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Monitoring of Alpine Snow Conditions Using C-Band SAR 

CLAUDIO NAVACCHI1, BERNHARD BAUER-MARSCHALLINGER1 & WOLFGANG WAGNER1 

Abstract: Information about the state of a snow pack is valuable in many geoscientific appli-
cations, e.g., for hydrological run-off models. This study aimed to retrieve such information 
by linking C-band Sentinel-1 Synthetic Aperture Radar (SAR) data with snow profile meas-
urements in an alpine region. A new technique for normalising the Sentinel-1 backscatter 
measurements was developed, accounting for the varying observation geometry. With this, a 
strong relationship between radar backscatter and snow wetness could be established. More-
over, the normalisation method allows to deduce snow parameter information even without 
well-known change detection techniques, since systematic observation effects cancel out. Us-
ing these findings for wet snow mapping, a good agreement with optical imagery could be 
achieved. 
 

1 Introduction 

Aperture synthesis in radar imaging enables the acquisition of high-resolution Earth observation 
imagery at microwave frequencies (MOREIRA et al. 2013). Most Synthetic Aperture Radar (SAR) 
systems operate in the microwave C-band (4-8 GHz), which exhibits a significant sensitivity to 
water, one of the most abundant molecules on Earth. It has proven to be an indispensable way of 
monitoring processes taking place within the cryosphere, e.g. iceberg monitoring and wet snow 
extent mapping (POWER et al. 2001, NAGLER & ROTT 2000). Thanks to the recently much improved 
availability of data from SAR missions and ground based snow observations in terms of spatial 
and temporal resolution, the relationship between high-resolution SAR backscatter data and snow 
properties can be studied with unprecedented quality and details.  
The aim of this study was to compare snow profile measurements (e.g., snow height, grain size, 
snow wetness, …) collected by the Lawinenwarndienst Tirol with Sentinel-1 SAR time series. The 
major hurdle when comparing these two data sources is the pronounced impact of the topography 
on the Sentinel-1 measurements. Thus, before snow properties can be derived from dense Sentinel-
1 time series, representations of backscatter data need to be identified that minimise the impact of 
orbit geometry and local topography. 
This paper starts with an introduction into the state of the art in snow-backscatter modelling and 
common approaches for radar backscatter normalisation in Section 2. Subsequently, a short over-
view of the data sets serving as an input for this research is provided. In Section 4, the methodology 
for preparing and normalising backscatter data to enhance its comparability with respect to snow 
parameter measurements is described. Finally, obtained results are discussed and the paper con-
cludes with an outlook to future research topics.   
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2 State of the Art 

2.1 Snow-Backscatter Modelling 

In microwave remote sensing the interaction of the microwave pulses with the land surface is most 
commonly modelled using radiative transfer theory. This theory is very complex in the presence 
of a dense medium as it is the case for an aged snow pack with larger grains, fluid retention and 
differing layers (cf. Fig. 1). 

 
Fig. 1: Interaction of microwave radiation with a multi-layered snow pack 

Yet, assumptions about the composition of the snow pack or the propagation characteristics of the 
radiation allow to derive certain snow parameters.  This has been shown in past studies, e.g. an 
estimation of grain size, snow density and snow depth using the polarimetric properties of SIR-
C’s X/C-band sensor (SHI & DOZIER 2000), or deriving the snow water equivalence (SWE) from 
C-band SAR backscatter data (BERNIER & FORTIN 1998). Mapping extents of a wet snow pack is 
of high relevance in literature primarily being iniated by NAGLER & ROTT (2000). Until recently, 
change detection with an empirically defined threshold of -3 dB between wet and dry snow 
persisted as a suitable method for accomplishing this task (NAGLER et al. 2016). It relies on the 
fact, that dry snow is nearly a transparent medium at C-band frequencies, while wet snow absorbs 
the microwaves very quickly. Thus, the presence of wet snow, causing scattering at the air-snow 
interface, can be revealed by choosing a reference image at dry snow or snow-free conditions. 

2.2 Radar Backscatter Normalisation 

Radar backscatter normalisation is about the elimination of the dependency of backscatter on in-
cidence angles. Diverse remote sensing satellite systems collecting multi-angle data made it pos-
sible to apply data-driven normalisation techniques. Some of those techniques rely on a high tem-
poral resolution or a special measurement configuration. Scatterometers, such as ERS-SCAT or 
ASCAT, allow for a direct (i.e. in one overpass) normalisation, since the same area is measured 
almost simultaneously with multiple beams under different observation angles (NAEMI et al. 2009). 
For other sensors like ASAR on ENVISAT, dense backscatter and incidence angle time series data 
is used to estimate a slope and intercept parameter over the whole observation archive, based on 
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linear regression (LR). These parameters can then be used to tilt the backscatter distribution with 
respect to a certain reference incidence angle, which is generally chosen to minimise extrapolation 
errors. Regarding Sentinel-1, this estimation is more difficult due to a smaller range of incidence 
angles covered by the measurements resulting from the more stringent orbital configuration. Re-
cent attempts have shown success when resampling Sentinel-1 data to 500 m and to estimate the 
slope parameter through a multivariate linear regression model (BAUER-MARSCHALLINGER et al. 
2018). However, this approach could not been transferred to higher-resolution backscatter which 
is still an open research topic. 

3 Region of Interest and Data Sets 

The region of interest for this study covers the western part of North Tyrol and a small part of 
South Tyrol in the Austrian/Italian Alps. Based on the availability of snow profile and satellite 
data, the time span ranges from July 2015 to September 2017, thus comprising two winter seasons. 
The satellite data consists of Level-1 IW GRDH data from Sentinel-1A/B. It was preprocessed to 
get backscatter over ground (sigma nought, 𝜎଴), and radiometric terrain flattened gamma backscat-
ter (𝛾௥௧௙

଴ ), which will be explained in more detail in the next chapter. Incidence angles data was 
also stored during the preprocessing routine to allow backscatter normalisation in downstream 
processing, which requires information about the topography and the observation geometry.  
For two study years, approximately 300 manual snow profile measurements were provided by the 
Lawinenwarndienst Tirol, containing information about snow wetness, snow height, snow hard-
ness, grain size, grain shape, grain type and snow temperature. Measurement locations usually 
vary, because the data collection is performed by different employees of Lawinenwarndienst Tirol, 
skiers or ski tourers on a voluntary basis. This leads to a broad distribution of data samples in space 
with the drawback of reducing the temporal comparability.  Beside this data set, weather data from 
Wetteronline.de (i.e., rainfall and maximum temperatures) was also considered within our analysis. 

4 Methodology 

4.1 Radar Backscatter Normalisation 

Radiometric terrain flattening is a relatively new approach to represent backscatter as 𝛾଴, but ad-
ditionally correcting for terrain, i.e. regions affected by foreshortening (SMALL 2011). SMALL’S 
(2011) method tries to resolve the one-to-many and many-to-one relationship between the slant 
and ground range geometry and gives preference to an estimate of the illuminated area instead of 
applying an incidence angle normalisation. The proposed algorithm starts by integrating the local 
illuminated area for each point on a DEM. This area is estimated in a plane perpendicular to the 
slant range, where overlapping regions (e.g., when foreshortening is present) sum up, thus yielding 
a better estimate of 𝛾଴. Shadow regions are excluded and masked during this procedure as they do 
not contribute any information. 
Radar backscatter normalisation with respect to the incidence angle is another way to account for 
the influence of terrain, and for some extent, also of land cover. Within the frame of this research, 
a focus was laid on two methods: linear regression and a novel approach, the Piecewise Linear 
Percentile Slope (PLPS) method.  
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Fig. 2:  PLPS normalised backscatter at a reference incidence angle of 40° (black) for a pixel located on 

a steep slope. Each point colour refers to a certain Sentinel-1 orbit and each line colour to a per-
centile 

The idea of the here presented PLPS method is to discretise the backscatter distribution per orbit, 
instead of relying only on one single slope estimate for all orbits as it is the case for LR. Percentiles 
are thought to be the best choice for sampling the distribution, since they offer to derive a slope 
being dependent on the given backscatter distribution at a given incidence angle and are less in-
fluenced by outliers. However, a linear regression between equal percentiles and their related in-
cidence angles does not work for a complex behaviour of backscatter, i.e. a non-linear behaviour 
along the range of incidence angles. This issue can be solved by going one step further in discreti-
sation and connect each pair of percentiles between neighbouring orbits, which is depicted in Fig. 
2. To minimise the necessity of extrapolation, 40° seems to be an appropriate choice for the refer-
ence incidence angle as the mean value of the Sentinel-1 incidence angles tends to be around 40°. 
For further analysis and comparison, 𝜎଴ was once normalised with the LR method (𝜎௅ோ

ସ଴) and once 
with the PLPS method (𝜎௉௅௉ௌ

ସ଴ ). 

 

Fig. 3:  Comparison between 𝜎଴ (left), 𝛾௥௧௙
଴  (center) and 𝜎௉௅௉ௌ

ସ଴  (right). 
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Fig 3. underlines the capability of both radiometric terrain flattening and PLPS to reduce the im-
pact of terrain on backscatter. In the left image, the typical illumination pattern of a SAR sensor is 
visible. Some regions appear very bright, because they are facing towards the sensor (foreshorten-
ing), while others are dark as they are situated on a slope turned away from the sensor. This be-
havior is very well compensated by means of backscatter normalisation as shown in the other two 
images. Shadow regions are masked for 𝛾௥௧௙

଴ , whereas 𝜎௉௅௉ௌ
ସ଴  excludes areas where no percentile 

slope estimation is possible, e.g., when only measurements from two orbits covering a small range 
of incidence angles are available. 

4.2 Change Detection 

Another way to deal with the influence of the observation geometry is to eliminate systematic 
effects by performing a subtraction between two backscatter values from the same orbit. By doing 
so, changes with respect to the chosen reference backscatter value can be detected and related to a 
geophysical variable, e.g., snow wetness. NAGLER & ROTT (2000) have used change detection for 
wet snow mapping relying on a selection of a suitable reference image (e.g., at dry-snow or snow-
free conditions) to separate backscatter of a snow pack from surface backscatter.  
The herein presented reference image selection follows recommendations of NAGLER & ROTT 
(2000) and NAGLER et al. (2016). In addition, the selection is explicitly assisted by continuously 
measured weather data. Past studies relied on a selection of one image, which is reasonable for a 
smaller test site. However, as this paper aims to compare backscatter measurements with snow 
profile data on a larger scale, a selection of a reference backscatter value is thought to be most 
reliable at pixel level, in contrast to image level. To detect the most appropriate backscatter values 
in a time series, meteorological data was interpolated at each pixel. Thereby, Inverse Distance 
Weighting (IWD) was applied for rainfall data and linear interpolation by height for temperature 
data. The final selection of a reference backscatter value is based on filtering the interpolated 
weather data in time, i.e. to find the pixel value with the coldest and driest conditions. 

5 Results and Discussion 

A subset of snow parameters was finally compared to the different backscatter representations, 
which are 𝜎଴, 𝛾௥௧௙

଴  𝜎௅ோ
ସ଴ and 𝜎௉௅௉ௌ

ସ଴ , for both polarisations VV and VH. From Fig. 4, one can con-
clude that normalised backscatter (lower rows) leads to superior results, with 𝜎௅ோ

ସ଴ performing best. 
This confirms the expectations of normalised backscatter not only being less dependent on terrain 
variations but also on the land cover type. Moreover, VH polarisation has a higher correlation for 
all snow parameters, which underlines the fact of multiple scattering and perhaps also the greater 
sensitivity with respect to fluid retention in a snow pack. Snow parameters such as air temperature, 
maximum snow wetness, mean grain size and mean snow wetness are characterised by a larger 
negative correlation, whereas snow height and the number of layers are positively correlated with 
backscatter. 
However, one has to keep in mind, that there is a large inter-dependence between the individual 
snow parameters, and hence might influence the backscatter dynamics in a coupled way. This 
could be the case for snow parameters with a negative correlation, all thought to be dependent on 
snow wetness. In general, larger grains occur when the snow pack contains wet snow or is gov-
erned by past melt-freeze cycles. The same is true for air temperature with a maximum correlation 
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of -0.55: the warmer, the higher the probability of wet snow. A positive correlation with snow 
depth is meaningful (more volume scattering), but is not necessarily the only cause of the depicted 
correlations. It could be the case that the results are affected by the site and the land cover itself, 
i.e. the general level of the surface backscatter, because of the varying measurement location.  
Correlations shown in Fig. 4 are based on a single value retrieval, which is disturbed to some extent 
by speckle, noise or the snow profile measurement procedure, which impacts on the snow pack 
structure. Building a local average over a certain neighbourhood around the measurement site 
(around 30m) increased the correlations significantly.  Furthermore, by applying change detection 
based on the generated reference image (referred to as backscattering difference), nearly all 
backscatter representations at VH polarisation reached a correlation of -0.64 with snow wetness. 
This behaviour is caused by the difference formation, where steady effects (e.g. terrain) cancel out 
(cf. Fig. 5, bottom). 

 

Fig. 4: Pearson's correlation coefficient resulting from relating backscatter to snow parameter data. Vis-
ual guidance is given through a colourisation of the correlation, where negative correlation is 
coloured as red and positive as blue 

Fig. 5 depicts a time series of snow and C-band SAR backscatter parameters for a part of the winter 
season in 2017. One can identify the large variation of  𝜎଴ caused by the different viewing geom-
etries (Fig. 5, top). All other backscatter representations line up very well and confirm the success 
of each normalisation method. As mentioned before, the separation of all backscatter parameters 
is further reduced when applying change detection (Fig. 5, bottom). Both figures (Fig. 5 top and 
bottom) show a rather strong, positive correlation between air temperature and maximum snow 
wetness, with dominant peaks in March and April. They are delineated well by the troughs of the 
backscatter curves being even more distinctive for the backscattering differences. Applying a harsh 
threshold of -3 dB as proposed by NAGLER & ROTT (2000) would exclude some measured snow 
melt events. We therefore suggest to create a continuous classification of backscattering differ-
ences below 0 dB. 
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Fig. 5:  Comparison between 𝜎଴ (red), 𝛾௥௧௙
଴  (blue), 𝜎௉௅௉ௌ

ସ଴  (green), and 𝜎௅ோ
ସ଴ (violet) once for VH polar-

ized backscatter and air temperature (top) and once for backscattering differences and maxi-
mum snow wetness (bottom), respectively 

 
Fig. 6:  Comparison between a Landsat 8 false-colour composite (left) and a map indicating wet snow 

(right) 
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The aforementioned findings can now be used to apply change detection on the backscatter data 
resulting in a map, which indicates snow wetness. In Fig. 6, such a map is compared to a Landsat 
8 false-colour composite showing good agreement concerning the extent of the snow pack.  

6 Conclusions and Outlook 

In this study the relationship between the properties of alpine snow and C-band SAR backscatter 
observations from Sentinel-1 was investigated. To minimise the impacts of topography and imag-
ing geometry, Sentinel-1 backscatter measurements were modified by means of radiometric nor-
malisation, a novel incidence angle normalisation method and change detection. Correlations with 
snow parameters seem to be highest when applying a linear regression model, as it appears to be 
more robust concerning critical backscatter distributions at high and low incidence angles. Yet, the 
here presented piecewise linear percentile slope normalisation is considered to be superior if the 
Sentinel-1 orbits cover a broader range of incidence angles.  
The results feature that Sentinel-1 backscatter shows the strongest (negative) correlation to manu-
ally measured snow wetness. The relation can be made even more pronounced by using change 
detection and spatial filtering (-0.64). Other snow parameters are also characterised by a high cor-
relation, but being rather insignificant due to inter-dependencies and a varying land cover. 
This work opens up further research questions, e.g., how to model additional orbit effects resulting 
from different viewing directions in azimuth or how to set up an objective snow parameter meas-
urement configuration to reduce the influence of the surveyor. 
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