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Dynamic Aggregation of Geo-Objects 
for the Interactive Exploration of Research Data 

ANNIKA BONERATH1, BENJAMIN NIEDERMANN1 & JAN-HENRIK HAUNERT1 

Abstract: In the context of research data management, the interactive exploration of data is 
a useful tool to make data findable and reusable. For exploring spatio- and temporal data 
we developed in a previously published work a data structure that provides the user with 
simple visualizations of the data for time window queries. We considered the data to be 
points in space each associated with a time stamp and we visualized it using α-shapes, which 
generalize convex hulls. In general, time windowed data structures support time window 
queries for geometric shapes or more general problems from computational geometry such 
as counting and intersection problems. With this paper, we contribute a review of our 
previously published method in the context of time windowed data structures, which is a 
relatively new concept of computational geometry. In particular, we highlight the relevance 
of our work for a growing domain of research. 
 

1 Introduction 

In times of big and heterogeneous research data, the data management and the exploration of 
available data becomes more and more important. Especially in the scientific context, projects 
often deal with these large amounts of spatio- and temporal data that need to be findable and 
reusable. For example, consider a project that deals with a database of meteorological data; see 
Figure 1. Each object in the data set is a storm event that is represented as a point in space and 
time. For scientific tasks often the researcher is not interested in all the data but only in a subset 
that is limited to a time window. In order to find the right time window, the user might want to 
interactively explore the data, by retrieving simplified visualizations of the data in time windows; 
see Figure 2. 
In this work, we visualize the queried data by sketching its outline. This outline provides the user 
with the possibility of roughly assessing the spatial distribution of the data. Since for most data 
sets, simple representations as the convex hull are not adequate, a wide range of more 
sophisticated polygonal representations exists; some of these are based on Delaunay-
triangulations (DE BERG et al. 2011; DUCKHAM 2008; EDELSBRUNNER et al. 1983) while others 
use spatial grids to define the representation (ATTALI 1997; JONES et al. 2008; PURVES et al. 
2005). 
In this paper, we use 𝛼-shapes (EDELSBRUNNER et al. 1983; EDELSBRUNNER 2010) for 
representing point sets, which are a generalization of convex hulls and strongly related to 
Delaunay triangulations. Among others, this technique finds its application in pattern recognition 
(VAUHKONEN et al. 2010) and micro-biology (LIANG et al. 1998). 
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Fig. 1: Storm events for the months of 1991 represented by 𝛼-shapes (lilac). The actual point set (blue) 
is drawn for illustration. Data retrieved from Data.gov. Map tiles by Stamen Design, under CC 
BY 3.0. Data by OpenStreetMap, under ODbL. 

In the following, we give the definition of 𝛼-shapes. Let 𝑃 ⊆ ℝଶ be a set of 𝑛 points in the plane 
and let 𝛼 ൐ 0. Further, let 𝑝𝑞 ∈ 𝑃 ൈ 𝑃 be a directed edge with |𝑞 െ 𝑝| ൑ 𝛼. We define the edge 
domain of 𝑝𝑞 as the open disk 𝐷௣௤ with radius 𝛼 2⁄  whose center lies to the right of 𝑝𝑞 and 
whose boundary contains the points 𝑝 and 𝑞. Let 𝑆ఈሺ𝑃ሻ ⊆ 𝑃 ൈ  𝑃 be the set of all edges that are 
shorter than 𝛼 and do not contain any point of P in their edge domain. We call 𝑆ఈሺ𝑃ሻ the 𝛼-
shape of 𝑃; see Figure 3(a). Based on the Delaunay triangulation, the α-shape of n points can be 
computed in 𝑂ሺ𝑛 log𝑛ሻ time (EDELSBRUNNER et al. 1983). 

 

Fig. 2: Scenario for the case that the user queries a simplified visualization for all storm events in 
March 1991. 
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Fig. 3:  (a) 𝛼-shape (lilac arcs) of a queried point set 𝑃ொ(filled blue discs) and (b) an edge with its edge 

domain and time attributes.  

In order to apply the definition of 𝛼-shapes to our problem setting, we first introduce two more 
concepts. For a point 𝑝 we denote its time stamp by 𝑡௣ ∈ ℝ. Further, a time window query 𝑄 is a 
query for a temporal range ሾ𝑡ொ

ᇱ , 𝑡ொ
ᇱᇱሿ and 𝑃ொ ൌ ሼ𝑝 ∈ 𝑃|𝑡௣ ∈ 𝑄ሽ is the subset of 𝑃 that is contained 

in 𝑄. As described in the running example, the point set 𝑃 is queried frequently for the α-shape 
𝑆ఈ൫𝑃ொ൯ of some time window query 𝑄. A straight-forward approach for a query 𝑄 first queries 
the set 𝑃 obtaining 𝑃ொ and then computes the 𝛼-shape 𝑆ఈሺ𝑃ொሻ. Utilizing a balanced binary 
search-tree for finding 𝑃ொ and additionally computing the 𝛼-shape, we obtain 𝑂ሺlog𝑛 ൅
|𝑃ொ| log |𝑃ொ|ሻ running time. For our use-case, we aim at a better running time per query. In 
particular, we propopse to use a data structure for filtering search (CHAZELLE 1986) that allows 
us to answer a query in 𝑂ሺlog 𝑛 ൅  𝑘ሻ where 𝑘 is the size of the returned 𝛼-shape. In a pre-
processing phase, we compute a data structure that aggregates the 𝛼-shapes of all possible 
queries; we call it the 𝛼-structure of 𝑃. We use this data structure in the query phase to obtain the 
𝛼-shapes of the incoming queries. Note that data structures, like the 𝛼-structure that preprocess 
temporal data so that specific queries for a time window can be handled efficiently are called 
time windowed data structures. In Section 2, we provide an overview about existing time 
windowed data structures.  
We have published two works concerning the 𝛼-structure, one as a preprint at the workshop 
EuroCG’19 and an extended conference version at ACM SIGSPATIAL’19 (BONERATH et al. 
2019a, BONERATH et al. 2019b). For the conference version we extended our approach to also 
provide schematized 𝛼-shapes. In particular, we can provide octilinear 𝛼-shapes where each edge 
has a direction that stems from a predefined set of eight directions, namely horizontal, vertical, 
and diagonal directions. Further, we provided a method, where the 𝛼 parameter of the queried 𝛼-
shape does not need to be fixed before preprocessing the 𝛼-structure. 

2 Related Work 

In general, a time windowed data structure answers queries concerning specific properties of the 
input data set for time windows. This concept was first considered by BANNISTER et al. (2013). 
They considered social network data as their input. On this data a relational event graph is built, 
where each vertex represents an entity of the social network and each edge represents a 
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communication between two entities. Each edge is associated with a timestamp. In their work 
they provide data structures that handle counting problems for both general graph properties such 
as the number of connected components, and properties for social network analysis. Further 
improvements, extensions and results on time windowed data structures for relational event 
graphs are presented by CHANCHARY & MAHESHWARI (2019) and CHANCHARY et al. (2017).   
Time windowed data structures are also considered for sets of geometric objects where each 
geometric object is associated with a point in time. For example, closely related to our work, 
BANNISTER et al. (2014) discussed the problem of reporting the convex hull, the skyline, and 
other basic problems from computational geometry for time window queries. Especially, closely 
related to our work is the problem of reporting the convex hulls for points with time stamps since 
the 𝛼-shape is a generalization of the convex hull. As a basic concept for their data structure, 
they build a decomposition tree in which each node contains the convex hull of its descendants. 
Their data structure reports the convex hull in 𝑂ሺℎ logଶ 𝑤ሻ time where ℎ is the number of edges 
of the convex hull and 𝑤 is the number of points contained in the queried time window. In 
contrast, the running time of our method depends not directly on the number of points in the 
queried time window but only on the size of the 𝛼-shape for those points 
RUDI (2018) discusses the design of a time windowed data structure for answering hotspot 
queries on trajectories. The hotspot of a trajectory is the square of fixed side length that contains 
the longest contiguous part of the trajectory. As input data each trajectory point is associated 
with a time stamp. Answering a time window query takes 𝑂ሺlogଶ𝑛ሻ time. The algorithm 
provides only an approximation. The idea of the data structure is to enrich each vertex with 
additional attributes with which the result can be computed. This idea is similar to our approach, 
since we also enrich the edges of the 𝛼-structure with additional attributes that we use in the 
query. 
Further work on time windowed data structures for sets of geometric objects with time stamps 
concerns decision problems such as the problem if the convex hull area is larger than some 
threshold (BOKAL et al. 2015, CHAN & PRATT 2016), intersection decision problems and counting 
problems of extreme points (CHANCHARY et al. 2018), and geometric properties like reporting 
the closest pair (CHAN & PRATT 2015).  

3 On 𝜶-Structures 

In the following, we define the 𝛼-structure of 𝑃.We say that an edge 𝑝𝑞 ∈ 𝑃 is active for a 
temporal query 𝑄 if the 𝛼-shape 𝑆ఈ൫𝑃ொ൯ contains 𝑝𝑞. We observe that an edge 𝑝𝑞 can be active 
for an infinite set of temporal queries, but it can only be active for 𝑂ሺ𝑛ଶሻ different subsets of 𝑃. 
To characterize this set, we introduce the following notation; see Figure 3(b).  
Let 𝑒 ൌ 𝑝𝑞 ∈ 𝑃 ൈ 𝑃 with 𝑡௣ ൏ 𝑡௤ and let 𝑅 ⊆ 𝑃 be the set of points contained in the edge 
domain of 𝑝𝑞. Further, let 𝑡௥ with 𝑟 ∈ 𝑅 be the largest time stamp that is smaller than 𝑡௣; if 𝑟 
does not exist, we set 𝑡௥ ൌ െ∞. Similarly, let 𝑡௦ with 𝑠 ∈ 𝑅 be the smallest time stamp that is 
greater than 𝑡௤; if 𝑠 does not exist, we set 𝑡௦ ൌ ∞. We call 𝑡௘ଵ ൌ 𝑡௥, 𝑡௘ଶ ൌ 𝑡௣, 𝑡௘ଷ ൌ 𝑡௤ , 𝑡௘ସ ൌ 𝑡௦ the 
time attributes of 𝑝𝑞. Using the time attributes we can formulate the conditions of an active edge 
for query Q 
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(1) the distance between 𝑝 and 𝑞 is smaller than 𝛼,  
(2) ∀𝑟 ∈ 𝑅 ∶ 𝑡௥ ∉ ሾ𝑡௣, 𝑡௤ሿ, and  

(3) 𝑡ொ
ᇱ ∈ ሾtୣଵ, t௘ଶሿ and 𝑡ொ

ᇱᇱ ∈ ሾtୣଷ, t௘ସሿ.  

We show that the conditions of an active edge are necessary and sufficient for an edge 𝑒 to be 
active for Q. Assume that 𝑒 is active for 𝑄. This is equivalent to the following three conditions; 
(i) 𝑝, 𝑞 ∈ 𝑃ொ, which is equivalent to 𝑡௣, 𝑡௤ ∈ 𝑄, (ii) 𝑒 is shorter than 𝛼 (equivalent to Condition 
(1)) and (iii) no point 𝑟 ∈  𝑃ொ is contained in 𝑅, which is equivalent to ∀𝑟 ∈ 𝑅 ∶ 𝑡௥ ∉ 𝑄. 
Applying the definition of the time attributes 𝑡௘ଵ, 𝑡௘ଶ, 𝑡௘ଷ, 𝑡௘ସ, Condition (i) and (iii) are equivalent 
to Condition (2) and (3).  
The 𝛼-structure Sఈሺ𝑃ሻ ⊆ 𝑃 ൈ 𝑃 of 𝑃 is the set of all active edges over all possible temporal 
queries. We show that Condition (1) and (2) are necessary and sufficient for an edge 𝑝𝑞 to be 
contained in Sఈሺ𝑃ሻ. 

Lemma 2.1. The edge e ൌ pq ∈ P ൈ P is contained in S஑ሺPሻ if and only if  

(1) the distance between p and q is smaller than α, and  

(2) ∀r ∈ R ∶ t୰ ∉ ሾt୮, t୯ሿ.  
Proof of Lemma 2.1. Let 𝑒 ∈ Sఈሺ𝑃ሻ, and let 𝑄 ൌ ሾt୕

ᇱ , t୕
ᇱᇱሿ be a query for which 𝑒 ∈ 𝑆ఈ൫𝑃ொ൯. 

Then 𝑒 fulfills the conditions of an active edge for query 𝑄 and therefore the conditions of 
Lemma 2.1. Conversely, let 𝑒 be shorter than 𝛼 and all points 𝑟 ∈ 𝑅 be temporally not in ሾ𝑡௣, 𝑡௤ሿ. 
Then the 𝛼-shape of the query 𝑄 with 𝑡ொ

ᇱ ൌ 𝑡௣ and 𝑡ொ
ᇱᇱ ൌ 𝑡௤ contains the edge 𝑒. □ 

For our use-case of a database, the memory consumption of our approach is decisive for being 
deployed in practice. We first observe that 𝑂ሺ𝑛ଶሻ is an upper bound for the size of an 𝛼-
structure. The following theorem shows that this is also a lower bound in the worst case.  

Theorem 2.2. For a set P of n points the α-structure has size Ωሺnଶሻ in the worst case. 

 

Fig. 4:  (a) worst-case example for the size of the 𝛼-structure as described in Theorem 2.2 and (b) the 
rotational sweep CPN-check for a point 𝑝 and CPN 𝑇௤ ൌ ሼ𝑞ଵ, 𝑞ଶ, 𝑞ଷሽ. 

Proof of Theorem 2.2. Let 𝑃 ൌ ሼ𝑝ଵ,𝑝ଶ, … ,𝑝௡ሽ be a point set with time stamps 𝑡ଵ ൏ 𝑡ଶ ൏ ⋯ ൏
𝑡௡ such that the points lie on a circle 𝐶 of radius 𝑟 ൏ 𝛼 2⁄  ordered clockwise according to their 
time stamps; see Figure 4(a). Let 𝑝௜,𝑝௝ ∈ 𝑃 be two points with 𝑖 ൏ 𝑗. We show that 𝑝௜𝑝௝ is 
contained in the 𝛼-structure Sఈሺ𝑃ሻ by proving the two conditions of Lemma 2.1. Due to 𝑟 ൏ 𝛼 2⁄  
the points 𝑝௜𝑝௝ have distance smaller than 𝛼. Hence, Condition (1) of Lemma 2.1 is satisfied. For 
the second condition let 𝑅௜௝ be the set of points contained in edge domain 𝐷௜௝ of 𝑝௜𝑝௝.  
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We observe that 𝐷௜௝ and 𝐶 intersect in 𝑝௜ and 𝑝௝. Since the radius of 𝐶 is smaller than the radius 
of 𝐷௜௝  the boundary of 𝐷௜௝  partitions 𝐶 into two parts. One part is contained in 𝐷௜௝  and the other 
lies outside of 𝐷௜௝. Since the points 𝑝ଵ,𝑝ଶ, … ,𝑝௡ appear in clockwise order on 𝐶, and since the 
center 𝐷௜௝ lies to the right of 𝑝௜𝑝௝ by definition, we obtain 𝑅௜௝ ൌ ሼ𝑝ଵ, … ,𝑝௜ିଵ, 𝑝௝ାଵ, … ,𝑝௡ሽ. 
Consequently, Condition (2) is satisfied.  
Hence, the database may exceed a size that is applicable in practice. However, the example is 
rather unlikely to occur in practice. Generally, the size of the database is bounded by 𝑂ሺ𝑛𝑚ሻ 
where 𝑚 is the largest number of points in a distance 𝛼 to a point in 𝑃. Assuming that the point 
density is bounded by a constant and 𝛼 is fixed, 𝑚 is also constant. If, on the other hand, the 
density increases, it becomes more likely that an edge gets destroyed. In our experiments, we 
observe a linear relation between the number of points and 𝛼-structure size; see Section 4. 

4 Constructing and Querying 𝜶-Structures 

We introduce an algorithm that constructs the 𝛼-structure of a point set 𝑃 in 𝑂൫𝑛ሺlog𝑛 ൅
𝑚ഥ log𝑚ഥሻ൯ time, where 𝑚ഥ  is the maximum number of points in a square with width2𝛼. Further, 
we describe how to query this data structure.  
The construction algorithm consists of two parts; see Algorithm 1. Each part is applied for each 
point 𝑝 ∈ 𝑃. We call the first part CPN-Search. In this part we compute the set of all points 𝑇௣ ⊆
𝑃 that fulfill Condition (1) of Lemma 2.1, i.e., all points that lie in a circle with center at 𝑝 and 
radius 𝛼. We call this circle the circle of potential neighbors (CPN) of 𝑝. We implement the 
CPN-Search with a sweep line approach to find 𝑇௣ in 𝑂ሺlog 𝑛 ൅𝑚ഥሻ time (PENG 2014).  

Algorithm 1. Computation of the 𝛼-structure 
Input: point set 𝑃, parameter 𝛼 
Output: 𝛼-structure Sఈሺ𝑃ሻ 
foreach 𝑝 ∈ 𝑃 do 

CPN-Search: Find all points 𝑇௣ ⊆ 𝑃 in the CPN of p  

CPN-Check: Check for each edge 𝑝𝑞 with 𝑞 ∈ 𝑇௣ whether it fulfils Condition (2) of 

      Lemma 2.1, possibly compute the time attributes and add to Sఈሺ𝑃ሻ 

The second part of the algorithm, which we call CPN-Check, checks for each point 𝑞 ∈ 𝑇௣ 
whether the edge 𝑝𝑞 fulfills Condition (2) of Lemma 2.1. If this is the case, it computes the time 
attributes of 𝑝𝑞. We use a rotational sweep for the CPN-Check. More precisely, we use a circle 𝐶 
of radius 𝛼 2⁄  which sweeps around 𝑝 such that the center of 𝐶 moves along the circle with 
center 𝑝 and radius 𝛼 2⁄ ; see Figure 4(b). We call 𝐶 the sweep circle of 𝑝. Let 𝑅෠ be the points 
contained in 𝐶; we represent 𝑅෠ using a binary search tree ordered by the time stamps of the 
points. The sweep circle 𝐶 stops its rotation whenever its boundary intersects with a point 𝑞 ∈
𝑇௣. Two kind of events are possible; either the point 𝑞 enters 𝐶, or it leaves 𝐶. Whenever a point 
𝑞 enters 𝐶, the sweep circle equals the edge domain of 𝑝𝑞. Utilizing the properties of the binary 
search tree 𝑅෠, Condition (2) of Lemma 2.1 can be checked in 𝑂ሺlog𝑚ഥሻ time. If this is the case, 
the time attributes of 𝑝𝑞 can be computed using the temporal order of 𝑅෠ in 𝑂ሺlog𝑚ഥሻ time. This 
rotational sweep can be done in 𝑂ሺ𝑚ഥ log𝑚ഥሻ time.  
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Theorem 2.3. Computing the α-structure of a set of 𝑛 points takes O൫nሺlog n ൅𝑚ഥ log𝑚ഥሻ൯ time.  

For the query phase we represent each edge 𝑒 with 𝑡௘ଵ, 𝑡௘ଶ, 𝑡௘ଷ, 𝑡௘ସ of the 𝛼-structure by a rectangle 
ሾtୣଵ, t௘ଶሿ ൈ ሾtୣଷ, t௘ସሿ. A query ሾtொ

ᇱ , t୕
ᇱᇱሿ corresponds to finding all rectangles containing ሺtொ

ᇱ , t୕
ᇱᇱሻ. For 

these rectangles we propopse to use a data structure for filtering search (CHAZELLE 1986) that 
allows us to answer a query in 𝑂ሺlog 𝑛 ൅  𝑘ሻ, where 𝑘 is the size of the returned 𝛼-shape. 

5 Experimental Evaluation 

We analyze the performance of 𝛼-structures using on the one hand a data set of storm events in 
the United States in the years 1991-2000 obtained from Data.gov; see Figure 1 for the year 1991 
and on the other hand a set of synthetic generated data with uniform distribution in time and 
space with density of 0.001 points per 𝑚ଶ. We performed the experiments on a 4-core Intel 
Core i7-7700T CPU with 16 GiB RAM using an implementation in Java.  
The experiments indicate for both data sets that the memory consumption is linear in 𝑛; see 
Figure 5(a). The construction time for a point set of size 𝑛 ൌ 70000 varies between several 
seconds and hours depending on the value of 𝛼. For smaller 𝛼 we obtain a shorter running time 
than for larger 𝛼. We assume this to be acceptable, since it is a pre-processing step.  

 

Fig. 5: (a) memory consumption of an 𝛼-structure (parameter 𝛼 in meter) and (b) query phase time of 
the 𝛼-structure compared to an on demand approach for the synthetic dataset and 𝛼 ൌ 200.  

Figure 5(b) illustrates the query time. For this experiment, we queried the data structure for 
different window sizes. The x-axis shows the size of the queried point set 𝑃ொ, the y-axis the 
query time. The experiments show that the query time using the 𝛼-structure is nearly constant 
around 250[ms] with respect to the size of 𝑃ொ; see Figure 5(b). In contrast, the results for an 
implemented on demand approach indicate a dependency to the subset size. For this data set the 
query times for the 𝛼-structure are smaller than for the on demand approach for all subsets of 
size 20.000 or larger.  
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6 Conclusion and Outlook 

Overall, we presented the design and construction of a data structure that provides the edges of 
𝛼-shapes for time window queries on point sets. Using this data structure the query time depends 
not on the number of points in the time window, but on the size of the 𝛼-shape. The experiments 
indicate that with respect to preprocessing time and memory consumption this data structure is  
applicable in practice. Further, the experiments show that the 𝛼-structure performs better than the 
on demand approach with respect to the query time.  
For future work we plan to extend our approach of 𝛼-structures such that we can handle also 
other geometric objects than points, e.g. lines and polygons. Further, we want to consider other 
aggregated representations of geographic objects for time windowed data structures. Even more 
general, we are interested in the concept of time windowed data structures for interactive 
visualization such as labeling problems or cartograms.  
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