are widely used for classification or regression tasks in remote 
sensing applications. In the last years, especially Artificial Neural Networks (ANN) started to be 
applied more and more and achieved competitive results. Convolutional Neural Networks (CNN) 
are a form of ANNs that perform well on sequential data since they convolve the input data in a 
way, that consecutive values are combined, and higher-level features are extracted. This makes 
them a frequently applied method in the domain of deep learning (KATTENBORN et al. 2021). 

3.2.1 Implementation and training 

Here, we used a 1D-CNN proposed by WANG et al. (2017) and adapted by LOBERT et al. (2021) 
to classify the labeled sequences into mown and not mown. We implemented the 1D-CNN with 
Keras (CHOLLET & KERAS-TEAM 2015) and TensorFlow (ABADI et al. 2016) as backend using the 
R interface to Keras (ALLAIRE & CHOLLET 2020). The original model was developed to classify 
univariate sequences into multiple classes. To match the given classification problem, LOBERT et 
al. (2021) adapted the model to run on multivariate input data, i.e., the different time series, and 
give binary classification output in combination with a complexity reduction and architecture 
optimization. 
The model used here consists of two convolutional layers with kernel sizes five and three and filter 
numbers 128 and 256, respectively. The output of the convolutional layers was zero-padded to 
remain the same size as the input. Batch-normalization and a rectified linear unit (ReLU) activation 
function were applied after each layer. The ReLU function converts all negative values to zero, 
while positive values are preserved. The two convolutional layers were followed by a global 
average pooling and finally a single densely connected and sigmoid-activated neuron to give the 
final output (Fig. 2). 
LOBERT et al. (2021) conducted an in-depth feature selection and hyperparameter optimization for 
the presented model architecture, using identical training and reference data. We, therefore, 
decided to use their proposed best setup and refer the reader to the publication for more detailed 
information. In our study, we randomly chose 15% of the grassland parcels as test samples and 
trained our model on the remaining parcels. 
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Fig. 2:  Schematic architecture of the 1D-CNN by Lobert et al. (2021). The model consists of an input 

layer with three features of 11 timesteps. The input layer is followed by two convolutional Layers 
with kernel sizes five and three and filter numbers 128 and 256, respectively. Next is a global 
pooling layer, summarizing each filter to its average. The last layer is a densely connected and 
sigmoid-activated output neuron. 

3.2.2 Method transfer 

Since only reference data for the grassland areas were available, we had to train and validate our 
model on these data and transfer the model to the fallows afterward. This transfer is based on the 
assumption that mowing events on grassland and fallows result in similar signals in the remote 
sensing time series. 
Since we were interested in a detection algorithm that would show possible non-compliance with 
subsidy requirements, the accuracy of our model plays a critical role. We, therefore, measured our 
accuracy on the grassland test set with two metrics: the recall, stating the share of reference events 
that our model was able to detect, and the precision, giving the share of the mowing events 
predicted by our model that are actually correct. The sigmoid activation that is applied to our model 
output results in a continuous value between 0 and 1 for each sample. This value can be treated as 
the certainty of the model prediction or, in this case, the probability of a predicted sample to be 
mown. Usually, a threshold of 0.5 is used to classify the model output into mown (above threshold) 
and not mown (below threshold). Raising this threshold results in increased precision of the 
detections, while the recall decreases at the same time, and vice versa. In this trade-off between 
precision and recall, we decided that precise predictions are more important for our application, 
even though fewer events may be detected in return. 
We, therefore, analyzed several threshold values between 0.5 and 1 regarding the resulting 
precision and recall on the grassland data. Based on this relationship, we were able to estimate the 
best threshold to make predictions on the fallows with high precision. With the chosen threshold, 
we applied the model on the fallows and measured the share of parcels where a mowing event was 
detected before the 15th of July, which could mean a possible non-compliance with the subsidy 
requirements for fallow cropland that is declared as ecological focus area in Germany. 
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4 Results and discussion 

Our results show that increasing the threshold for the model output to be classified as mown 
continuously decreased the recall while improving the precision of the model predictions at the 
same time (Fig. 3). Above a threshold of 0.93, the precision reaches 1, which means that the model 
no longer predicted false positives when applied to the grassland test data. Yet, this also comes 
with a recall rate that has dropped to 0.37, meaning that nearly two-thirds of the mowing events 
are missed. However, with this threshold, we could expect to make the most precise predictions 
when applying the model to the fallows and result in the least false positives. With this threshold, 
295 from all 3,107 analyzed fallows showed a detected mowing event before the 15th of July, 
which is about 9.5% of the parcels. 

 
Fig. 3:  Precision and recall measured on the grassland test data depending on different threshold 

values of the sigmoid activated model output to be classified as mown. 

The time series and model predictions for four exemplary fallows with predictions before the 15th 
of July are shown in Fig. 4. All examples show drops in the NDVI at or prior to the detected event. 
They also show the lowest NDVI value during the observed period with more than one standard 
deviation below the mean shortly after the detection. This supports the hypothesis that removal of 
green biomass by mowing has occurred here. However, in the upper left and lower right examples, 
the NDVI starts to decrease more than one month before the detected cut. This could be induced 
by withering vegetation. This hypothesis is further supported by very warm and dry conditions in 
Brandenburg in 2019 and the fact that fallows commonly occur on marginal sites. 
The coherence signal can be observed to increase after the detected events. The two fallows on top 
show high and sharp increases. This could suggest a correct detection on the upper left fallow, 
despite the early NDVI decline. The lower examples show delayed and weaker signals. These 
differences could be explained by different practices that partially leave the cut material on the 
plot like mulching. The CR time series does not show a consistent pattern throughout the four 
examples. 
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Fig. 4:  Time series and predictions made by the model for four exemplary fallows in Brandenburg in 

2019 with predicted mowing before the 15th of July with a threshold of 0.93. 

These findings of time series patterns related to potential mowing events go in line with the 
findings of others (e.g., DE VROEY et al. 2021; SCHWIEDER et al. 2022). However, we must be 
aware that fallow cropland, unlike traditional meadows and pastures, is much more heterogeneous 
and has a wide variety of vegetation types and species that are either sown or grow spontaneously. 
Compared to the quite simple phenology of grass in managed meadows, that is mowed several 
times a year and then grows up again, we are dealing here with a probably much more complex 
annual course that can contain sudden events that may easily be mistaken for mowing events. 
Therefore, even if randomly checked detections may seem plausible, the results of the transfer 
learning should be handled with caution. We must be aware that a model detection does not 
necessarily mean non-compliance but can be a valuable indicator to plan on-the-spot checks.  

5 Conclusion 

Our transfer learning approach presented here was able to detect events in the remote sensing time 
series of fallow cropland that closely resemble mowing events on grasslands. Based on the 
hypothesis we made at the beginning of this article, these could be actual management measures 
on the corresponding parcels. Any in-depth interpretation of these results, however, requires 
thorough validation against reference data on fallow land management and is a pre-requisite for 
further research. 
The results indicate that management practices could have occurred on fallow cropland during 
periods in which management is prohibited on parcels that were reported as ecological focus areas. 
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Appropriate reference data and further development of the model could solidify these results and 
provide a robust overview of the temporal distribution of management practices on fallows. 
Hereby, this study could have provided the basis for an improved evaluation of CAP measures in 
the future. 
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