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Abstract: Nowadays, automatic classification of remote sensing data can efficiently produce 
maps of land use and land cover, which provide an essential source of information in the field 
of environmental sciences. Most state-of-the-art algorithms use supervised learning methods 
that require a large amount of annotated training data. In order to avoid time-consuming 
manual labelling, we propose a method for the automatic annotation of remote sensing data 
that relies on available land use and land cover information. Using the example of automatic 
labelling of SAR data, we show how the Dempster-Shafer evidence theory can be used to fuse 
information from different land use and land cover products into one training data set. Our 
results confirm that the combination of information from OpenStreetMap, CORINE Land 
Cover 2018, Global Surface Water and the SAR data itself leads to reliable class assignments, 
and that this combination outperforms each considered single land use and land cover prod-
uct. 
 

1 Introduction 

A wide range of research in the field of environmental science relies on information on land use 
and land cover (LULC). For instance, such knowledge is used to develop climate models, to plan 
cities and agricultural land use efficiently, or to support forest management (PIELKE et al. 2011; 
HANSEN et al. 2013). In order to respond to the demand for up-to-date LULC products, a variety 
of methods has been developed to derive appropriate class assignments from remote sensing data. 
The use of remote sensing data, in particular satellite data, is justified by the fact that large areas 
can be covered, in most cases even with short revisit time. In recent years, the accessibility of 
remote sensing data has increased significantly due to the use of Earth observation satellites such 
as Sentinel, Landsat or TerraSAR-X. Because of the large amount of data available, machine learn-
ing methods offer high potential for the automatic analysis and interpretation of these data. For the 
task of LULC classification, particularly methods related to supervised learning are used. These 
methods include, among others, Random Forest (VAN BEIJMA 2014), Support Vector Machine 
(SVM) (HUANG et al. 2002) and Convolutional Neural Networks (CNNs) (MOHAMMADIMANESH 

2019). In particular, algorithms with a high number of trainable parameters, such as those found 
in the area of deep learning, require many annotated training data for successful learning processes. 
The high volume and diversity of the training data significantly contributes to the convergence of 
the training process, as well as the ability of the classifier to generalize to unseen samples. Manual 
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annotation of data usually requires a considerable amount of expert knowledge and can only be 
realized with an enormous amount of time.  
One apparent approach to bypass manual annotation is to use freely available LULC products e.g. 
crowdsourced data such as OpenStreetMap (OSM) (HAKLAY & WEBER 2008) or products devel-
oped and provided as part of Earth observation programs e.g. Copernicus. Such products contain 
a high amount of valuable information suitable for an initial labelling of remote sensing data. Es-
pecially the tagged data layers from OSM often serve as class labels within the training of classi-
fication and segmentation methods. For example, BRIAN & KOTARO (2016) extract OSM polygons 
of the categories natural and landuse to train a Random Forest in order to realise LULC mapping 
using time-series of satellite imagery. Further, to generate training data for forest/non-forest clas-
sification, PEKKARINEN et al. (2009) use class labels extracted from a map of the CORINE Land 
Cover (CLC) programme. 
However, available LULC products also comprises some disadvantages that interfere with the 
training of robust and reliable classifiers. For example, one LULC product may have an insuffi-
cient minimum mapping unit (MMU), while others do not cover the entire training area, do not 
represent all target classes, or contain misclassifications. The validity of the training labels derived 
from a LULC product is therefore not ensured. However, the reliability of training data in super-
vised learning algorithms is a fundamental factor for the performance of the resulting classifier. 
Another issue concerning this strategy is that LULC products build on the analysis of data from 
the past. Thus, they may not represent the state at the acquisition time of the data to be annotated. 
In this paper, we present an approach to generate reliable annotations of remote sensing data with 
minimal manual labelling effort by fusing various sources of information. Instead of using only 
one LULC product as annotation, several complementary products are combined. The fusion of 
information eliminates the weaknesses of individual products and enhances their combined ad-
vantages at the same time. Besides various LULC products, information about the LULC state at 
the time of data acquisition are included. This information is derived from characteristic features 
of the data to be annotated. Using the Dempster-Shafer evidence theory, all information are com-
bined to create a reliable training data set. We demonstrate the performance of the approach ap-
plying the automatic annotation on SAR data recorded over the German Wadden Sea. 
This paper is organized as follows: in Section 2, we introduce the study area and the data collected 
in that region. In Section 3, all sources of information are described that are included in the auto-
matic annotation and the approach to fuse these information is presented. Subsequently, in Sec-
tion 4, the results that can be achieved with the approach are shown. Finally, in Section 5, we 
summarize the results, draw conclusions accordingly and give including suggestions for future 
work. 

2 Study area – German Wadden Sea 

The presented approach is to be used on the automatic annotation of SAR data captured from tide-
influenced environments. With the superior goal of generating high-resolution geodata for coastal 
monitoring, airborne SAR data were acquired over the German Wadden Sea. As representative 
test areas, data were recorded over Otzumer Balje, as well as from the Elbe estuary Medem channel 
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(see Fig. 1). The data acquisition was performed by the F-SAR system, developed at the German 
Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) (HORN 2009). F-SAR is an 
airborne SAR system that is capable of simultaneously capturing fully polarimetric SAR data at 
different wavelengths. In the measurement campaigns, the X- and S-band antennas were used, 
which are able to realize single-pass polarimetric interferometry. In addition to the single-pass 
interferometry, repeat-pass measurement mode was used to assure baseline flexibility. The flights 
took place in February and July 2019 on days with low tide. We have chosen times with low tides 
to observe large areas of dry fallen mudflats, as the structures found there are of particular interest 
for coastal protection. By observing variations in the morphology of tide ways, tidal flats, beaches 
and dunes, it is possible, for instance, to predict the formation of sandbanks and the erosion of 
dunes. 
The presented approach automatically generates reference data for a part of the collected data in 
order to enable the training of various classifiers by means of supervised learning processes. These 
classifiers shall serve to distinguish between water, mudflats, different vegetation classes and man-
made objects. 

3 Automatic data annotation 

With the aim of generating training data, a representative section of available airborne data is an-
notated automatically with respect to five classes: water, mudflats, high vegetation (e.g. trees, high 
shrubs), ground (including fields, meadow and arable land) and man-made objects. An overview 
of the approach for the generation of training data is illustrated in Fig. 2. The input data comprises 
classified polygons from OSM data, the CORINE Land Cover (CLC2018) map, information from 
the Global Surface Water (GSW) data set as well as interpreted SAR data (coherence mask and 
entropy mask). In order to enable a pixel-wise fusion, all information are first mapped to a uniform 
grid. To simplify the fusion we introduce a homogenisation of the class nomenclature. Conse-
quently, there are up to five class assignments for each pixel to be annotated. These are regarded 
as evidences and fused using the Dempster-Shafer rule of combination. The resulting combined 
basic probability assignment function is used to determine a final class label whose certainty is 

Fig. 1:  Polarimetric S-band SAR image mosaic, captured over the Medem channel (left) and Otzumer 
Balje (right). In the background, an image of the corresponding region from GoogleEarth is dis-
played 
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quantified with a confidence value. Finally, the resulting training data set is composed of all class 
labels whose corresponding confidence value exceeds a fixed threshold value. 

 
Fig. 2:  Overview of the approach to generate annotated training data by fusing several LULC products 

(OSM, CLC2018) and interpreted SAR data (Coherence mask, Entropy mask) 

3.1 Information base 
The following three LULC products serve as the information basis for automatic annotation: 

1. OpenStreetMap (OSM) data (HAKLAY & WEBER 2008), a crowdsourced data set to which 
everyone can voluntarily make his own contribution.  

2. CORINE Land Cover 2018 (CLC2018) (BÜTTNER et al. 2004), a data product developed 
within the European Earth observation programme Copernicus by the analysis and inter-
pretation of satellite images and in-situ data. 

3. Global Surface Water (GSW) (PEKEL et al. 2016), a data set, which was also developed as 
part of Copernicus to reflect the temporal distribution of water surfaces over the last 3.5 
decades. 

The main characteristics of the data sets are listed in the first three columns of Tab. 1 and described 
in detail in the following sections. 

3.1.1 OpenStreetMap data 

The collaborative project OpenStreetMap aims at creating and maintaining freely available map 
material, which captures mainly information related to land use, transport infrastructure and build-
ings as well as the localisation of national and coastal borders. Since 2004 information has been 
collected on a voluntary basis by more than two million OSM users. The generation of map sec-
tions is a two-step process. First, raw data is recorded, for example by GPS measurements collected 
while following roads, paths or rivers. In a second step, users transfer the data in form of polygons, 
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lines and points to the map and assign them with attributes, so-called tags. These tags consist of 
key – value pairs. The key indicates the general topic or category of an object (e.g. landuse) and 
the value assigns the explicit class (e.g. crop).  

Tab. 1: Properties of each included source of information. 

 
Concerning the goal of annotating acquired SAR data with LULC classes, the publicly available 
OSM data can make a significant informational contribution. The information we require within 
our approach predominantly lies in polygons that are tagged with the category (key) natural, wa-
terways, buildings, man-made and landuse. Thus, all polygons located within the test area and 
annotated with one of those keys are extracted from the OSM data along with their attributes. The 
information contained therein forms an important building block for the automatic data annotation 
approach. 

3.1.2 CORINE Land Cover 2018  

The EU’s CORINE Land Cover (CLC) programme was initiated in 1985 with the aim of generat-
ing and providing of standardised localised geographical information on the land cover of all EU 
member states. The latest data set produced within the project refers to the status of LULC in 2018 
(CLC2018). Research groups from 39 member countries are involved in the development of the 
LULC map. On a national basis, satellite data are evaluated by visual interpretation and semi-
automated processes. In addition, information from in-situ data and GIS data are partially inte-
grated. The resulting product maps LULC with a minimum mapping unit (MMU) of 25 hectares 
to 44 classes, following the hierarchical 3-level CORINE nomenclature. The coarsest level (Level 
1) consisting of artificial surfaces, forest and semi natural areas, wetlands and water bodies cor-
responds directly to the five class assignments that we want to map in our training data.  
As shown in Fig. 2, the CLC2018 data set provides less detailed spatial information compared to 
polygons extracted from OSM data. However, it offers complete coverage of the test area in con-
trast to the sparse coverage of OSM polygons. Thus, it complements the OSM data on the one 
hand and serves for the validation of the OSM polygons on the other hand. 

 OSM CLC2018 GSW COHERENCE 

MASK 

ENTROPY 

MASK 

# CLASSES 61 44 - 3 5 

SPATIAL RES-

OLUTION 

- MMU: 25 ha 30 m ൈ 30 m 1 m ൈ 1 m 1 m ൈ 1 m 

TEMPORAL 

COVERAGE 

2004 to to-

day 

2017 to 2018 1984 to 2018 July 2019 July 2019 

DATA BASIS Voluntarily 

contributed 

data 

Sentinel-2 

Landsat-8 

Landsat-5 

Landsat-7 

Landsat-8 

F-SAR data F-SAR data 
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3.1.3 Global Surface Water 

The GSW-Explorer provides water data sets developed by the European Commission’s Joint Re-
search Centre in order to support scientists and decision-makers, especially in the field of water 
management. The data sets were developed based on the analysis of more than 3 million satellite 
images acquired by Landsat 5, 7, and 8 between March 1984 and October 2015. The resulting 
maps represent information for the entire globe on the local and temporal occurrence of water 
surfaces, as well as their changes. Natural and artificial water surfaces are mapped with a spatial 
resolution of 30 m ൈ 30 m. 
Since the test area consists mainly of water and mudflats, which need to be distinguished, infor-
mation regarding water occurrences are of particular importance. For this reason, we include the 
Surface Water Occurrence map of the GSW-Explorer in the annotation process. This map displays 
the spatial and temporal variations of surface water in a single product, giving the frequencies with 
which water surfaces occur. With the background knowledge that the data to be annotated were 
captured at low tide, this information supports the distinction between water, mudflats and land. 

3.2 Information from SAR data 

The three selected products do not necessarily reflect the state of LULC at the desired time, but 
represent results that may be outdated or show a mixture of past occurrences. However, for the 
annotation of currently available remote sensing data, it is of great importance to map LULC at 
the time of acquisition. This is particularly important in the tidal areas we are investigating, as 
water and mudflats are constantly changing. In order to be able to map the corresponding water 
levels correctly, it is necessary to include information derived directly from present SAR data. In 
order to obtain relevant information, meaningful SAR features are extracted. To differentiate be-
tween water, mudflats and land areas, we make use of the multi-path constellation that was applied 
during data acquisition. Based on two co-registered S-band SAR images with VV polarisation, a 
coherence image is calculated. Due to the reflective properties of water, low coherence values 
result in the corresponding areas. With the addition of X-band amplitude images, a threshold value 
method is used to assign the label water, mudflat or land to each pixel. For example, pixels with 
low coherence and low amplitude belongs to class water. The resulting coherence mask can relia-
bly distinguish between these three classes. However, the differentiation of different land cover 
classes (ground, vegetation, man-made) is not is not performed. Therefore, another classification 
mask based on polarimetric features is generated. Following the approach proposed by CLOUDE & 

POTTIER (1997), the complex-valued polarimetric scattering matrix is decomposed to extract en-
tropy (H), alpha (𝛼) and anisotropy values. Based on the resulting H/𝛼-plane, each pixel receives 
one of the class labels: water, mudflat, ground, vegetation or man-made. The corresponding inter-
pretation of the H/𝛼-plane for class assignments is shown in Fig. 3. 
The maps resulting from the two methods (hereinafter referred to as entropy mask and coherence 
mask) are used in the annotation process to incorporate knowledge about the LULC at the appro-
priate time. 
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3.3 Homogenisation of class nomenclatures 

To simplify the final fusion, information stored in the presented LULC products are mapped to up 
to five output classes: water, mudflats, high vegetation, ground and man-made objects. To this 

 OSM CLC2018 GSW 

WATER Natural: 

Waterway:  

water 

all values 

Water bodies Occurrence > 0.95 

MUDFLATS Natural: 

Landuse:  

wetland, mud 

salt_pond   

Wetlands 0.95 > Occurrence > 0.5 

VEGETATION Landuse: 

 

Natural: 

vineyard, orchard, 

greenfield 

grassland, greenfield, 

scrub, heath, forest 

Forest and semi-

natural areas 

Occurrence < 0.5 

GROUND Landuse: 

 

Natural:  

greenhouse_horticulture, 

farmland, meadow 

fell, bare_rock, sand, 

rock, cliff 

Agricultural ar-

eas 

MAN-MADE Landuse:  

 

 

 

Man_made: 

Office: 

Buildings: 

Shop:   

industrial, commercial, 

retail, quarry, construc-

tion, allotments, farm-

yard, garages 

all values  

all values 

all values 

all values 

Artificial sur-

faces 

Tab. 2: Mapping of OSM tags, CLC nomenclature and water occurrences to five output classes. 

Fig. 3:  The H-alpha plot (Cloude & Pottier, 1997) shows how Entropy and alpha values are used to dis-
tinguish between five LULC classes 
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end, a custom assignment scheme, presented in Tab. 2 is applied. For the mapping of information 
from OSM data, several key – value pairs are grouped and one of the output classes per group is 
assigned. In the case of CLC2018 data, the class mapping is straightforward adopting the Level-1 
labels. The GSW data provide values between 0% and 100%. Two thresholds were chosen to sep-
arate water, mudflat and land (see Tab. 2). In this case we do not differentiate between vegetation, 
ground and man-made, because the GSW data do not contain any information about different land 
types.  

3.4 Fusion methodology 

As a result of the processing steps described above, for each pixel, we obtain up to five statements 
regarding the class label. In order to come to an overall decision about the class label, we fuse the 
partially conflicting statements using the Dempster-Shafer theory (DST). The DST, which has 
been developed by DEMPSTER and SHAFER (1968, 1992), provides a tool for knowledge represen-
tation and reasoning with uncertainty in expert systems. It can be applied to combine information 
(evidences) from different sources into an overall statement. In contrast to traditional probability 
theory principles, the Dempster Shafer approach allows for the representation of ignorance.  
Formally, the theory is described by the following definitions: 
(1) Frame of discernment: In DST, all mutually exclusive hypotheses form a finite non-empty set 

𝜃, commonly known as frame of discernment. Ωሺ𝜃ሻ denotes the power set comprising all 
2ఏsubsets of 𝜃, including itself and the null hypotheses ∅. For the case we investigate, the 
distinction between five LULC classes, this results in the frame of discernment: 

𝜃 ൌ ሼ'𝑤𝑎𝑡𝑒𝑟', '𝑚𝑢𝑑𝑓𝑙𝑎𝑡𝑠', '𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛', '𝑔𝑟𝑜𝑢𝑛𝑑', '𝑚𝑎𝑛-𝑚𝑎𝑑𝑒'ሽ 
The resulting power set Ωሺ𝜃ሻ contains all 32 combinations of these hypotheses, but only some 
subsets are of interest. One relevant example is the subset 

𝐴 ൌ ሼ'𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛', '𝑔𝑟𝑜𝑢𝑛𝑑', '𝑚𝑎𝑛-𝑚𝑎𝑑𝑒'ሽ, 
which implies that the LULC class is one of the land classes vegetation, ground or man-made. 

(2) Basic probability assignment function: To quantify the certainty with which each subset of 
Ωሺ𝜃ሻ is supported by a distinct evidence, the basic probability assignment (bpa) function m is 
introduced. It is defined as a mapping that assigns a value between 0 (no belief) and 1 (total 
belief) to every element of the power set. The formal representation is given by: 

𝑚 ∶  Ωሺ𝜃ሻ → ሾ0, 1ሿ. Eq. 1 

with 

𝑚ሺ∅ሻ ൌ 0, ෍ 𝑚ሺ𝐴ሻ ൌ 1
஺ ⊂ ஐሺఏሻ

. Eq. 2 

The bpa of an individual hypothesis 𝑚ሺ𝐴ሻ quantifies the portion of the total belief committed 
exactly to the subset 𝐴. However, it does not provide any information about the amount of 
support across the different subsets of 𝐴. This shall be demonstrated by an example related to 
our application. Based on the information extracted from GSW, which indicate that the fre-
quency of water occurrences was 0, we can assign a high portion of the total belief to the subset 
𝐴 ൌ ሼ'𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛', '𝑔𝑟𝑜𝑢𝑛𝑑', '𝑚𝑎𝑛-𝑚𝑎𝑑𝑒'ሽ. Note that by this the amount of support of the 
individual classes, e.g. vegetation, is not given.  
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To represent ignorance, the total amount of belief 1 is given to the full set 𝜃 and consequently 
no belief (0) to any other subset of 𝜃. Applied to our example, this representation is reasonable 
if a dataset does not provide any information for one considered pixel. This occurs especially 
in connection with the sparse OSM data. 

(3) Dempster's rule of combination: In order to combine several bpa functions, derived from evi-
dence from independent sources, Dempster's rule of combination can be applied. Given two 
bpa functions 𝑚ଵ and 𝑚ଶ in the same frame of discernment 𝜃, a joint bpa is calculated using 
the following equation: 

𝑚ଵ,ଶሺ𝐴ሻ ൌ ሺ𝑚ଵ ⊕𝑚ଶሻሺ𝐴ሻ ൌ
1

𝐾 െ 1
 ෍ 𝑚ଵሺ𝐵ሻ 𝑚ଶሺ𝐶ሻ,
஻∩஼ୀ஺

 Eq. 6 

with  𝐾 ൌ   ෍ 𝑚ଵሺ𝐵ሻ 𝑚ଶሺ𝐶ሻ 
஻∩஼ୀ∅

൐ 0. Eq. 7 

Thus, 𝐾 indicates the amount of conflict among the evidences, obtained from two different 
sources of information. The larger the conflict, the less informative is the resulting combination 
of sources. The following generalisation results for the combination of more than two sources 
of evidence to an aggregated hypothesis:  

𝑚ሺ𝐴ሻ ൌ ሺ𝑚ଵ  ⊕𝑚ଶ ⊕ … ⊕𝑚௡ሻሺ𝐴ሻ, 
Eq. 8 

1
1 െ 𝐾

෍ 𝑚ଵሺ𝐸ଵሻ ∙ 𝑚ଶሺ𝐸ଶሻ ∙ … ∙ 𝑚௡ሺ𝐸௡ሻ.
∩೔షభ
೙ ா೔ୀ஺

 
Eq. 9 

We use the previously explained evidence theory to fuse the information contained in OSM, 
CLC2018, GSW, entropy mask and coherence mask for each pixel. As already indicated, the frame 
of discernment is determined by: 

𝜃 ൌ ሼ'𝑤𝑎𝑡𝑒𝑟', '𝑚𝑢𝑑𝑓𝑙𝑎𝑡𝑠', '𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛', '𝑔𝑟𝑜𝑢𝑛𝑑', '𝑚𝑎𝑛-𝑚𝑎𝑑𝑒'ሽ. 
The first substantial step of our approach includes the assignment of bpa functions to the respective 
evidence, derived from the different information sources. In other words, we need to quantify the 
reliability of the evidence that we extract from the selected LULC products. This is accomplished 
by including prior knowledge about the class significance of the different data sets. This prior 
knowledge is obtained by comparing class predictions of the data sets to a manually labelled train-
ing area. Following the approach proposed by DENG et al. (2006), we construct bpa functions 𝑚௜

ఝೖ 
for each class 𝑐௜ (𝑖 ൌ 1 …𝑁) in every data set 𝜑௞ (𝑘 ൌ 𝑂𝑆𝑀,𝐶𝑂𝑅𝐼𝑁𝐸,𝐺𝑆𝑊, 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 
𝑚𝑎𝑠𝑘, 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑎𝑠𝑘ሻ based on recall and precision rates. Using the labelled training area, that 
contains the true classes 𝑐௜, we compute the confusion matrices 𝐶ఝೖ  to quantify the performance 

of a data set 𝜑௞: 
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𝐶ఝೖ ൌ  ൦

𝑛ଵଵ 𝑛ଵଶ … 𝑛ଵே
𝑛ଶଵ 𝑛ଶଶ … 𝑛ଶே
⋮ ⋮ ⋱ ⋮
𝑛ேଵ 𝑛ேଶ … 𝑛ேே

൪.            Eq. 10 

 
Here, 𝑛௜௝ represents the number of pixels belonging to the true class 𝑐௜ and classified by the data 
set 𝜑௞ as 𝑐௝. Note that we exclude all unclassified pixels. With the precision rate 𝑟௜௝

௥  and recall rate 
𝑟௜௝
௣ given by: 

        𝑟௜௝
௥ ൌ

𝑛௜௝
∑ 𝑛௜௝
ேାଵ
௝ୀଵ

      and     𝑟௜௝
௣ ൌ

𝑛௜௝
∑ 𝑛௜௝
ேାଵ
௜ୀଵ

, Eq. 11 

we derive the corresponding matrices: 

𝐶ఝೖ
௥ ൌ ൦

𝑟ଵଵ
௥ 𝑟ଵଶ

௥ … 𝑟ଵே
௥

 𝑟ଶଵ
௥ 𝑟ଶଶ

௥ … 𝑟ଶே
௥

⋮ ⋮ ⋱ ⋮
𝑟ேଵ
௥ 𝑟ேଶ

௥ … 𝑟ேே
௥

൪    and  𝐶ఝೖ
௣ ൌ

⎣
⎢
⎢
⎢
⎡𝑟ଵଵ

௣ 𝑟ଵଶ
௣ … 𝑟ଵே

௣

 𝑟ଶଵ
௣ 𝑟ଶଶ

௣ … 𝑟ଶே
௣

⋮ ⋮ ⋱ ⋮
𝑟ேଵ
௣ 𝑟ேଶ

௣ … 𝑟ேே
௣
⎦
⎥
⎥
⎥
⎤
.  Eq. 12 

 
Based on 𝐶ఝೖ

௥  and 𝐶ఝೖ
௣ , two bpa functions 𝑚ఝೖ,௜

௥  and 𝑚ఝೖ,௜
௣  are derived for every class 𝑐௜ with: 

𝑚ఝೖ,௜
௥ ሺሼ𝑐௜ሽሻ ൌ

𝑟௜௜
௥

∑ 𝑟௝௜
௥ே

௝ୀଵ
   and  𝑚ఝೖ,௜

௣ ሺሼ𝑐௜ሽሻ ൌ
𝑟௜௜
௣

∑ 𝑟௝௜
௣ே

௝ୀଵ
,  𝑐௜ ∈ 2ఏ , Eq. 13 

𝑚ఝೖ,௜
௥ ሺሼ𝜃ሽሻ ൌ 1 െ𝑚ఝೖ,௜

௥ ሺሼ𝑐௜ሽሻ    and   𝑚ఝೖ,௜
௣ ሺሼ𝜃ሽሻ ൌ 1 െ𝑚ఝೖ,௜

௣ ሺሼ𝑐௜ሽሻ, 𝑐௜ ∈ 2ఏ, Eq. 14 

𝑚ఝೖ,௜
௥ ሺሼ𝐴ሽሻ ൌ 0                      and  𝑚ఝೖ,௜

௥ ሺሼ𝐴ሽሻ ൌ 0, ∀𝐴 ∈ 2ఏ ∖ ሼሼ𝑐௜ሽ,𝜃ሽ. Eq. 15 

Note that the considered classes 𝑐௜ can represent both singletons as well as subsets such as 
{′𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛ᇱ,ᇱ 𝑔𝑟𝑜𝑢𝑛𝑑ᇱ, ′𝑚𝑎𝑛-𝑚𝑎𝑑𝑒′} of 𝜃. 
To generate the final bpa functions 𝑚௜

ఝೖ , that reflect the ability of a dataset 𝜑௞ to recognise the 
class 𝑐௜ the two bpa functions 𝑚ఝೖ,௜

௥  and 𝑚ఝೖ,௜
௣  are combined: 

𝑚௜
ఝೖ ൌ 𝑚ఝೖ,௜

௥ ⊕ 𝑚ఝೖ,௜
௥ . Eq. 16 

After the generation of bpa functions based on a training area, we can produce a fused map for an 
independent test area. For each pixel 𝑝 within the test area, every data set assigns a predicted class 
𝑐௣
ఝೖ . According to the predictions, the corresponding bpa functions 𝑚௜

ఝೖ with 𝑖 ൌ 𝑐௣
ఝೖ  are selected. 

For the case of unclassified samples, 𝑚ఝೖሺΘሻ ൌ 1 is used. For the fusion of the five bpa functions, 
we apply Dempster’s rule of combination and obtain the combined bpa function: 

𝑚௣
௖௢௠௕௜௡௘ௗ ൌ 𝑓൫𝜑ଵ, 𝑐௣

ఝభ൯ ⊕ 𝑓൫𝜑ଶ, 𝑐௣
ఝమ൯ ⊕ …⊕𝑓൫𝜑ହ, 𝑐௣

ఝఱ൯. Eq. 17 

Here 𝑓൫𝜑௞ , 𝑐௣
ఝೖ൯ denotes the associated bpa 𝑚௜

ఝೖ , belonging to the predicted class 𝑐௣
ఝೖ for pixel 𝑝. 

The last step contains the decision-making regarding the final class, depending on 𝑚௖௢௠௕௜௡௘ௗ. For 
this, we apply the pignistic transformation (SMETS et al., 1994): 
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𝑐௣௖௢௠௕௜௡௘ௗ ൌ  arg max ൝ ෍
1

|𝐴|
஺⊆ఏ,௫∈஺

𝑚௣
௖௢௠௕௜௡௘ௗሺ𝐴ሻ

1 െ𝑚௣
௖௢௠௕௜௡௘ௗሺ∅ሻ

ൡ ,  𝑥 ∈ 𝜃. Eq. 18 

As a result, we obtain the final class label 𝑐௣௖௢௠௕௜௡௘ௗ for each pixel 𝑝. Furthermore, information 
about the reliability of the class assignments is stored for each label. To quantify this information, 
we use the maximum value calculated in the argument of Eq. 16, denoted as confidence value. For 
our goal of generating annotated training data, the complete annotation of each individual pixel is 
not necessary. More important is the correctness of the annotation of pixels that build up the train-
ing data set. Therefore, the intended training data set consists only of pixels whose class assign-
ments are marked with a high confidence value. 

4 Results 

We use the presented approach in order to annotate a part of SAR images, captured over the Ger-
man Wadden Sea. For the evaluation of the proposed fusion method, a test area was selected that 
covers a coastal strip south of Spiekeroog. Fig. 4 shows the SAR image of the test area overlaid 
with manually annotated polygons. The annotated area was divided into training and validation 
areas, whereby in both areas all output classes are included. The training area comprises 2,098,003 
annotated pixels with a pixel size of 1 m ൈ 1 m. The annotated pixels of this area are used to 
determine the bpa functions, which define the reliability of the data to be fused. For this purpose, 
we calculate the confusion matrices and derive the corresponding recall and precision matrices for 
each included LULC product.  

 
Fig. 4:  Test area, divided into training and validation area. The S-band amplitude image is overlaid with 

manually annotated polygons 

The validation area contains 1,851,813 annotated pixels. Within this area, class labels are deter-
mined by fusing five LULC products, using the presented approach. For the automatic selection 
of reliable annotations, the fused map is filtered using a threshold value of 0.9 on the provided 
confidence values. In this way, 69.10% of the pixels within the validation area are assigned a class 
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label. 1,456,739 of these pixels have a manual annotation and are used for evaluation. In the fol-
lowing, we present the obtained results and compare them with the performance of the individual 
LULC products OSM and CLC2018. For the evaluation, the confusion matrices including preci-
sion and recall rates per class are shown. For the validation area, we obtain performance scores 
that are summarized in Tab. 3 to 5. With precision values between 0.87 and 0.99, the annotation 
resulting from the fusion provides highly reliable class information. The separation of the five 
classes is successful and only few misclassifications remain after the fusion and the pixel selection. 
The only poor performance value is the recall rate of 0.62 for man-made objects. This class is often 
mistakenly classified as mudflats, since tiny coastal buildings are not captured in any of the used 
LULC products. Compared to the performance of OSM and CLC2018, the strength of the fused 
result is particularly evident in the distinction between water and mudflats. Due to the constant 
change in the tidal influenced area, the static LULC products OSM and CLC2018 do not reflect 
the water level at the time of data acquisition. However, the fused result takes into account time 
developments and current information, so that significantly higher precision and recall rates can 
be achieved. As Tab. 4 shows, the performance of the OSM data is high regarding the distinction 
of the three land classes. This strength is also exploited in the fusion, so the strong performance is 
reflected in the fused result. 

Tab. 3 Confusion matrix for the fused result (FUSED). 

 Man-Made Ground Vegetation Mudflats Water Recall  

Man-Made 46,433 3,837 156 24,104 204 0.62 

Ground 2,,319 807,730 0 0 0 0.997 

Vegetation 864 1,567 25,158 0 0 0.91 

Mudflats 0 0 0 269,435 0 1.0 

Water 0 677 0 16,056 282,903 0.94 

Precision 0.94 0.99 0.99 0.87 0.99  

 
Tab. 4 Confusion matrix for OSM data. 

 Man-Made Ground Vegetation Mudflats Water Recall  

Man-Made 46,697 3,837 156 21,583 9,180 0.57 

Ground 2,319 807,730 0 0 4,010 0.99 

Vegetation 864 1,567 25,158 0  0.91 

Mudflats 0 0 0 269,473 0 1.0 

Water 0 732 0 107,611 133,971 0.55 

Precision 0.94 0.99 0.99 0.67 0.91  

 
Tab. 5 Confusion matrix for CLC2018 data. 

 Man-Made Ground Vegetation Mudflats Water Recall  

Man-Made 63,582 49,544 0 31,936 11,984 0.40 

Ground 10,809 904,358 0 0 45 0.99 

Vegetation 80 33,583 0 0 0 0 

Mudflats 0 0 0 269,473 0 1.0 

Water 4,290 87,624 0 168,787 215,718 0.45 

Precision 0.81 0.84 0 0.57 0.95  
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A qualitative assessment can be deduced from Fig. 5 that shows the annotation of the different 
LULC products (OSM, CLC2018; FUSED) over the validation area. It is noticeable that, in many 
cases, reliable class labels from the OSM data will prevail in the context of the fusion for the land 
area. In the tidal influenced area, the dominance of the OSM classes is significantly lower. Due to 
stronger conflicts between the fused LULC products in the tidal area, the occurrence of unclassi-
fied areas increases. By excluding pixels with high uncertainty, wrong class assignments are pre-
vented. Thus, only those pixels remain in the tidal area for which a reliable distinction can be made 
between water and mudflats. 

 

 
Fig. 5:  Assigned classes by CLC2018, OSM and FUSED (our result) 

5 Conclusion 

In order to apply supervised learning to train LULC classifiers that rely solely on remote sensing 
data, a high amount of annotated data is necessary. In this paper, an approach is proposed to anno-
tate remote sensing data automatically. Using the example of SAR data from the German Wadden 
Sea, we show how to use Dempster-Shafer theory to fuse information from LULC products in 
order to generate reliable training data. The presented results show that reliable class assignments 
are achieved by fusing data derived from OSM, CLC2018, GSW and from polarimetric and co-
herent features of the SAR data itself. The results testify that the fused map represents the LULC 
classes at the acquisition time of the SAR data more precisely than a single data set. It receives 
details in contrast to the roughly resolved CLC2018 map, and represents all required classes as 
opposed to the GSW map, coherence mask and entropy mask. By including information based on 
SAR features, the fusion result also maps the current water occurrence and distinguishes reliably 
between water and mudflats. This makes it more suitable as a training set than for example only 
OSM data. Additionally, the automatic selection of certain class assignments also greatly reduces 
misclassifications, which is especially relevant for the use as training data. In the future, we intend 
to use the proposed method for the annotation of spatially and temporally distributed SAR images 
to generate a diversified training data set. Such a data set will enable the robust training of CNN-
based classifiers with a high number of parameters. In particular, a training from scratch is facili-
tated, which is essential for the analysis of SAR data to learn SAR-specific low-level and high-
level features. 
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