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Biodiversity Monitoring based on Remote Sensing - 
Assessment of Forest Height Changes Considering 

Inaccuracies in Image-based Digital Elevation Models 

SELINA GANZ1 & PETRA ADLER1 

Abstract: Multitemporal monitoring of vegetation heights holds great potential for forest 
management and protection. For this purpose, time series of image-based digital elevation 
models can be used. However, the determination of forest height changes is challenging due 
to missing reference data and varying quality of the input data. In this study, a method is 
developed for automatic classification of forest height changes considering inaccuracies in 
elevation information. To analyse these inaccuracies, heights of buildings scattered 
throughout the study area were analysed. Based on this analysis, height changes were 
classified into i) stable ii) stable/growth iii) growth and iv) decline. The developed methods 
create a change map for each user-defined forest area within Baden-Württemberg, showing 
forest height changes over six years and provide the potential for a long-term, remote-sensing 
based biodiversity monitoring. 

1 Introduction 

Forest structures are essential elements of forests, which are linked with habitat requirements of 
many protected species (FRANK et al. 2009; KYWE 2012). Old forest stands in particular are rich 
in structure and essential for carbon storage and –sequestration, as well as for water provisioning 
and buffering of the microclimate (SPRACKLEN & SPRACKLEN 2019; DE ASSIS BARROS & ELKIN 
2021). Old trees play a vital role as habitats for plant, fungus, lichen and animal species that depend 
on these conserved structures and cannot compete in younger stands, which are often characterized 
by denser and uniform planting and have unstructured, linear forest edges (BOLLMANN et al. 2009). 
Unfortunately, despite the high awareness in the European Union about these forests, their 
abundance is still declining (KNORN et al. 2013; SABATINI et al. 2018). In addition, forest age and 
vegetation height are important information for management and for the designation of protected 
areas (VIHERVAARA et al. 2017). Therefore, it is important to monitor forest development in a goal-
oriented manner, as discussed in LINDENMAYER & LIKENS (2009) and REYNOLDS et al. (2016). 
However, identification of old stands and measurement of tree growth in the field is difficult, 
destructive and time-consuming (SPRACKLEN & SPRACKLEN 2019). Remote sensing techniques 
such as airborne laser scanning (ALS), aerial images or satellite data are a cost efficient and 
promising approach for biodiversity monitoring (JIANYA et al. 2008; KUENZER et al. 2014; 
VIHERVAARA et al. 2017). Time series of vegetation height changes can help to identify 
undisturbed, well-growing forest stands for entire landscapes (SPRACKLEN & SPRACKLEN 2019) 
or countries (GINZLER et al. 2021) and may enable the distinction of old and younger forest stands. 
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So far, there are no established remote sensing-based monitoring tools for Germany that analyse 
forest height changes over time. 
As a contribution to the project “monitoring of biodiversity with remote sensing tools” 
(MoBiTools), this study developed remote sensing-based methods to record biodiversity-relevant 
forest surface structures. For this purpose, image-based digital elevation models were used which 
cover about one third of the state area of Baden-Württemberg every year and thus provide new 
data every three years (LANDESAMT FÜR GEOINFORMATION UND LANDENTWICKLUNG (LGL) 
2021b). A key analysis was the change of vegetation heights, which can be derived from 
normalized digital surface models (nDSMs). However, the spatially explicit assessment of height 
changes is challenging: Reference data are rarely available. If reference data is available, the 
accurate location of reference points and tree canopies, as well as the measurement of tree heights, 
are subject to uncertainties (ACKERMANN et al. 2020). Moreover, the aerial images from different 
flight campaigns can differ in quality (ZIELEWSKA-BÜTTNER et al. 2016), and nDSMs can also 
suffer from inaccuracies for various reasons (WANG et al. 2015; ACKERMANN et al. 2020; JAVADI 
et al. 2020), which may affect classification. Therefore, a marked change in forest height can only 
be measured if height change is greater than any biases in the remote sensing measurement 
(WULDER et al. 2008). This implies that growth increment must exceed the assumed measurement 
bias (WULDER et al. 2008). Hence, to detect changes, the vertical agreement of the nDSM time 
series must be evaluated and considered when classifying forest height changes. Consequently, the 
following research question arises: How can height changes in forests be assessed taking into 
account inaccuracies in image-based digital elevation models? 

2 Methodology 

After a short introduction to the study site (2.1), this section describes the nDSM time series as 
input data for the assessment of forest height changes (2.2), the accuracy assessment of these 
datasets (2.3) and the change detection of forest heights considering inaccuracies in the input data 
(2.4). The developed workflow was accomplished using the software R Version 4.0.5 (R CORE 

TEAM 2021). 

2.1 Study site 
The study site covers the forest area of Baden-Württemberg, a federal state located in the south-
west of Germany. Baden-Württemberg has a total area of about 35,751 km², of which around 40 % 
(13,718.5 km²) are covered with forest (KÄNDLER & CULLMANN 2014). Most common tree species 
are Norway spruce (Picea abies) with 34 %, European beech (Fagus sylvatica) with 22 %, Silver 
fir (Abies alba) with 8 % and oaks (Quercus sp.) with 7 %. 

2.2 Creation of nDSM time series 
The assessment of forest height changes was carried out using aerial images acquired by 82 
airborne image flight missions spanning the period from 2011 to 2019. The aerial images were 
provided by the state agency of spatial information and rural development of Baden-Württemberg 
(LGL) (LANDESAMT FÜR GEOINFORMATION UND LANDENTWICKLUNG (LGL) 2021b) as part of 
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regular aerial surveys. The surveys are conducted during the vegetation period on a three-year 
cycle, covering about one-third of the state each year. Using the software SURE of nFrames 
(ROTHERMEL et al. 2012), photogrammetric point clouds were processed with a ground sampling 
distance (GSD) of 40 or 50 cm. Flight conditions such as season, time of day and weather 
conditions, flight settings such as front/side overlap and camera type, as well as image-matching 
parameters such as SURE version and GSD, varied between the flight missions. 
Normalized digital surface models (nDSMs) with a GSD of 1 m generated from aerial images 
served as the basis for deriving forest heights. A detailed description of the applied methods for 
deriving aerial image-based nDSMs can be found in SCHUMACHER et al. (2019) and GANZ et al. 
(2020). The three-year interval of the image flight missions resulted in the time series 2011-2014-
2017, 2012-2015-2018, and 2013-2016-2019. The position of the flight missions per year and the 
composition of the time series are shown in Figure 1. The allocation of relevant flight missions is 
defined by a regularly updated polygon feature that indicates, in 1x1km squares, the combination 
of flight missions to be selected for each single year and three-year interval. 

  

Fig. 1:  Flight missions in Baden-Württemberg between 2011 and 2019 are combined into the three 
time series 2011-2014-2017, 2012-2015-2018 and 2013-2016-2019 

2.3 Accuracy assessment of nDSM time series 
Within the last decades, various remote-sensing-based methods for the assessment of tree height 
at stand or single tree level have been developed and studied. The comparison of remote sensing 
methods for measuring tree height involves a high degree of uncertainty because data acquisition 
parameters and forest characteristics vary in these studies. As such, it is difficult to transfer 
measurement errors between the applied methods (GANZ et al. 2019). As a consequence, the 
evaluation of the accuracy of forest heights cannot be measured against the results of other studies. 
Depending on the remote sensing system, forest heights can be systematically under- or 
overestimated. Therefore, in time series analyses, besides the absolute accuracy of the nDSMs, 
especially the precision of repeated recordings is crucial (WULDER et al. 2008). To evaluate the 
vertical agreement of the nDSMs, the variation of objects at constant heights was quantified. For 
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this purpose, the building dataset of the land register of Baden-Württemberg (LANDESAMT FÜR 

GEOINFORMATION UND LANDENTWICKLUNG (LGL) 2021a) was used. A maximum of five 
buildings per 1x1km quadrant was randomly sampled across Baden-Württemberg so that the 
buildings were distributed as evenly as possible. For each building, the maximum value of the 
respective nDSM was extracted for each year of the time series. As the accuracy assessment aimed 
to determine the nDSM precision rather than changes in buildings, according to the study of DINI 
et al. (2012) a threshold was set. Only buildings with heights > 2.5 m were evaluated. Furthermore, 
only nDSM height differences < 2.5 m were considered. Height changes > 2.5 m were considered 
as architectural changes and were not analysed. Only buildings for which data were available for 
all three time periods were used. 
After applying the thresholds, 87225 building heights could be extracted from three different 
nDSMs, respectively. The nDSM inaccuracies were evaluated on the basis of the maximum 
absolute differences of each time series. The distribution of the buildings considered for accuracy 
assessment, as well as a histogram of the maximum absolute differences, is shown in Figure 2. 
The maximum absolute differences were ranging between 0 and 2.50 m with a mean value of 
0.88 m (standard deviation = 0.46 m). A value of 2 m corresponded to the 97% percentile. 
 
 

 

 

 

 

 

 

 

Fig. 2:  To evaluate the accuracy of height changes, nDSM values were extracted at 87225 buildings. 
The maximum absolute differences between nDSMs were calculated to evaluate the vertical 
agreement of the nDSM time series 

2.4 Classification and plausibility check of forest height changes 
To minimize inaccuracies at the level of individual pixels, the resolutions of the nDSMs were 
reduced from 1 m to 10 m, keeping the highest values. Subsequently, the height changes were 
calculated by subtracting the rasters from each other resulting in nDSM difference rasters (D-
nDSMs). Based on the nDSM time series 2011-2014-2017, 2012-2015-2018 and 2013-2016-2019, 
changes could be analyzed over 6 years as well as over two three-year periods. 
Height changes were classified as follows: i) stable, ii) stable/growth, iii) growth, iv) decline. The 
division of the classes ‘stable’, ‘stable/growth’ and ‘growth’ is based in the height change within 
six years: The class ‘stable’ covers height differences of < 1 m to restrict height changes to a 
minimum, while the class ‘growth’ comprises height differences of > 3 m. Based on the estimated 
inaccuracy of the nDSM time series, a range of 2 m (1 – 3 m height difference) was assigned to 
the class ‘stable/growth’ to distinguish between the classes ‘stable’ and ‘growth’. The allocation 
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to the class ‘decline’ was made on the basis of the three-year periods. A significant height reduction 
of more than 50% of the maximum measured tree height had to occur in one of the three-year 
periods. 
In order to verify the plausibility of the height changes, all available time periods were considered, 
including two three-year periods and one six-year period. Pixels with non-plausible height changes 
were not assigned to any category. For example, an increase in height (> 1 m) followed by a 
decrease in height of the same magnitude was considered to be implausible, since it was 
presumably due to inaccuracies in the nDSMs. The permitted height changes within the three- and 
six-year periods are illustrated in Figure 3 and summarized in Tab. 1. 

 

 

Fig. 3: Categorization of nDSM height changes as ‘stable’, ‘stable/growth’, ‘growth’ and ‘decline’. 
Height changes are only allowed in the ranges shown: Both after 3 years (red line) and after 6 
years (blue line) a plausibility check was conducted. The grey lines correspond to the allowed 
ranges within the class definition assuming the height development reaches a maximum or 
minimum value after three years. 
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Tab. 1: Classification and plausibility check with d as difference between the nDSMs of the time period. 
The time period defines the analysed height difference after the first survey. Bold values are for 

classification, the others for plausibility check 

Time period stable stable/growth growth decline 

0 to 6 years -1 m < d < 1 m 1 m < d < 3 m  3m < d< 8 m - 

0 to 3 years -1 m < d < 1 m - 1 m < d < 3 m - 1 m < d < 5 m 
i) d < 50% of tree height OR 

ii) d < 5 m 

3 to 6 years -1 m < d < 1 m - 1 m < d < 3 m - 1 m < d < 5 m 
i): d < 5 m OR 

ii): d < 50% of tree height 

3 Results 

By combining the aforementioned approaches, a tool could be created that automatically evaluates 
forest height changes for any given area in Baden-Württemberg. While a polygon dataset with the 
requested areas serves as input dataset, the outputs of the tool are a table with summarized results 
(*.txt), which are illustrated by graphs and maps for each area (*.png), and optionally raster 
datasets (*.tif). Thus, spatial and temporal analyses are possible, which can be integrated in 
research questions regarding biodiversity. Figure 4 shows the developed workflow and illustrative 
results for four stands of Norway spruce at different ages. The stands are located in the southern 
Black Forest on comparable site conditions. The examples show that, despite the short time period 
covered by the time series so far, the proportions of the classes can be very different across stands 
at different ages. Stand 1 with an age of 31 – 40 years shows with 79% a very high percentage of 
the change class ‘growth’. The stand 2 and 3 with the ages 61 – 70 years and 81 – 90 years have a 
mixed proportion of the classes ‘growth’ and ‘stable/growth’, with 41% and 24% ‘growth’ and 
27% and 47% ‘stable/growth’, respectively. 28% and 26% each are assigned to ‘NoData’. In stand 
2, height reduction was detected on 3% of the area. Stand 4 represents with an age of 121 – 130 
years a late-successional forest and shows with 35% ‘stable’, 2% ‘growth’ and 30% ‘NoData’ a 
high percentage of constant heights and ‘NoData’. In these examples, the class ‘stable’ increases 
with age while class ‘growth’ decreases. This is consistent with the general finding that height 
growth of young stands is greatest and decreases with age (PRETZSCH 2019). Although the 
examples are generally not representative for stands with different tree species, ages, and site 
conditions, they show that a differentiation of height changes may be possible i) according to the 
set of categorizations made and ii) across the available time series. 
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Fig. 4:  Developed workflow leading to the assessment of forest height changes for user-defined forest 
stands in Baden-Württemberg. D-nDSMs are nDSM difference rasters. Graphs with D = decline, 
S = stable, S/G = stable/growth, G = growth, NA = NoData. The y-axis depicts the percentage of 
the area 
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4 Discussion 

Continuous change detection based on multitemporal aerial images is a challenge due to variant 
spectral characteristics, shadows and surface conditions (JAVADI et al. 2020). Changes in the 
acquisition geometry, the time of acquisition, the weather at the time of flight (ACKERMANN et al. 
2020) as well as different view and illumination directions (DINI et al. 2012) influence image-
matching for deriving elevation models. Especially in rugged terrain and forests of complex 
structure, image-based elevation models might be erroneous (HOBI et al. 2015; ZIELEWSKA-
BÜTTNER et al. 2016). A direct comparison of height models within a time series can therefore lead 
to uncertainties and artefacts (ACKERMANN et al. 2020). As a consequence, it is very important to 
note that changes in tree height can only be measured if the height increase is greater than any 
biases in remote sensing measurements (WULDER et al. 2008). For that reason, we evaluated the 
vertical agreement arising by subtracting image-based nDSMs through the analysis of height 
changes on roofs. Despite filtering by 2.5 m, we cannot exclude the possibility of architectural 
changes on the analysed roofs. However, due to the high number of samples, the evaluation can 
be considered reliable. According to the accuracy assessment of 2.3, overlaps between the classes 
‘stable’ and ‘growth’ can occur in approximately 3% of the samples. 
The accuracies of elevation models vary regarding different land cover categories and provide 
lower accuracies in forests (ALGANCI et al. 2018). Furthermore, artefacts in elevation models are 
more frequent in forest areas than in non-forest areas (WANG et al. 2015). Consequently, the 
threshold for forest areas must be higher than indicated by the analysis of the roofs. A study of 
GANZ et al. (2019) evaluated the accuracy of tree height measurements based on aerial images 
from LGL. The accuracy for 30 individual tree heights on a 50-year-old Douglas fir (Pseudotsuga 
menziesii) stand in the Black Forest in Baden-Württemberg was estimated to range between 
1 – 2 m. Finally, the accuracy of the measurement depends on the shape of the tree or on treetop 
visibility (GANZ et al. 2019). According to these findings, the range of 2 m of the class 
'stable/growth' can be considered sufficient for differentiation between the classes ‘growth’ and 
'stable. According to these findings, a threshold value of 2 m for the determination of height 
changes can be considered to be sufficient. In order to reduce misclassifications, the forest height 
changes must lie between certain thresholds to be assigned to one of the change classes. The class 
‘stable/growth’ with its range of 2 m acts as a buffer between the classes ‘stable’ and ‘growth’ and 
thus contains both: areas where tree growth takes place and areas with stable forest heights. To 
further minimize misclassifications, we decreased the resolution of the nDSMs from 1 m to 10 m 
keeping the highest value within 10x10 m. As recommended by ACKERMANN et al. (2020), we 
filter out erroneous data through plausibility check during categorization. However, the relevance 
and correct categorization of the classes ‘decline’, ‘stable’, ‘stable/growth’ and ‘growth’ cannot 
be verified due to the absence of reference data. 
As the examples show, the results of the time series analysis have the potential to correlate with 
forest age. Therefore, the nDSM time series can potentially enable the distinction of old forests 
from younger forest stands. For which tree species, tree age and site conditions this is practicable 
needs to be further investigated. As height growth is greatest in young trees under good site 
conditions, the developed methods are only appropriate until a specific forest age and site index. 
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For older stands with a lower site index, it takes considerably longer for the height increment to 
exceed the bias of the D-nDSMs. We agree with WULDER et al. (2008) that there is likely to be 
some error and that this error has to be contrasted with expected growth. For example, tree growth 
can vary with age and site conditions for Douglas-fir from 0.35 to 1.12 m per year for a 10-year-
old stand, from 0.10 - 0.36 m per year for an 80-year-old stand, and from only 0.05 - 0.24 m per 
year for a 120-year-old stand (WULDER et al. 2008). This illustrates that the present ‘stable’ and 
‘growth’ classes might be applicable for analysing the age structure of forests, though presumably 
only under good site conditions. As the examples show, the amount of ‘NoData’ increases with 
increasing forest age or stand complexity. The ‘NoData’ pixels are either related to inaccuracies 
in the nDSM time series or to heights < 5 m. Old-growth and late-successional forests possess 
complex structures (FRANK et al. 2009), which complicates the analysis of time series. To be able 
to evaluate change detection in forests with complex structures or poor site conditions, longer time 
series are needed. 
The required time interval of the images depends not only on the research question but also on the 
availability of data, e.g. the frequency of aerial image flight missions (ACKERMANN et al. 2020). 
For our studies, the aerial images were available from 2011 to 2019, resulting in time series of six 
years. Compared to other studies, the provided time series is very short. VASTARANTA et al. (2015) 
classified forest stand age using time series of image-based DSMs over a 68-year period. GINZLER 
et al. (2021) analysed forest height changes with historical vegetation height models based on 
analogue aerial photographs from the time periods 1980 and 1990 and the current vegetation height 
model from 2010. The greater the interval between the recording dates and the longer the time 
series, the more detailed the information on forest height change. With longer time series, the class 
‘growth’ could be further distinguished to differentiate between slow and fast growing forests. 
High frequency of data recording enables very precise identification of forest dynamics. The three-
years interval is sufficient to detect changes in a regular high frequency. At 10×10m, it is possible 
to detect even small changes in very small groups of trees. When time series grow longer, the 
current analysis tool, especially the plausibility and categorisation, must be adjusted. 

5 Conclusion 

Remote sensing enables the observation of natural dynamics that make it a powerful tool for 
biodiversity-related studies (KUENZER et al. 2014). The derivation of forest stand age 
(SCHUMACHER et al. 2020) or the identification of the amount and location of old forests (DE ASSIS 

BARROS & ELKIN 2021) can aid both forest management and forest conservation strategies. 
Regularly updated image-based digital elevation models from public flight mapping campaigns 
bear the potential to assess forest height changes in a cost-efficient way, especially when aiming 
at long-term monitoring. With the methods developed, it is possible to monitor forest height 
changes over the last six years for a given forest area in Baden-Württemberg. The results can 
potentially give an estimate of forest age or the proportion of old forests. The calculations are fully 
automated for a user-defined number of areas and thus offer the possibility to get an overview of 
entire protected areas as well as individual habitats. Using an appropriately designed workflow, 
repeated aerial images enable measurement of forest height growth and the differentiation between 
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tree loss, growth and stable heights over time, giving insights about changes in forest structures 
and habitats. Although the time series of only six years are still very short for forestry purposes, 
they already have the potential to contribute to an increase in information. Furthermore, the 
analyses show the potential of longer time series analyses. If new data sets are added to the time 
series analyses in the future, the developed analyses can be improved and extended. Therefore, 
this analysis can be considered as the beginning of a long-term, remote sensing-based biodiversity 
monitoring program to assess changes of ecologically important forest structures and habitats. 
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