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Remotely sensed information for the protection and 
management of species-rich grasslands 

MICHAEL WACHENDORF1, THOMAS ASTOR1 & JAYAN WIJESINGHA1 

Abstract: Knowledge on the forage quality and invasive plant species coverage is important 
for the management and maintenance of biodiversity in grasslands which are threatened by 
the invasion of such plants and to evaluate the effect of control activities conducted. Remote 
sensing (RS) is a promising tool for estimating field data, however, the applicability of RS 
prediction models depends on the variability of underlying calibration data, which can be 
brought about by the inclusion of a multitude of grassland types and management practices in 
the model development. Major aims of this study were (i) to build prediction models for forage 
quality and invasive species coverage based on unmanned aerial vehicle (UAV)-borne 
imaging spectroscopy and (ii) to generate maps using the best models obtained. The study 
examined data from a variety of grasslands which largely differed in terms of vegetation type 
and cutting regime. 
 

1 Introduction 

In Europe, approximately 30 to 35 % of the agricultural area consists of grasslands. Mainly 
permanent grasslands are incredibly variable in species composition, biodiversity, management 
practices, as well as in productivity (LESSCHEN et al. 2014). Food provision as forage for ruminants 
and herbivores and as biomass substrate for energy production are the most comprehensive 
ecosystem services from grasslands. There exists a multitude of destructive and non-destructive 
methods to measure or estimate the production and quality of the forage. Usually, farmers use 
visual criteria to evaluate forage quality, such as the plants’ phenological stage, leafiness, or colour. 
Additionally, lab-based chemical analysis and near-infrared reflectance spectroscopy (NIRS) are 
utilised by agronomists to evaluate forage quality (HORROCKS & VALLENTINE 1999). Lab-based 
methods comprise the assessment of chemical forage components that relate to the digestibility of 
the forage. Acid detergent fibre (ADF), which represents cellulose, lignin and silica, is an 
important parameter which negatively correlates with forage digestibility (HORROCKS & 
VALLENTINE 1999). The protein concentration of forages is another parameter essential for the 
creation of adequate fodder rations. Proteins consists mainly of amino acids, which are 
fundamental elements of all cells and tissues, and form an essential component of ruminant 
nutrition and provides nitrogen for ruminants’ metabolism and production of milk and meat 
(FRAME & LAIDLAW 2011). 
Remote sensing (RS) is a non-destructive method for estimating grassland biomass and forage 
quality (NUMATA 2011). From satellite RS to field spectroscopy and from optical RS to synthetic 
aperture radar were employed for forage quality monitoring and mapping (WACHENDORF 2018). 
A literature review on RS based forage quality estimation studies published between 2004 and 
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2018 shows that more than 60 % of studies (21 out of a total 31 reviewed studies) have utilised 
field spectroscopy. Often point level spectral reflectance data from visible to short-wave infrared 
regions of the electromagnetic spectrum is collected in field spectroscopy (MILTON 1987). Crude 
protein (CP), nitrogen (N), neutral detergent fibre (NDF), and ADF are the most common forage 
quality parameters that have been estimated using field spectroscopy data for different grasslands 
with significant accuracy (MUTANGA et al. 2004). Typically, the models developed to estimate 
forage quality using spectral data are restricted to single grassland types. Consequently, the 
transferability of the models to other grassland types is limited due to the low variability of the 
underlying training data. Therefore, a general model that can estimate forage quality parameters, 
irrespective of the grassland type, would be a preferable. 
Biological invasion is threatening to biodiversity in many ecosystems in the world. The invasion 
by alien plant species is considered as one of the significant drivers for loss of biodiversity and 
ecosystem functionality. The leading cause for the introduction of alien plant species is human 
activities. Classification of remotely sensed images to map invasive species is a well-adopted 
technology for many invasive species in different parts of the world and various ecosystems 
(ROYIMANI et al. 2018). In grasslands, invasive woody (MIRIK et al. 2013) and shrubby (LALIBERTE 

et al. 2004) species mapping has shown excellent results with satellite and airborne image 
classification. Meanwhile, using unmanned aerial vehicle (UAV) borne remotely sensed (RS) 
imaging was applied for invasive species mapping in the recent years in flood plains and coastal 
regions (DE SÁ et al. 2018). Apart from the spectral or thermal information, UAV-borne RS data 
can also provide 3D point cloud data, which can be employed to derive canopy height models 
(CHM) for grassland canopies (WIJESINGHA et al. 2019). The knowledge of the spatial distribution 
of lupine in species-rich grasslands is vital to conduct control activities and to monitor their 
efficacy. Therefore, a repeatable, transferable methodology is needed, that produces lupine 
distribution maps at different spatial and temporal scales to monitor the lupine distribution and to 
assess the benefit of control activities. 

2 Material and Methods 

2.1 Forage quality 

A study was carried out on eight grasslands with different management practice and species 
composition. Six grasslands were in nature protection areas, where no fertilisation was applied, 
and they were mowed only once per year. Two of them were mountain hay meadows (MHM), and 
another two were Nardus stricta grasslands (NSG). MHML and NSGL were MHM and NSG 
grasslands, which were substantially invaded by the neophyte Lupinus polyphyllus. The lowland 
hay meadow (LHM) is an extensively utilised grassland located on the Werra riverbank in 
Northern Hesse, and it was mowed two times per year. The intensively managed grassland (IMG) 
was fertilised and was harvested three times per year. MHM1, NSG1, LHM, and IMG grasslands 
were in Werra-Meißner district in Hesse (9.9 °N, 51.3 °E) (Table 1). Further four grasslands 
(MHM2, NSG2, MHML, and NSGL) were located in UNSECO Biosphere reserve Rhön, Bavaria 
and Hesse (10.0 °N, 50.5 °E). 
A Cubert Hyperspectral Firefleye S185 SE (Cubert GmbH, www.cubert-gmbh.de) snapshot 
camera (12 mm focal length) was used which acquires spectral images between 450 and 998 nm. 
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The spectral resolution of the sensor (full width at half maximum) is 4.8 nm at 450 nm and 25.6 
nm at 850 nm. The camera records a total of 138 spectral bands with 4 nm sampling interval. Each 
spectral band image is 50 by 50 pixel, and radiometric resolution is 12 bit (0 - 4096 digital 
numbers). In addition to the spectral bands, a grayscale panchromatic image is also recorded with 
1000 by 990 pixels in size (AASEN et al. 2015). The spatial resolution of the spectral image is ~20 
cm at 20 m flying height. The Cubert camera was attached to the UAV (RTK X8 Hyperspectral 
Mapping, Cubert GmbH, www.cubert-gmbh.de). It is a co-axial multi-rotor UAV equipped with 
real-time kinematic (RTK) global navigation satellite system (GNSS). 

Tab. 1: Details on samplings of the grasslands investigated in the study. 

Field ID Harvest Sampling date No. of quality samples 
MHM1 First cut 13th July 20† 
NSG1 First cut 14th July 19 

MHM2, NSG2, MHML, NSGL First cut 13th June 20 (5, 5, 5, 5) 
MHM2, NSG2, MHML, NSGL First cut 27th June 20 (5, 5, 5, 5) 
MHM2, NSG2, MHML, NSGL First cut 11th July 20 (5, 5, 5, 5) 

LHM 
First cut 28th May 20 

Second cut 24th September 15 

IHM 
First cut 10th May 20 

Second cut 06th June 20 
Third cut 01st August 20 

 
Spectral images were acquired between 10:00 and 14:00 under clear-sky conditions. Before the 
UAV flight, four corners of the study area were staked out using the Leica RTK GNSS (Leica 
Geosystem, www.leica-geosystems.com) and six black-white 1 m2 ground control points (GCP) 
were distributed around the study plot. 
After spectral data collection, grass biomass was clipped on the identified 1 m2 subplots at a stubble 
height of 5 cm. The fresh biomass was weighted in the field, and total biomass in each plot was 
divided into two separate samples for dry biomass and forage quality analysis. The samples for the 
quality analysis were dried at 65˚C for 48 hours. Afterwards, the dried samples were ground for 1 
mm uniform particles with a Foss CT 193 Cyclotec mill (FOSS, www.fossanalytics.com). 
Subsequently, the dry matter and the ash content of the ground samples were determined, and the 
N and ADF were determined. The ADF was determined using the ANKOM 200 Fibre Analyser 
(ANKOM Technology, www.ankom.com). 

2.2 Invasive species coverage 

A study was carried out in two grassland fields in the UNESCO biosphere reserve Röhn in 
Germany which were invaded by lupine. One field was classified as a former mountain hay 
meadow (hereafter referred to as G1), and the other was an old Nardus stricta grassland (hereafter 
referred to as G2). In both fields, rectangle plots of 1500 m2 (50 m by 30 m) were chosen as study 
areas, and 15 small plots of 64m2 (8 m by 8 m) were established within a grid. Three cutting dates 
(12th June, 26th June, 09th July, hereafter referred to as D1, D2, and D3, respectively) were 
randomly assigned to 5 replicated plots. At each date, plots were mowed at a stubble height of 5 
cm, and biomass was removed from the field. 
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At each sampling date in each grassland field, UAV-borne images were acquired. A DJI-Phantom 
IV quadcopter (DJI, China) with an inbuilt off-the-shelf camera (FC330) was employed to obtain 
UAV-borne RGB images. The camera (FC330) captures a 12-megapixel image in red (R), green 
(G), and blue (B) bands. The UAV was flown at 20 m flying height, and it resulted in 0.09 m 
ground sampling distance. The UAV flight mission was designed using Pix4D capture app for 
Android (App version 4.4.0, Pix4D, Switzerland). The UAV was flown as double grid mission 
(two perpendicular missions), and the camera was triggered automatically to capture nadir looking 
images based on the image overlap configuration (80 % both forward and side overlap). All flight 
sessions were conducted between 12:00 and 14:00. Before each flight session, nine black and white 
1 m2 ground control points were distributed over the study area. Just after the UAV flights, the 
position of each ground control point was measured using a Leica RTK GNSS (Leica Geosystems 
GmbH, Germany) with 2 cm 3D coordinate precision. Additional UAV-borne RGB image was 
taken on 16th August 2019, when the whole fields were mowed. 
A FLIR Vue Pro R (FLIR Systems Incorporation, USA) thermal camera was attached to the UAV 
parallel to the RGB camera. The camera has a 19 mm lens, and it has a spectral sensitivity between 
7.500 – 13.500 nm. With a single UAV flight, both thermal and RGB images were captured 
simultaneously. The thermal camera captures images as a radiometric JPEG which contains 
radiometrically calibrated temperature data. The thermal image has 640 by 512 pixels (FLIR 
2016). The thermal camera was triggered every second throughout the whole UAV mission. Before 
each thermal data collection, metadata related to the thermal camera was collected using the FLIR 
UAS 2 app (App version 2.2.4, FLIR Systems Incorporation, USA), such as distance to the target 
(20 m), relative humidity, air temperature, and emissivity (0.98). All the metadata was saved in 
each captured image’s EXIF data. 
A total of six UAV-borne RGB and six thermal datasets were collected. Hereafter, each dataset is 
labelled according to cutting date and grassland type (DiGj: where i = 1, 2, 3 and j=1, 2). In each 
dataset, maturity stages of grasslands were different due to mowing activities in 64 m2 small plots. 
Maturity stage was lowest (V0) in the D1 dataset and was the same for all 30 small plots. At the 
2nd cutting date (D2), 20 small plots out of 30 were covered by two weeks older vegetation 
(V2weeks), while 10 small plots (which were cut at D1) had vegetation which was regrown for 
two weeks (VR2weeks). The D3 dataset was composed of 10 plots with undisturbed vegetation 
(V4weeks) which was four weeks older than V0, 10 plots of (VR2weeks), and further 10 plots 
with vegetation regrown for four weeks (VR4weeks) after D1. The UAV-borne RGB images and 
coordinates of ground control points were processed with the Agisoft PhotoScan Professional 
version 1.4.4 software (Agisoft LLC, Russia). The software applied structure from motion (SFM) 
technique to align multi-view overlapping images and to build a dense 3D cloud point. The 
procedure of point cloud generation and canopy height computation was adopted from 
WIJESINGHA et al. (2019), and further details of the process can be found there. 
RGB ortho-mosaic was obtained after further processing of the dense point cloud in PhotoScan 
software. The output RGB ortho-mosaic was geo-referenced with a 1 cm spatial resolution. The 
RGB ortho-mosaic was converted into hue (H), intensity (I), and saturation (S) colour model using 
GRASS GIS and hereafter it was considered as HIS ortho-mosaic (GONZALEZ & WOODS 2008). 
Like with RGB, thermal ortho-mosaics with 2 cm spatial resolution were generated using 
calibrated thermal images. Using an object-based image analysis (OBIA) each segmented object 
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was created as a polygon. Four geometric attributes (area (A), perimeter (P), fractional dimension 
(FD), and circle compactness (CC) for the segmented objects were calculated. Based on all raster 
data (RGB image, HIS image, CHM raster, PD raster, thermal image, SSI image, and texture 
raster), the mean and standard deviation values for each polygon was computed as image-based 
attributes. Ten percent of the segmented objects were manually labelled as either lupine (L) or 
non-lupine (NL) based on visual observation using the RGB ortho-mosaics. The labelled objects 
with attributes were utilised to develop a supervised classification model. 
Classification model training and testing were conducted using R statistical software (R CORE 

TEAM 2019). The random forest (RF) machine learning classification algorithm was employed to 
build a classification model using the mlr package in R software (BISCHL et al. 2016). The model 
was trained with repeated spatial cross-validation resampling. According to predicted labels and 
actual labels, the model performance was evaluated by calculating overall accuracy (OA), true-
positive-rate (TPR), false-positive-rate (FPR), and Kappa (K) values. A single RF classification 
model (Mall) was trained using all labelled objects from the six datasets. Based on predicted labels 
from Mall, a lupine coverage map was generated (hereafter referred to as classification-based lupine 
coverage map). 

3 Results 

3.1 Forage quality 

Crude protein concentration varied between 5.1 and 23.3 %DM, while ADF varied between 22.5 
and 38.5 %DM. Forage from the intensively managed grassland (IGM) had the highest average 
CP and the lowest average ADF. However, forage from the two grasslands invaded by Lupinus 
polyphyllus (MHML, NSGL) contained higher CP than non-invaded grasslands. Normalised mean 
reflectance values in the visible region obtained for every 1 m² sampling plot were lower for 
samples with higher CP values along with higher values in the near-infrared region. A similar 
pattern was found for ADF data. 
Based on 100 different model runs with random train and test data sets the model with the highest 
accuracy (lowest median RMSEp and lowest median nRMSEp), the highest precision (highest R2

p) 
and the highest stability (lowest standard deviation of RMSEp) was identified as the best-
performing model (Table 2). Accordingly, the SVR model (median RMSEp = 1.9 %DM; median 
nRMSEp = 10.6 %; median R2

p = 0.79; SD RMSEp = 0.29 %DM) was the best model for CP 
estimation, whereas for ADF the CBR model (median RMSEp = 2.2 %DM; median nRMSEp = 
13.4 %; median R2

p = 0.56; SD RMSEp = 0.23 %DM) was the optimal model. PLSR was the least 
performing model type among all the predictive algorithm models. For CP estimation, nRMSEp of 
the SVR model varied between 7.0 % to 14.5 % and nRMSEp varied from 6.5 to 16.4 % of the 
CBR model. Comparably, nRMSEp of ADF models varied from 10.7 to 18.3 % and from 10.5 to 
16.7 % for SVR and CBR models respectively. Further, the precision of (median R2

p) CP models 
was larger than 0.73, except for the PLSR model. However, the precision of (median R2

p) the ADF 
models was lower than for CP models. 
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Tab. 2: Summary of the predictive algorithm models (from 100 different model runs) for CP and ADF 
estimation of different grasslands. (SD: standard deviation, CBR: cubist regression, GPR: gaussian 

processing regression, PLSR: partial least squares regression, RFR: random forest regression, and SVR: 
support vector regression) 

Forage quality 
parameter 

Algorithm 
Median 

R2p 

Median  
RMSEp 
(%DM) 

SD 
RMSEp 
(%DM) 

Median 
nRMSEp 

CP 

PLSR 0.48 3.0 0.36 16.5 % 
GPR 0.73 2.3 0.33 12.4 % 
RFR 0.74 2.1 0.38 11.5 % 
SVR 0.79 1.9 0.29 10.6 % 
CBR 0.77 1.9 0.45 10.4 % 

ADF 

PLSR 0.39 2.6 0.31 16.4 % 
GPR 0.51 2.3 0.25 14.5 % 
RFR 0.52 2.3 0.24 14.5 % 
SVR 0.50 2.3 0.26 14.5 % 
CBR 0.56 2.2 0.23 13.4 % 

 
The plots of fit for the best-performing models show the model fit across all grasslands (Fig. 1). 
Overall, prediction accuracy tended to be lower at higher levels of CP, whereas for ADF accuracy 
was consistent across the whole range of values observed. 

 

Fig. 1: Prediction vs. observation scatter plots from the SVR model for CP (a) and the CBR model for 
ADF (b) concentrations in different grasslands. Colours represent different grasslands. The 
black line is the 1:1 line, and the blue line represents the linear regression line between 
observed and predicted values. 

 

With SVR and the CBR predictive algorithms being identified as the best algorithms to estimate 
CP and ADF, repeated cross-validations were performed using the complete data set. The SVR 
model resulted in a nRMSEcv of 9.6 % with R2

cv = 0.81 for CP estimation, while for ADF 
estimation the CBR model had a nRMSEcv of 13.0 % and a R2

cv of 0.60. The errors of the final 
models were found between the errors from 100 different models in the model training and testing 
phase. 



M. Wachendorf, T. Astor, J. Wijesingha 

178 

3.2 Invasive species coverage 

Six classification models were trained while holding out one dataset at each time. The model 
results are summarised in Table 3. Based on the all performance measures in model testing phase, 
model M12 (model tested with D1G2 data) obtained the lowest performances (OA = 78.2 %, K = 
0.55) and model M32 (model tested with D3G2 data) achieved the highest values (OA = 97.2 %, 
K = 0.94). Although model M12 accurately classified all lupine objects (100 % TPR), it also 
categorised nearly half of the non-lupine objects as lupine objects (47.3 % FPR). Additionally, 
models that tested with D1 data (M11 and M12) obtained slightly lower performances compared 
to other models. 

Tab. 3: Classification model results. L: lupine, NL: non-lupine, TA: training accuracy, OA: overall 
accuracy, K: Kappa statistics, TPR: true positive rate, FNR: false negative rate 

Model Training Testing 
No. of objects No. of objects OA (%) TPR (%) FPR (%) K 

M11 L = 1581; NL = 1545 L = 311; NL = 261 83.2 76.8 9.2 0.67 
M12 L = 1394; NL = 1381 L = 498; NL = 425 78.2 100.0 47.3 0.55 
M21 L = 1578; NL = 1429 L = 314; NL = 377 90.6 84.1 4.0 0.81 
M22 L = 1701; NL = 1638 L = 191; NL = 168 96.4 95.8 3.0 0.93 
M31 L = 1530; NL = 1405 L = 362; NL = 401 90.1 88.4 6.7 0.82 
M32 L = 1676; NL = 1632 L = 216; NL = 174 97.2 96.7 2.3 0.94 

 
After testing six classification models with the different spatial-temporal dataset, the complete 
classification model (Mall) was trained using all available data (3698 objects) with spatial cross-
validation. The Mall model achieved 94.2 % training accuracy. Based on visual observation 
between digitised lupine map and classified lupine map, both maps showed similar visual 
representation. Figure 2 illustrates lupine coverage maps from both digitising and classification 
for three sampling dates (D1, D2, D3) in G1 field. Relationship between the relative LA and MA 
indicated a negative exponential trend (Fig. 3). The correlation coefficient between relative LA 
and MA was -0.88, and trend line had 0.80 goodness of fit. Regardless of the vegetation maturity, 
the explained relationship was valid. Until LA reached 25 %, it showed a strong relationship with 
MA, but over 25 % LA the MA values were scattered around the regression curve. 

4 Discussion 

4.1 Forage quality 

Several predictive modelling algorithms were tested to identify the best algorithms to estimate CP 
and ADF from the full spectral data as no single consistent algorithm was shown to surpass all the 
given circumstances every time in a study by YUAN et al. (2017). Moreover, model consistency 
was evaluated by training and testing 100 models using 100 different random train and test data 
sets, which allowed to disclose the model performance irrespective of the calibration data set. 
Except for the PLSR, other tested predictive algorithms (GPR, RFR, SVR and CBR) proved 
promising for the underlying data. The SVR and CBR models for CP and ADF estimation showed 
the maximum precision (highest R²p) and prediction accuracy (lowest nRMSEp) followed by RFR, 
GPR, and PLSR models, respectively. SVR and CBR predictive modelling algorithms were 
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previously utilised to estimate water quality parameters based on spectral data (HAFEEZ et al. 
2019), however, to our knowledge such algorithms have not been employed so far to estimate 
forage quality parameters. 

 
 Fig. 2: Lupine coverage map of the G1 field with a, c, e, showing manually digitised lupine cover 

(purple) at D1 (12th June), D2 (26th June), and D3 (9th July) and b, d, f, showing lupine cover 
classified by UAV-borne RS data and OBIA 

According to the literature, PLSR and RFR were the most prominent predictive modelling 
algorithms in forage quality parameter estimation using spectral data. For example, SAFARI et al. 
(2016) report on PLSR models, which obtained nRMSE values of 8.5 % and 7.3 % for CP and 
ADF respectively. However, PLSR models resulted in the lowest accuracies both for CP and ADF 
in this study. Moreover, PULLANAGARI et al. (2018) achieved an nRMSE of 11.2 % for CP with 
the RFR model, and SINGH et al. (2017) obtained an nRMSE of 21.7 % for ADF with the same 
modelling algorithm. It is noteworthy that the studies mentioned above only tested one predictive 
modelling algorithm. Thus, no conclusions are possible considering the comparison with other 
algorithms. 
Both CP and ADF estimation models resulted in less than 15 % relative prediction error. But CP 
estimation had slightly lower relative error (median nRMSEp = 10.6 %) than ADF estimation 
(median nRMSEp = 13.4 %). Similar relative error pattern for CP and ADF estimation models was 
obtained in previous studies that utilised field spectroscopy data (KAWAMURA et al. 2008; SAFARI 

et al. 2016). Moreover, the data points from the IMG were clustered out and acted as the driver of 
the CP model according to the plot of fit (Fehler! Verweisquelle konnte nicht gefunden 
werden.1a). Though, ADF data points in the observed against predicted plot did not highlight a 
similar pattern. The high variation of CP between the cuts in IMG due to intensive management 
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practice might be the reason caused for the mentioned pattern. However, the data points from other 
grasslands were mostly grouped in both plots because they almost experienced similar 
management practice. 
To summarise, predictive modelling algorithms allow an adequate forage quality estimation 
regardless of the grassland type, and cutting regimes applied. Ultimately, fine-tuning of the 
calibrated models with data from further diverse grassland types could increase the robustness of 
the models to generate forage quality maps for grasslands with different vegetation types and 
management practices. 

 
Fig. 3: The relationship between relative lupine area (LA) from manual digitising and map accuracy 

based on the generalised model, comprising undisturbed/not mowed vegetation (V0, V2weeks, 
V4weeks), and regrown vegetation after mowing (VR2weeks, VR4weeks). Grey areas indicate 
the data density along the x- and y-axis. The black line represents the fitted exponential curve, 
and dotted lines show the 95th confidence interval of the fitted curve. 

4.2 Invasive species coverage 

Invasion by lupine endangers biodiversity and ecosystem functionality (KLINGER et al. 2019). The 
spatial and temporal distribution of lupine is essential to understand the invasive pattern, to plan 
appropriate management strategies and to monitor the impact of control actions.  OBIA has shown 
its effectiveness to work with very high-resolution (< 1 m spatial resolution) images, where several 
pixels represent one object rather than classifying each pixel separately. The first step of the 
proposed workflow was to segment UAV-borne images into image objects that represent either 
lupine or non-lupine plants. USPO based area-specific threshold values benefitted for obtaining 
good object delineation. Though USPO based area-specific threshold values provided good object 
delineation, it may lead to increased computational time for a multitude of image areas, depending 
on the size of the areas and the spatial resolution of the images. Several attributes related to plant 
structure or architecture as well as colour were essential predictors in the Mall model. The height 
difference between lupine plants and grass vegetation contributed to the classification of 
segmented objects. Segment’s area and perimeter were further vital geometric features in the final 
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classification model, whereas fractional dimensions and circle compactness were not useful. A 
closer look at the segmented objects shows that the area and perimeter of lupine objects were 
substantially smaller compared to non-lupine objects, irrespective of the lupine coverage. 
Lupine containing areas showed lower temperatures in thermal images as surrounding grass areas, 
which may be due to higher water contents compared to grasses (HENSGEN & WACHENDORF 2016) 
and increased shades around the bush-like growth of the lupine. However, no temperature-related 
attributes emerged as significant predictors in the classification models which can be evaluated 
positively, as it leads to reductions in costs for sensors and platforms as well as in model 
complexity and computing time. Mapping accuracy declined with increasing lupine coverage both 
for undisturbed and regrown grassland vegetation of different maturities. In general, early 
detection of invasive plant species and rapid action is critical to control invasive species (COCK & 
WITTENBERG 2001). Similarly, lupine control in the biosphere reserve is mainly conducted in 
regions with low lupine coverage, as this stage of invasion facilitates a fast eradication and 
containment compared to regions with lupine dominance. Thus, the use of lupine coverage maps 
can help to identify regions with relatively small lupine coverage and precisely locate single lupine 
plants for eradication. 

5 Conclusions 

The present study aimed to estimate forage quality of a multitude of grasslands with different 
vegetation composition and cutting regimes applied based on UAV-borne imaging spectroscopy 
data. It was demonstrated that the resulting models could accurately estimate CP and ADF 
irrespective of the grassland type and that model accuracies are in the same range as those obtained 
with the use of field spectroscopy. Further a workflow was developed that can accurately map 
lupine coverage in a grassland using UAV-borne RS and OBIA. A robust RF classification model 
allowed the classification of lupine and non-lupine image objects. Such classification models can 
be transferred to other regions, and thereby overcome limitations of the standard way of lupine 
mapping. Finally, the developed procedures can be adopted for mapping forage quality and 
invasive species which may provide benefit for practical grassland management and maintenance. 
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