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Seamless Outdoor and Indoor Mapping using a LiDAR-based 
Multi-Sensor System: Case Study on Kalman-Filter Fusion 
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Abstract: Due to recent developments in the field of autonomous systems, pedestrian 
navigation, and Building Information Modeling, increasing interest in 3D indoor maps has 
been observed. One of the main challenges in indoor modeling is registration with outdoor 
models. A possible solution is seamless outdoor-indoor mapping using a mobile system 
operating well in both environments. In this paper, we introduce and compare some indoor 
and outdoor mapping methods for fusing outputs of a mobile multi-sensor system, such as IMU 
and LiDAR, where we enhance classical Extended Kalman Filter (EKF) based methods. In the 
first place, we will show the results of a loosely coupled error-based EKF for navigation, 
where we exploit the IMU measurements for prediction and the output of the iterative closest 
point (ICP) algorithm on the point cloud of the LiDARs for correction. Furthermore, we will 
also examine and compare the leverage of different ICP algorithms on the task of pose 
estimation.  
 

1 Introduction  

Accurate and georeferenced 3D maps of built areas have been gaining in importance over past 
years. Such concepts as smart cities rely on up-to-date models of the built-up world. Further-more, 
modern navigation solutions, including navigation of continuously growing number of 
autonomous systems and seamless pedestrian navigation, require accurate and georeferenced 
maps, including 3D indoor scenes. Indoor mapping is also of high interest for such applications as 
building maintenance and Building Information Modeling (BIM). 
Georeferencing based on Global Navigation Satellite System (GNSS) can be successfully applied 
in outdoor. In indoor or in some outdoor environments the GNSS signal is however too weak for 
reliable georeferencing. Many approaches allowing the creation of indoor models using inertial 
measurement units (IMU) and/or point cloud matching can be found in the literature. Creating the 
connection between indoor and outdoor maps, however, remains challenging. Therefore, we 
investigate the feasibility of seamless outdoor-indoor mapping using a mobile multi-sensor map-
ping system. For this purpose, we compare and analyze the results of different indoor and out-door 
mapping approaches using the KITTI (GEIGER et al. 2012) dataset and one where a mobile platform 
consisting of three laser scanners (LiDARs), six RGB cameras, two GPS receivers and an IMU 
(IWASZCZUK et al. 2019) was used to collect geometric and photogrammetric information of an 
urban environment, including road networks, vegetation, city furniture, and building facades 
together with detailed structures, such as windows and doors as well as indoor scene with multiple 
floors and rooms. Due to the lack of synchronization at the time of publishing this paper we will 
use just the LiDAR point cloud from this dataset. 

                                                 

1 Technische Universität Darmstadt, Remote Sensing and Image Analysis, Franziska-Braun-Straße 7, 
D-64287 Darmstadt, E-Mail: iwaszczuk@geod.tu-darmstadt.de 

2 The Ohio State University Columbus, Dept. of Civil, Environmental and Geodetic Engineering, OH, USA 



40. Wissenschaftlich-Technische Jahrestagung der DGPF in Stuttgart – Publikationen der DGPF, Band 29, 2020 

271 

2 Related Works  

There have been many studies on laser or camera-based localization and mapping recently. Pose-
Graph based approaches (GRISETTI et al. 2010; HESS et al. 2016; YE & LIU 2017) 

formulate the task of localization and mapping as a Maximum a Posteriori (MAP), 
where a front-end builds up the graph by connecting nodes depending on the 

measurements and a back-end subsequently tries to find the optimal estimation using 
non-linear optimization frameworks (CADEN et al. 2016). Nevertheless, Kalman-Filter 
based approaches are still of interest, especially an error-state based Extended Kalman 

Filter (ES-EKF) is due to its simplicity and the fact that its computation does not depend 
on growing covariance-matrix is very suitable for applications where many different 

sensory sources with different updates rate have to be fused to produce a more accurate 
trajectory estimation. Excellent work for a vision-aided inertial navigation system based 

on ES-EKF can be find in (MOURIKIS & ROUMELIOTIS 2007), by integrating the IMU 
measurement in the prediction step and a correction based on the camera triangulation. 
ZHEN et al. (2017) use an ES-EKF to fuse the odometry information of an IMU with 

Gaussian Particle Filter measurement updates. In this paper, we build up on their idea. 
But in contrast to their work, we will use different Iterative Closest Point (ICP) 

variations at the measurement step. ICP is by far one of the most popular methods for 
matching multiple point clouds. In the basic form, ICP is an optimization problem that 

is solved iteratively to find a hopefully good estimation of rotation and translation, 
which align the point clouds. Even though there exist many different variants, we will 

use two popular formulations, point-to-point (BESL & MCKAY 1992) and point-to-plane 
(YANG & MEDIONI 1992). Furthermore, we will use the open3d-library for point cloud 

processing (ZHOU et al. 2018).

 

Fig. 1 gives an overview of the system, in section 3 we will give a description of the Point Cloud 
(PCL) processing and registration steps and in section 4 we will describe the procedure of ES-EKF 
for state estimation. Finally, in section 5 we present and discuss our results. 



A. Javanmard-Gh., C. Toth & D. Iwaszczuk  

272 

3 Point Cloud preprocessing and registration 

In the preprocessing step the raw point cloud measurements are down sampled using a voxel grid 
filter based on its nearest neighbors (N) and a specific radius (r), which are both hyperparameters 
of the system and should be set a priori by the user. Since the noise of the lidar scanner increases 
with the distance of the points we also crop the point cloud by a spherical shape. The inner and 
outer radius of the shape are also hyper-parameters which should be chosen carefully by the user. 
At least a statistical outlier removal is applied to each point cloud. The adjusted output of the PCL-
Processor is used by the PCL-Registration module. Like almost any other non-linear optimization-
based approaches, also ICP needs an initial estimate of the transformation between two 
consecutive point clouds. We have implemented three approaches for this, the first initialization is 
done based on the assumption of constant velocity model, where we take the last estimate 𝑇௜ିଵ. In 
the second case, we pre-integrate IMU measurements (FORSTER et al. 2015) between each LiDAR 
frame and calculated the initial transformation between two consecutive frames 
 
 𝑇௜ିଵ,௜

௕ ൌ 𝑇௡௕,௜ିଵ
ିଵ 𝑇௡௕,௜  (1), 

 
where 𝑏 is the body frame and 𝑛 is the navigation frame. 
Since IMU measurements suffer from noise by just integrating the measurements, our pose 
estimation will drift over time. To overcome this issue, we use the output of the ES-EKF to reset 
the last prediction of the IMU and start to integrate based on this corrected state. 

 

Fig. 1: System preview consisting of LiDAR preprocessing and registration, Extended Kalman Filter for 
state estimation and IMU measurements  
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4 IMU/Lidar fusion using ES-EKF 

Dead reckoning is a widely used approach for pose estimation, wherein the goal is to find the 
optimal pose estimation by fusing different signals. One of the most widely used sensor 
combinations for pose estimation is IMU and Lidar. In the ES-EKF manner the linear acceleration 
and angular velocity measurements are integrated in the prediction step at the update rate of the 
IMU, which is typically 100-200 Hz and the output of a scan-matching algorithm which runs on 
much lower frequency 10Hz is fused for correction. Which is based on the LiDAR point clouds 
by calculating the transformation between each successive point cloud frames as it was elucidated 
in Sec. 3. In this work, we decided to use an Error-State EKF, due to its calculation simplicity and 
the fact the error states are close to zero, so that especially small-signal rotation approximation is 
linear and does not drift much from the nominal state (MADYASTHA et al. 2011) 
 
 𝑅ሺ𝛿𝜃ሻ ൎ 𝐼 ൅ ሾ𝛿𝜃ሿ௑  (2). 
 
Here is ሾ𝛿𝜃ሿ௑a skew-symmetric matrix of a small rotation 𝛿𝜃. 
Our formulation of the ES-EKF is based on the detailed investigative work in (SOLÀ 2017), but in 
contrast to that work we will not estimate the IMU bias in the state vector. Furthermore, we assume 
that our initial frame is a horizontal plane so we do not need to estimate the gravity vector at the 
initial frame. So that the nominal state dynamic vector �̇� and the system error dynamics vector 𝛿�̇� 
are represented as 
 

  �̇� ൌ ൥
�̇�
�̇�
�̇�
൩ ൌ ൥

𝑣
𝑅𝑎௠ ൅ 𝑔

0.5𝑞 ⊗𝑤௠
൩ ,    𝛿�̇� ൌ ൥

𝛿�̇�
𝛿�̇�
𝛿�̇�
൩ ൌ ൥

𝛿�̇�
𝑅ሾ𝑎௠ሿ௫𝛿𝜃 െ 𝑎௡
𝑤௠𝛿𝜃 െ 𝑤௡

൩  (3), 

where �̇�, �̇� ∈ 𝑅ଷdenote velocity and acceleration vectors and 𝑞 ∈ 𝐻is the quaternion representation 
of orientation. As mentioned before constant gravity vector g =ሾ0,0,9.81ሿ்.Linear acceleration 
𝑎௠and angular velocity 𝑤௡are considered as the control inputs. Furthermore 𝑎௡,𝑤௡are accordingly 
system noise, which are assumed to be zero mean Gaussian random variables, e.g., 
 
 𝑎௡ ∼ 𝑁ሺ0,𝑄௔ሻ,𝑤௡ ∼ 𝑁ሺ0,𝑄௪ሻ (4). 
 
The above in continuous time formulated differential equations should be discretized, since our 
sensor measurements are available just at some discrete time intervals 𝛿𝑡. This can be done by any 
integration methods, like kth-Order Runge-Kutta. We waive to formulate the whole integration step 
and refer to (SOLÀ 2017) for more information.  In this work, we will use the Euler integration 
method, which is 1th-Order Runge-Kutta.   

4.1 Prediction step 

In the prediction, the nominal state is updated using the IMU measurements as control input as 
follow:  
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�̌� ൌ ൥
𝑝௧
𝑣௧
𝑞௧
൩ ൌ ቎

𝑝௧ିଵ ൅ 𝑣𝛥𝑡 ൅ 0.5൫𝑅௧ିଵ𝑎௠,௧ ൅ 𝑔൯𝛥𝑡ଶ

𝑣௧ିଵ ൅ ሺ𝑅௧ିଵ𝑎௠ ൅ 𝑔ሻ𝛥𝑡
𝑞௧ିଵ ⊗ 𝑞ሺ𝑤௠𝛥𝑡ሻ

቏ (5), 

൥
𝛿𝑝௧
𝛿𝑣௧
𝛿𝜃௧

൩ ൌ ቎
𝛿𝑝௧ିଵ ൅ 𝛿𝑣𝛥𝑡

𝛿𝑣 െ 𝑅ሾ𝑎௠ሿ௫𝛿𝜃𝛥𝑡 ൅ 𝑎௧̂
𝑅ሺ𝑤௠𝛥𝑡ሻ்𝛿𝜃 ൅ 𝑤ప̂

቏ (6). 

Error state itself can be estimated at the same time as measurement is observed, but nevertheless 
the error covariance 𝑃 of the error state should be propagated at the same rate as IMU,  
 

 𝑃௧̌ ൌ 𝐹௧ିଵ𝑃௧ିଵ𝐹௧ିଵ
் ൅ 𝐿௧ିଵ𝑄௧ିଵ𝐿௧ିଵ

்   (7). 
 

With 𝐹 and 𝐿 being the transition matrix and the derivative of the discretized error-state dynamics 
w.r.t. the noise variables 
 

 𝐹௧ ൌ ቎
𝐼 𝐼𝛥𝑡 0
0 𝐼 െ𝑅ሾ𝑎௠ሿ௫𝛥𝑡
0 0 𝑅்ሺ𝑤௠𝛥𝑡ሻ

቏𝑄௧ ൌ ൤
𝑄௔ 0
0 𝑄௪

൨ 𝐿௧ ൌ ൥
0 0
𝐼 0
0 𝐼

൩  (8). 

We assume that the covariances 𝑄௔ ,𝑄௪ of the IMU are isotropic and can be read form the IMU 
datasheet. 
 𝑄௔ ൌ 𝜎௔ଶ𝛥𝑡ଶ𝐼 ሾ𝑚ଶ 𝑠ଶ⁄ ሿ,𝑄௪ ൌ 𝜎௪ଶ𝛥𝑡ଶ𝐼 ሾ𝑟𝑎𝑑ଶሿ  (9). 
 
The units are the results of integrating the covariances of zero mean Gaussian process variables 
(MAYBECK & SIOURIS 1980). 

4.2 Correction step 

Using the pose estimation of the PCL-Registration, the measurement model is formulated as 
  

 𝑦௧ ൌ 𝐻𝑥௧ ൅ 𝜈௧ ,𝐻 ൌ ቂ𝐼 0 0
0 𝐼 0

ቃ ∈ 𝑅଺௫ଽ, 𝜈 ∼ 𝑁ሺ0,𝑉௟௜ௗ௔௥ሻ  (10). 

 

Now by calculating all necessary information, the Kalman Gain and the error made during 
prediction step are 

   

 
𝐾௧ ൌ 𝑃௧𝐻௧்ሺ𝐻௧𝑃௧𝐻௧் ൅ 𝑉ሻିଵ

𝛿𝑥௧̂ ൌ 𝐾௧ሺ𝑦௧ െ 𝑥௧̌ሻ
 (11), 

In the Closed-Loop correction Kalman Filter (GROVES 2008) the errors estimated by the filter are 
fed back to the current nominal state and at the last step the error covariance is also corrected as 
follows 
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𝑝 ൌ �̌� ൅ 𝛿𝑝௞
𝑣 ൌ �̌� ൅ 𝛿𝑣௞
𝑞 ൌ 𝑞ሺ𝛿𝜃ሻ ⊗ �̌�

, 𝑃 ൌ ሺ1 െ 𝐾௧𝐻௧ሻ�̌�  (12). 

5 Evaluation and Discussion 

In this paper, we present preliminary results of our investigation by evaluating different 
combinations of the mentioned approaches in indoor and outdoor environments. We investigate, 
the quality of point cloud registration based on the of pure IMU mechanization, also we show how 
IMU can aid the ICP registration, especially when, due to a large transformation ICP does not 
converge to a good solution. Since IMUs are affected by noise, we examine the effect of Kalman 
Filter ICP registration. At least we compare two different registration methods, namely poitn2point 
and point2plane for outdoor to indoor transition.  
Table 1 shows the results of the proposed approaches on the KITTI dataset, where a vehicle was 
driving for about 90 sec.  
In Fig. 2 two different maps made by the proposed approaches are shown, on the right map a strong 
misalignment, due to drift around the roll axis can be seen. In contrast, however, in the left image, 
a map and a corresponding trajectory were built. 
 

Tab. 1: Results of different approaches performed on ~90 [sec] of KITTI dataset.  

Initialization Regist. Method Position Error Orientation Error 
Imu Imu 31% 12% 
Imu Point2Plane 10% 9% 
Imu Point2Point 19% 19% 
Imu + ES-KF Point2Point  3.5% 3% 
Last Point2Plane 4.5% 8% 
Last Point2Point 4.5% 2.8% 

 
We also test here described methodology on our outdoor-indoor dataset captured by the backpack 
mobile-mapping system (IWASZCZUK et al. 2019). The Velodyne VLP-16, which was used in this 
mapping system, consists of 16 lines, according to this, the point clouds collected at each 
revolution are sparse, unlike the LiDAR systems with many more lines, like one used in KITTI 
dataset. This sparsity makes an appropriate registration much harder, specially point2plane 
registration produces more outliers and bad registrations, since the radius for estimating the 
normals at each point must be large enough to make a plane estimation accurate enough. But on 
the other side, large radius may result in bad normal estimations since the points may not belong 
to the same surface anymore. As can be seen in Fig. 3 and Fig. 4, poitn2point-method produces 
fewer misalignments compared to poitn2plane (red area). Nevertheless, both approaches fail to 
keep a good estimate of the height; especially in an indoor area the floors are collapsed after some 
iterations.  
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Fig. 2: Top: A 3D map of the scene, right) good registration results by IMU+EKF, left) Registration by 

pure IMU, where a drift about the roll axis caused a bad registration result. Bottom: Comparison 
of the estimated trajectory against ground truth 
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Fig. 3: 3D-Map created by point2plane registration (top), 3D-Map created by point2point 
registration (bottom) 
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Fig. 4: Comparison between point2point and point2plane fitness values 

6 Future Work 

In this study, we have removed the estimation of the IMU bias from ES-EKF formulated in this 
paper, and assumed it is given and constant. This assumption is rather rarely true, unless we have 
a highly accurate navigation grade sensor. We expect that moving the IMU bias into the dynamics 
of the error state, provided that they are observable, would result in more accurate state estimation. 
This issue will be the subject of an in-depth future investigation. Moreover, one drawback of using 
EKF in both, loosely coupled or tightly coupled modes, is that due to the linearization and the 
presence of potentially strong non-linear effects, the map becomes more inconsistent over time. 
To overcome this issue, we plan to explore the possibilities of combining Pose Graph-based 
approaches; especially for building a more accurate map during the outdoor-indoor transition. 
Another issue we have observed during this work is the weakness of current ICP based methods 
when registering sparse Point Clouds, like those generated by Velodyne VLP-16. Therefore, we 
will also investigate the benefits of using more sophisticated feature-based registration methods. 
For example, we are going to perform an unsupervised classification based on the geometrical 
features extracted from point clouds. Afterward, feature association followed by registration is 
performed. We hope to get more satisfactory registration results than pure ICP. We also plan to 
investigate deep learning methods either as a part of the whole system, e.g. for registration, or in 
an end-to-end network for the whole task of odometry estimation. 
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