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The Importance of Radiometric Feature Quality for 
Semantic Mesh Segmentation 

DOMINIK LAUPHEIMER1, MOHAMAD HAKAM SHAMS EDDIN1 & NORBERT HAALA1 

Abstract: We propose a pipeline for the semantic segmentation of textured meshes in urban 
scenes as generated from imagery and LiDAR data. Key idea is to represent the mesh as a set 
of face centroids (COG cloud). This enables the comparison of various point-based classifiers 
of varying learning abilities. Fine-tuned PointNet++ showed the best results due to 
hierarchical feature learning. One of the main differences between meshes and point clouds 
is the availability of high-resolution texture. Hence, we evaluate the importance of radiometric 
feature quality as a proxy for texture importance. Color information increases performance 
by at least 5 % (mIoU) for the used data. We achieved to double the performance gain by 
improving the radiometric feature quality, i.e. utilizing color information of the entire face. 
Our study shows that texture is beneficial for non-uniform dense and non-balanced data sets. 
However, it also shows the inherent limitations of textural features like occlusions, absence of 
imagery, and the quality of the geometric reconstruction. 
 

1 Introduction  

The semantic segmentation of 3D data is an everyday issue in the domain of photogrammetry and 
remote sensing. Common 3D data representations are point clouds, meshes, volumetric 
representations, and projected views (i.e. RGB-D images or renderings). Amongst them, the 
semantic segmentation of point clouds may currently be the most popular topic.  
The unstructured nature of 3D point sets prevents to apply well-established Deep Learning (DL) 
methods of the image space directly to point clouds. Accordingly, common approaches structure 
data into grid-like representations by voxelization (3D) or multi-view rendering (2D) (GRAHAM 
et. al. 2018; BOULCH et al. 2017). Both approaches enable the use of Convolutional Neural 
Networks (CNNs) but come along with information loss (discretization, occlusions, projection, 
etc.). Therefore, DL approaches that directly operate on 3D point clouds have been investigated 
recently (QI et al. 2017a; QI et al. 2017b; BOULCH 2019). The huge number of points and the 
related matter of subsampling are still big issues.  
We claim that meshes are well-suited to tackle these issues due to their lightweight geometric 
representation. Generally, points on planar surfaces do not provide extra information and hence, 
do not have to be stored. During the meshing process, such points are eliminated resulting in a 
smaller memory footprint. For instance, the mesh footprint of the used high-resolution data set (cf. 
section 2.1) covers ~30 % of the respective LiDAR point cloud (considering XYZ only).  
Compared to voxelization or multi-view renderings, structuring a point cloud in the mesh 
representation, ideally, does not come along with information loss since neither rasterization nor 
projection is involved. Quite the contrary, for closed surfaces, meshing may increase the 
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information content due to an explicit topology and an explicit surface description (i.e. 
unambiguous normal vectors). 
Moreover, textured meshes carry high-resolution image information stored in so-called texture 
atlases. In summary, textured meshes provide geometric and textural information in a lightweight 
fashion and inherently enable data fusion from LiDAR and image data acquisition. According to 
our observation, meshes currently replace unstructured point clouds as a final user product. 
For these reasons, we investigate the semantic segmentation of textured meshes in urban areas as 
generated from LiDAR data and oblique imagery. Despite their advantages, meshes are a mostly 
overlooked topic in the domain of photogrammetry and remote sensing. So far, only a few works 
deal with semantic mesh segmentation in urban scenes (ROUHANI et al. 2017; TUTZAUER et al. 
2019). In comparison, in the domain of computer vision, meshes are a default data representation. 
However, that community deals with small-scale (indoor) data sets (KALOGERAKIS et al. 2017; 
GEORGE et al. 2017).  
We establish a pipeline to segment meshes semantically with three different classifiers: Random 
Forest (RF), PointNet and PointNet++ (cf. section 2.3). Section 2 describes data preprocessing and 
feature calculation. The used data is described in detail in (CRAMER et al. 2018; TUTZAUER et al. 
2019) and visualized in Fig. 1. Section 3 describes the implementation of the used classifiers and 
compares their performance. In this study, we focus on the texture importance for the semantic 
segmentation of meshes utilizing a PointNet++ classifier. We assume that color information in the 
form of high-resolution texture is very important for semantic segmentation. The color information 
may have more impact than per-point color information in case of point clouds. The results are 
discussed in section 4. 

 

Fig. 1: Used data for training and evaluation 800 𝑚 300 𝑚 . Tiles A, B, C, D (depicted in labeled 
fashion) are used as validation or test set (mutually exclusive). The remaining part (colored by 
median RGB per face) is used as training set. Classes: building mass/facade (yellow), roof 
(red), impervious surface (violet), green space (light green), mid and high vegetation (dark 
green), vehicle (light blue), chimney/antenna (orange), and clutter (gray). 
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2 Methodology 

Compared to point clouds, meshes provide high-resolution texture instead of per-point color only. 
Hence, we want to investigate the importance of available color information per face. Our approach 
represents the mesh as a set of face centroids and leverages point-based classifiers. We evaluate 
radiometric feature importance at various qualities as a proxy for texture importance.  

2.1 Data Set and Data Preparation 

Our study uses the high-resolution data described in (CRAMER et al. 2018). The Airborne Laser 
Scanning (ALS) data consists of up to 800 points/m² for the entire area. The GSD of the oblique 
images is ~2.5 cm. TUTZAUER et al. (2019) obtained a textured 2.5D mesh by fusing the 
simultaneously acquired ALS data and aerial oblique imagery with software SURE 2 from 
nFrames (ROTHERMEL et al. 2012). They manually labeled the mesh and split the data into training, 
validation and test set (cf. Fig. 1). The considered classes are (relative frequency is given in 
parentheses): building mass/facade (9.28 %), roof (6.34 %), impervious surface (5.67 %), green 
space (5.97 %), mid and high vegetation (63.38 %), vehicle (0.83 %), chimney/antenna (0.31 %), 
and clutter (8.22 %). In regards to the closed world assumption, class clutter contains all faces that 
do not match the other classes.  
Similar to TUTZAUER et al. (2019), we represent each face by its center of gravity (COG) associated 
with features (cf. section 2.2). To this end, the mesh is represented by a set of COGs (COG cloud). 
While still benefiting from mesh-based features like the availability of high-resolution texture, we 
can apply classifiers that have been designed for point clouds originally.  
In our experiments, we focus on PointNet++ since it outperforms the other tested classifiers (cf. 
section 3.2). In accordance with experiments of (QI et al. 2017a), our experiments showed 
increased performance with an increased number of input points (i.e. number of sampled COGs in 
the first level of PointNet++). However, performance gain saturates at a certain input density. 
Furthermore, the number of input COGs is limited due to GPU memory. For this reason, we 
partition the data into spatially overlapping tiles with a fixed dimensionality of 50 𝑚 50 𝑚 and 
an 80 % overlap. Based on these, we generate mini-batches in two different flavors to train 
PointNet/PointNet++: squared mini-batches or circular mini-batches (QI et al. 2017b; 
WINIWARTER et al. 2019). Squared mini-batches subsample the generated tiles using random 
sampling or Farthest Point Sampling (FPS) on the fly (cf. section 3.1). The circular-shaped mini-
batches (viewed from above) are generated around the tile centers using kNN, i.e. no subsampling 
is involved. At the edge of acquired data, the mini-batches can have arbitrary shape since the tile 
center may already be at the edge. 
Whereas memory limits the upper bound of mini-batch sizes, the scene and considered classes 
limit the lower bounds of mini-batch dimensions. For instance, mini-batches should cover the 
whole shape of a building, car, etc. and incorporate sufficient spatial context.  
For evaluation, we aggregate predictions of overlapping areas for PointNet/PointNet++. We 
assume the results will be more stable due to redundant predictions (cf. Fig. 6).  
Semantic mesh segmentation differs from semantic point cloud segmentation in several aspects. 
Generally, face density is significantly sparser than point density. Hence, the COG cloud is sparse 
and has a comparatively small memory footprint. For instance, tile A consists of ~39.6 million 
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LiDAR points or ~0.3 million faces/COGs respectively. The COG cloud is ~133 times smaller. 
On the other hand, meshing increases non-uniform density and class imbalance. Non-uniform 
density is a mesh-inherent issue. Meshes tend to have larger faces in planar areas and many small 
faces in vivid areas. Thereby, the meshing implicitly shifts class imbalance towards non-planar 
classes (e.g. vegetation classes). Therefore, handling the non-uniformity and class imbalance is of 
particular importance. We tackle non-uniform density and class imbalance with FPS, Multi-Scale 
Grouping (MSG), random dropout on the fly and class weighting (cf. section 3.1). Fig. 2 compares 
(non-uniform) densities of the dense LiDAR point cloud the respective COG cloud. It also shows 
the label distributions before (i.e. LiDAR point cloud) and after meshing (i.e. COG cloud) where 
both data representations are labeled. The LiDAR point cloud was manually labeled (KÖLLE et al. 
2019). The labels have been transformed to fit our label scheme. Since the label scheme of the 
LiDAR point cloud does not consider chimney/antenna we manually labeled chimneys and 
antennas for the comparison. The standard deviation of the class frequencies can be interpreted as 
a measure for the deviation of equal distribution / class balance (23.6 % for the mesh, 14.6 % for 
the point cloud). 

   
Fig. 2:  Non-uniform density of the very dense LiDAR point cloud (left) and the mesh represented as 

COG cloud (right). The histogram (center) shows the class imbalance of the manually labeled 
point cloud (green) and manually labeled mesh (blue) where both representations overlap. 
Classes: building mass/facade (0), roof (1), impervious surface (2), green space (3), mid and 
high vegetation (4), vehicle (5), chimney/antenna (6), and clutter (7). 

2.2 Feature Calculation 

TUTZAUER et al. (2019) attach handcrafted contextual features to the COG cloud. They calculate 
various geometric and radiometric features based on several scales for each face. Similar to 
TUTZAUER et al. (2019), we associate per-face features with COGs. However, we do not use 
contextual features and adapt only the normal vector and the median HSV per face. The normal 
vector is computed by the cross product of per-face edges. The median HSV per face is extracted 
from the texture atlas. First, texture coordinates of vertices are transformed into image coordinates. 
Subsequently, we calculate the median HSV based on the entire face projected onto the texture 
atlas utilizing previously calculated image coordinates. Our approach can be extended easily by 
other handcrafted features. However, we limit ourselves to mesh-inherent features in order to 
reduce computation overhead. 
We assume that color information in the form of high-resolution texture is very important for 
semantic mesh segmentation. The color information may have more impact than per-point color 
information in case of point clouds. Therefore, our objective is to evaluate the importance of 
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radiometric feature quality as a proxy for texture importance. Please note, the proxy is needed 
since the considered classifiers rely on 1D feature vectors. To the best of our knowledge, no 
classifier is able to combine 1D features with 2D texture information per face. For this reason, we 
calculate scalar radiometric features with varying granularity. That is why we additionally extract 
HSV features, which carry less color information. Besides the median HSV per face (median HSV 
(face)), we calculate the mean and median HSV based on the three vertex colors only (mean HSV 
(vertices) and median HSV (vertices) respectively). The latter two mimic a colored meshed point 
cloud, i.e. color information is only available for mesh vertices. We choose HSV space to be 
independent of illumination variations. Fig. 3 depicts the different qualities of color features 
transformed into RGB space. The median versions (robust against outliers) provide crisper colors 
whereas the mean version smears colors the most. median HSV (face) uses color information of 
the entire face and therefore represents faces at border areas (e.g. the transition of the roof to 
facade) better than median HSV (vertices). In particular, for large faces, this may ensure correct 
colors (cf. schematic drawing in Fig. 3) and stabilize the semantic segmentation.  

   

Fig. 3:  Comparison of radiometric features at different qualities in RGB color space. The faces are 
colored based on mean/median RGB values. Quality of radiometric features increases from left 
to right. Left: Mean RGB of vertices, center: median RGB of vertices, right: median RGB of all 
pixels per face. A schematic drawing is attached to each subfigure in the upper left.  

2.3 Classifiers Applied 

Representing the mesh as COG cloud enables using point-based classifiers. We compare several 
classifiers with different capabilities of context mapping or hierarchical learning respectively. In 
this study, we compare the pre-deep-learning era classifier RF with the first neural networks 
applicable to unordered point sets (PointNet and its extension PointNet++).  
The gist of PointNet is to use a symmetric function that is independent of set permutation. The 
entire COG cloud is encoded in a global feature vector, which is attached to each encoded per-face 
feature vector. The prediction bases on this concatenated feature vector. A downside of PointNet 
is the weak local context as it only operates on a global scale. Its extension PointNet++ 
hierarchically applies PointNets to the iteratively subsampled COG cloud and thus operates on 
several scales. This procedure enables hierarchical feature learning with increased contextual 
information similar to CNNs in image space. On the contrary, PointNet and RF cannot operate on 
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several scales. Moreover, vanilla RF is a pure per-point classifier and does not support feature 
learning at all. The provided feature set limits its performance. Therefore, RF relies more on expert 
knowledge/feature design than PointNet/PointNet++. PointNet++ needs the least expert 
knowledge. Both, PointNet and PointNet++ mainly rely on coordinates as features. Optionally, 
additional (handcrafted) features can be provided. Best classifier configurations are given in 
section 3.1. 

3 Configuration and Comparison of Classifiers 

In section 3.1, we describe configurations for each classifier, which we found to perform best for 
the used data set. In this respect, we focus on PointNet++ and the respective data preparation as 
we achieve the best results with this classifier (cf. section 3.2). We use recall, precision, and 
Intersection over Union (IoU) as per-class evaluation metrics for the COG cloud. Furthermore, we 
report overall accuracy (OA), mean recall (mR), mean precision (mP), and mean IoU (mIoU) at a 
global scale. 
As we work with an imbalanced data set, OA suffers from the accuracy paradox. On the contrary, 
mIoU can be understood as an average per-class accuracy. The reported values might look low. 
However, this is due to adapting point cloud metrics to the COG cloud while not considering that 
each face covers a differently sized area. Thereby, each face has the same impact on the evaluation 
metrics although face areas vary significantly. As can be seen in Fig. 4 and Fig. 5, the major area 
is predicted correctly. For tile A, roughly 89 % of the surface area has been predicted correctly. 
Approximately 83 % of the entire test surface is predicted correctly. 
PointNet/PointNet++ are implemented with the DL framework TensorFlow (QI et al. 2017a; QI et 
al. 2017b). RF relies on the scikit-learn implementation (python package). For all classifiers, both 
training and testing are performed on a machine with an NVIDIA GeForce GTX 1080 Ti GPU, 
64 GB RAM, and a 12-core CPU.  

3.1 Classifier Configurations 

Like described in section 2.1, a major part for PointNet/PointNet++ is preparing mini-batches. We 
run experiments regarding different numbers of input COGs for our two mini-batch modes 
(squared and circular mini-batches). For squared mini-batches, FPS performed best for a small 
number of COGs since it provides a better distribution compared to random sampling. Circular 
mini-batches as generated by kNN do not give a sufficient representation of the neighborhood in 
that case. However, with an increased number of COGs, random sampling and FPS are almost on 
par (squared mini-batches) but worse than kNN (circular mini-batches). Random sampling is the 
fastest; FPS is the slowest method. In our case, circular mini-batches generated with kNN 
(𝑘  18000) provide reasonable sizes of mini-batches and give the best results at feasible 
computation times. The circular mini-batches perform better than the squared mini-batches since 
no subsampling is involved for the mini-batch creation. Therefore, the circular mini-batches 
provide higher information content.  
Regardless of the mini-batch creation, mini-batches are subsampled with FPS in PointNet++ to 
define the centers of local regions. FPS is used since it is not agnostic to the data distribution. The 
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local regions are the input to the next level of PointNet++. Limited by GPU memory, 5000 local 
regions can be processed in the first level of PointNet++. 
The local regions (demarcated around FPS-sampled COGs) can be defined in two variants: fixed 
radius (ball neighborhood) or fixed number of points (kNN). The definition of local neighborhoods 
with kNN did not perform well. We assume this may be due to non-uniform density limiting the 
capability of generalization (QI et al. 2017b). In case of fixed radius, MSG proved to be best 
performing with the following radii: [0.5 m – 1.0 m – 2.0 m] for the first level, [2.0 m – 4.0 m – 
8.0 m] for the second level and [4.0 m – 8.0 m – 16.0 m] for the third level. The radii have been 
chosen heuristically according to the scale of the data set and dimensions of desired objects. MSG 
improves robustness against density variations but comes along with a great memory footprint and 
training/inferencing time. These quantities depend mainly on the size of the local regions (defined 
by number of points or radii), the number of scales, and the number of abstraction levels. To tackle 
non-uniform density further on, we apply random dropout on the fly. PointNet is less affected by 
the non-uniform density because of its global abstraction and weak local descriptors.  
Both PointNet and PointNet++ use weighted sparse categorical cross-entropy as loss function. We 
tested several class weighting methods applied to the loss function during training. The best 
performance is achieved with the inverse square roots of the relative class frequencies in the 
training data as class weights (WINIWARTER et al. 2019; SCHMOHL & SOERGEL 2019). In order to 
avoid training on mini-batches that cover mainly a single class, we filter mini-batches whose 
standard deviation of relative class frequencies exceeds a predefined threshold, similar to 
(WINIWARTER et al. 2019). We found the best results with a threshold between 30-40%.  
We found that PointNet and PointNet++ need distinct treatment for COGs. PointNet++ internally 
shifts COGs for each local region into a local frame centered at the FPS-sampled COGs. By this 
means, we achieve local learning based on relative coordinates while keeping the real scale. 
Counterintuitively, for PointNet, we achieved the best results when we scale the COGs to the unit 
sphere per tile. Thereby, we follow the original implementation (QI et al. 2017a).  
Parameters of the default RF (acts on CPU) have been defined using a grid search with two 
parameters (number of trees and depth of trees). We trained an RF without XYZ and another with 
XYZ features. We achieved the best results with 30 trees with depth equals 13 (no XYZ features) 
and 46 trees and depth of 7 using XYZ features (OA = 70.80 % / mIoU = 23.49 % and 
OA = 69.54 % / mIoU = 22.46 % respectively). We report both versions since RF without XYZ is 
faster (~25 %) and performs better (~1 %). Nevertheless, for the sake of fair comparison, in 
section 3.2, we report only the version that uses XYZ features. However, we are aware of the fact 
that the used XYZ features for the RF cannot be compared directly with the used XYZ features of 
PointNet and PointNet++ due to the used scaling/normalization in the DL approaches. 

3.2 Comparison of Classifiers  

In section 2.3, we described the key differences of the considered classifiers. Fig. 4 shows ground 
truth and the predictions of all considered classifiers for tile C. Unavoidably, we suffer from label 
noise. For instance, in the upper left, a face on the roof is mislabeled. Some faces on the street are 
associated with wrong labels. Not correctly reconstructed cars are labeled as clutter, but are 
consistently predicted as vehicle for PointNet/PointNet++ (cf. oval in Fig. 4). Such faces will 
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decrease performance metrics. In particular, precision for class vehicle and recall for class clutter 
is decreased.  

  

Fig. 4:  Ground truth and predictions of several classifiers on tile C. The feature vector consists of XYZ, 
normal vector and median HSV (face). Top row: Tile C colored with median RGB per face (left) 
and ground truth (right). The oval shows cars labeled as clutter (label noise) that are 
consistently predicted as vehicle for PointNet/PointNet++. Bottom row (from left to right): RF 
(OA = 69.54 % and mIoU = 22.46 %), PointNet (OA = 70.89 %; mIoU = 29.44 %), PointNet++ 
(OA = 80.62 %; mIoU = 43.54 %). The circle shows a false prediction (roof, chimney/antenna) 
for a tree due to feature encoding at global scale (PointNet). The rectangle shows that all 
classifiers have issues separating green space from impervious surface. Best viewed digitally. 

Section 3.1 denotes the best configurations for the used classifiers. For better comparability, the 
same feature vector configuration has been presented to all classifiers. The feature vector contains 
radiometric (median HSV (face)) and geometric (XYZ, normal vector) features. As expected, RF 
performs worst (OA = 69.54 %; mIoU = 22.46 %) and PointNet++ performs best (OA = 80.62 %; 
mIoU = 43.54 %). PointNet (OA = 70.89 %; mIoU = 29.44 %) performs ~14 % (mIoU) worse 
than PointNet++. This is due to the hierarchical feature learning of PointNet++ that causes spatially 
smoothed predictions at the same time. Furthermore, for PointNet/PointNet++, we aggregate 
predictions of overlapping tiles (which has a smoothing effect, too). However, even without 
aggregating, PointNet++ outperforms RF and PointNet. As can be seen in Fig. 4, PointNet++ 
outperforms the other classifiers in predicting classes mid and high vegetation, vehicle and 
chimney/antenna (i.e. classes with high and low support). For instance, the recall of mid/high 
vegetation is 88 % and 98 % for PointNet and PointNet++ respectively. A common issue of 
PointNet is to predict roofs and chimneys within trees due to its global feature encoding (cf. circle 
in Fig. 4). PointNet++ captures small details and therefore, detects classes with low support better 
(e.g. vehicle and chimney/antenna). All classifiers have issues separating green space from 
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impervious surface (cf. rectangle in Fig. 4). In particular, PointNet++ consistently labels dirt roads 
as green space. This indicates that even color information is not enough to separate those two 
classes to the full extent. The reason might be that dirt roads are brownish and texture of green 
space is greenish/brownish since images are captured under leaf-off canopy conditions. Hence, the 
separation of the respective features might be too difficult, particularly, since the information is 
smeared in the interpolation layers of PointNet++.  
TUTZAUER et al. (2019) feed a multi-branch 1D CNN with many handcrafted contextual features 
for three different scales. The network is able to learn new features per scale. However, no 
hierarchical feature learning is possible. They report an OA of 74.76 % for tile C. This is better 
than PointNet (70.89 %) but worse than PointNet++ (80.62 %). This comparison is not entirely 
fair since PointNet/PointNet++ uses a smaller feature vector consisting only of XYZ, normal vector 
and median HSV (face). Nevertheless, the achieved result emphasizes the superiority of 
PointNet++ that achieved significantly better results with significantly less handcrafted features. 
However, when comparing training times we see that multi-branch 1D CNN is much faster than 
PointNet++ (~15 min vs. 15 h respectively) although using a multiple of features. The reason is 
that PointNet++ enables hierarchical learning, which includes feature encoding for iteratively 
increasing local regions, interpolation of encoded features, and MSG. MSG causes the main 
computational burden. For the 1D CNN, the heavy lifting is already done before training (i.e. 
calculation of contextual features). PointNet trains ~22 min and RF trains ~2 min. 
TUTZAUER et al. (2019) also trained an RF on their feature vector. We achieve ~4% less OA with 
our RF. The worse performance is expected since we use fewer features and no contextual features 
at all.  

4 Investigations on Radiometric Feature Quality 

Section 3.2 shows that PointNet++ outperforms the other tested approaches. For this reason, we 
choose PointNet++ to analyze the importance of radiometric feature quality as a proxy for texture 
importance. Tab. 1 lists performance metrics for several feature vector configurations for tile A 
using PointNet++. Fig. 5 shows the respective predicted results for tile A.  
Tab. 1 verifies our assumption that texture matters and increases performance on a global scale. 
Utilizing color information improves performance with respect to OA, mP, mR, and mIoU. 
Comparing the results of row 1 (geometry only) and row 2 (lowest quality of radiometric features) 
shows a performance gain at the global scale by approximately 5 % (mP, mR, mIoU). Furthermore, 
increased textural feature quality improves performance. The model trained on the feature vector 
with median HSV (face) (i.e. best radiometric feature quality) outperforms the model using only 
geometric features by ~10 % for mIoU and mR; mP is increased by roughly 5 %. By that, the 
configuration using the best radiometric feature quality (row 4) approximately doubles the 
achieved performance gain (for mIoU and mR) of the configuration using the lowest radiometric 
feature quality (row 2) with respect to the purely geometric configuration (row 1). This is quite 
astonishing since the improvement entirely depends on a substituted scalar radiometric feature. 
Thereby, the textural content of the entire face is used. However, high-resolution information is 
not used explicitly since we rely on one-dimensional feature vectors. 
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Tab. 1: Evaluation metrics for PointNet++ for Tile A using various feature vector configurations (from top 
to bottom: precision, recall, IoU [in %]). The last column lists mP, mR, and mIoU per feature vector 
configuration (the respective OAs (OAs with respect to surface area) from top to bottom: 84.13 % 

(85.98 %), 85.06 % (87.69 %), 85.61 % (88.23 %), and 85.68 % (88.56 %)). Geometric features consist of 
XYZ and normal vector. Radiometric feature quality increases from top to bottom. 

Feature Vector 
Configuration 

Building 
Mass/ 

Facade 
Roof 

Impervious 
Surface 

Green 
Space 

Mid and 
High 

Vegetation 
Vehicle 

Chimney/ 
Antenna 

Clutter 
mP 
mR 

mIoU 

geometry only 
70.31 
79.59 
59.57 

86.26 
73.71 
65.97 

66.64 
41.12 
34.16 

41.03 
42.21 
26.27 

90.49 
98.10 
88.93 

73.49 
47.87 
40.82 

51.67 
11.05 
10.02 

56.57 
0.98 
0.97 

67.06 
49.33 
40.84 

geometry, mean 
HSV (vertices) 

70.44 
78.34 
58.96 

84.70 
75.02 
66.06 

80.08 
47.53 
42.50 

59.00 
31.85 
26.08 

89.02 
98.94 
88.18 

71.60 
66.79 
52.80 

56.96 
31.37 
25.36 

65.43 
3.72 
3.65 

72.15 
54.20 
45.45 

geometry, 
median HSV 

(vertices) 

73.10 
74.27 
58.33 

81.16 
78.30 
66.26 

76.07 
52.76 
45.25 

57.76 
45.06 
33.89 

90.39 
98.56 
89.20 

72.81 
63.43 
51.28 

62.64 
30.48 
25.79 

83.85 
4.28 
4.24 

74.72 
55.89 
46.78 

geometry, 
median HSV 

(face) 

73.67 
74.96 
59.12 

86.00 
76.16 
67.76 

76.41 
52.41 
45.11 

56.52 
40.66 
30.97 

89.86 
98.81 
88.90 

76.33 
64.11 
53.48 

49.56 
60.61 
37.49 

69.13 
11.16 
10.63 

72.19 
59.86 
49.18 

 

 

Fig. 5:  Predictions of PointNet++ using geometric features and radiometric features of varying quality 
for tile A (cf. Tab. 1 for detailed numeric values). From top left, to bottom right: ground truth, 
prediction using mean HSV (vertices), prediction using median HSV (vertices) and prediction 
using median HSV (face). The marked areas show best results for median HSV (face). 
Chimneys and antennas are best detected with the last configuration.  
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Median HSV (face) helps detect classes with low support. Per-class recall and IoU for 
chimney/antenna and clutter outperform the configurations using inferior radiometric feature 
quality to a large extent (up to factor 2 for class chimney/antenna or 3 for class clutter). This is the 
reason for a slightly better OA for this configuration. However, OA relies mainly on recall of the 
dominant class mid and high vegetation, which is almost on par for all configurations (~98-99 %). 
We deduce using per-face texture is beneficial for tackling imbalanced data sets. 
Regardless of the radiometric feature quality, separation of classes green space and impervious 
surface improves significantly when color information is used. To give an example, 21 % of class 
impervious surface are mislabeled as class green space when only geometric features are used. 
The false positive rate drops by 15 % to 6 % when color information is incorporated. This is in 
accordance with the findings of (TUTZAUER et al. 2019). Furthermore, color information helps to 
detect buildings surrounded by high vegetation (cf. circle in Fig. 5). Median HSV (face) performs 
best since the colors are not smeared and better represent borders (cf. Fig 3). 
To summarize, the best radiometric feature quality, i.e. median HSV (face), globally achieves the 
best results. By this, using per-face color outperforms mimicked colored meshed point clouds that 
leverage per-vertex colors only. This shows the importance of available texture. Generally, the 
robust median features are better than the mean version. Nonetheless, on the class-level, the 
configuration using mean HSV (vertices) may outperform supposedly better configurations. For 
instance, it achieves the highest per-class precision for classes impervious surface and green space. 
At first glance, this may look counterintuitive. However, we claim that the 2.5D geometry of the 
mesh and occlusions in imagery are the main reasons why the feature configuration using median 
HSV (face) is not consistently the best (cf. ovals in Fig. 6). Both, “wrong” geometry and occlusions 
cause not-correctly textured faces. For instance, bushes in front of a building may occlude the 
facade. In that case, predicting class mid and high vegetation becomes more likely with increasing 
quality of the radiometric feature. The better radiometric feature makes it more likely to vote for a 
wrong class. To that extent, a better texture measure may dampen performance. In this context, the 
performance of textural features is naturally limited by occlusions, non-textured faces and the 
quality of texturing. The latter directly depends on the quality of geometric reconstruction and 
available imagery. 
Regardless of the used feature vector configuration, prediction uncertainty increases at class 
borders (cf. Fig. 6). This is due to the interpolation of features in PointNet++. However, this is 
typical behavior in machine learning when vicinity information is incorporated. Furthermore, the 
effect of different color derivations (like sketched in Fig. 3) can be seen for the face that represents 
the garage door (cf. circle in Fig. 6).  
In general, an increased color feature quality leads to more certain predictions. However, the 
correct predictions are more or less on par for the visualized fraction. For instance, for the garage 
door (cf. circle in Fig. 6), predictions using median HSV (face) are more certain than predictions 
based on median HSV (vertices). However, we also see that improved color feature quality 
introduces uncertainty due to better color representation. For example, the dormers (cf. ovals in 
Fig. 6) become very uncertain for the configuration using median HSV (face). In fact, a wrong 
label is predicted. Conversely, the other configurations achieved more stable results in this area. 
We assume that the better radiometric feature nudges the prediction to class building mass/facade. 
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Nevertheless, the dormers are annotated as roof. Thanks to this study, we reveal label noise on a 
fine-grained level or at least we detected a discussable class definition.  

 

 
 

Fig. 6:  Visualization of inconsistencies (2nd row) and maximum of averaged probabilities (3rd row) in 
aggregated predictions for PointNet++. First column depicts the textured view and the color 
schemes. The consecutive columns refer to feature vector configurations using mean HSV 
(vertices), median HSV (vertices) and median HSV (face) respectively. The inconsistencies are 
depicted as number of predicted classes per face of overlapping mini-batches. The encircled 
area (garage door) shows the effect of different color derivations (like sketched in Fig. 3). The 
ovals show that improved color feature quality introduces uncertainty due to better color 
representation. 
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5 Conclusion & Outlook 

We established a pipeline for semantic segmentation of textured meshes in urban scenes as 
generated from imagery and LiDAR data. Key idea is to represent each face by its COG associated 
with features. This enables using point-based classifiers. We compared several classifiers (RF, 
PointNet, PointNet++ and multibranch-1D CNN) with different capabilities of context mapping. 
PointNet++ performed best due to its capability of hierarchical feature learning (cf. section 3.2). 
Approximately 89 % of the surface area of a dedicated test tile has been predicted correctly. 
In this study, we investigated in detail the importance/influence of radiometric feature quality. To 
this end, we derived radiometric features that utilize per-vertex or per-face color information. 
Regardless of the radiometric feature quality, separation of classes green space and impervious 
surface improves significantly. The false positive rate for class green space improves by 15 % 
when color information is used. We showed that increased radiometric feature quality improves 
performance on the global scale (cf. Tab. 1). Moreover, per-face color information improves 
detection rates for classes with small support (vehicle, chimney/antenna, clutter). We conclude 
that texture information matters and increases performance on a global scale. However, the study 
relies on one-dimensional radiometric features but still shows great performance gain. We claim 
that utilizing the inherent high-resolution information in the images further increases performance. 
Therefore, we plan to do semantic image segmentation in image space and back-project the 
predictions and/or extracted features to the mesh. Thereby, we leverage the entire available image 
content. Furthermore, we have seen the natural limit of texture due to errors in the geometric 
reconstruction or occlusions. Some faces carry wrong texture information (e.g. bushes may 
occlude facades) or do not carry texture at all. For this reason, we plan to make use of LiDAR 
features. The additional features may help to stabilize predictions and to detect vehicles more 
properly. Replacing our 2.5D mesh with a 3D mesh will inevitably improve results further on since 
texture quality depends on the geometric reconstruction. In particular, we plan to generate 3D 
meshes as generated from ALS data and multi-view stereo image matching.  
We are aware of the fact that the investigations at hand are limited to one data set of a rather simple 
urban scene. We would like to extend investigations to more complex urban data captured with 
different sensors and flight configurations under different conditions (e.g. different seasons). 
However, such annotated reference data do not exist so far.  
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