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Assessment of Drought Effects on Forests using Non-Para-
metric Methods and Satellite Imagery 
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Abstract: Temperate forests are a vital part of the natural environment and important for hu-
man existence. Yet, they are increasingly threatened by changing disturbance regimes, espe-
cially more severe droughts. Here, we combine Landsat and Sentinel-2 time series and use a 
kernel density estimation (KDE) to assess the baseline phenology of a mixed forest area in 
Germany. We compared this baseline to the forest’s development during the drought year of 
2018 and the following growing season of 2019. Our results show that parts of the examined 
forest were negatively impacted to an unprecedented degree. With the use of satellite remote 
sensing analyses and the KDE, we can assess the impact of drought on vegetation development 
without relying on parametric methods. 
 

1 Introduction 

Forests are a key component of the natural environment in tropical, temperate and boreal regions 
as well as a major foundation for human existence in these areas. Locally and regionally, they 
provide a variety of ecosystem services. This includes the provision of wood-related products, the 
filtering of water or regulation of climate as well as the potential for recreation and tourism. In 
Europe, forestry is among the most important economic sectors. Besides being biodiversity hosts, 
forests are an integral part of global land-atmosphere interactions (BONAN 2008). Temperate for-
ests serve as major net carbon sinks. Contrasting tropical and boreal forests, the amount of carbon 
stored inside the temperate forest biome increased between 2000 and 2007 compared to the decade 
before (PAN et al. 2011), partly outweighing anthropogenic CO2 emissions. Consequently, tem-
perate forests play a key role in mitigating climate change. 
Natural disturbances, such as windthrow, fires and insect outbreaks, are crucial for ecosystem 
functions and the dynamics of forests. As they change the composition, structure and function of 
forests, they contribute to their heterogeneity, facilitate biodiversity and stimulate succession, re-
organization and renewal (SEIDL et al. 2017). During the last decades however, disturbance re-
gimes have changed globally. For many regions, disturbances are increasingly prevalent and be-
coming more frequent and severe. This includes fires, insect outbreaks and droughts. So-called 
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‘megadisturbances’ (MILLAR & STEPHENSON 2015) are emerging, having the potential to increase 
tree mortality to a level surpassing historical recordings and alter forests beyond their ecological 
resilience. Consequently, there are increasing rates of canopy mortality being observed across Eu-
rope’s temperate forests (SENF et al. 2018). Many of these changes in disturbance regimes are 
attributed to climate change – SEIDL et al. (2017) state that temperature and water availability are 
the most important drivers of disturbances in the temperate forest biome. There is strong evidence 
that disturbance activity is going to increase with both warmer and wetter as well as warmer and 
drier climatic conditions; and that climate change will facilitate large-scale disturbance episodes 
across Europe’s temperate forests (SENF & SEIDL 2018).  
In this context, drought is an especially important disturbance agent. Climate observations and 
projections suggest that droughts are increasing in both more frequency and magnitude in the wake 
of a generally hotter climate in Europe. ALLEN et al. 2015 and MILLAR & STEPHENSON 2015 refer 
to these emerging, more severe droughts that are coupled with high temperature events as ‘hotter 
droughts’ or ‘global-change-type droughts’. These affect forests both directly and indirectly. Their 
direct effects include the increase of evaporation and heat damage due to higher temperatures, with 
a simultaneous increase in water stress due to a lack of precipitation. Additionally, a generally 
warmer climate leads to less precipitation in the form of snow that serves as a water reservoir 
(MILLAR & STEPHENSON 2015). Indirectly, droughts increase the susceptibility of trees to other 
disturbances, especially pathogens, fires and insect outbreaks while facilitating the activity of in-
sects and intensify the risk of fires – there is strong evidence that an increase in droughts also leads 
to increased fire and insect disturbances (ALLEN et al. 2015; SEIDL et al. 2017). 
As an example event to assess drought effects on forests, we use the major drought that took place 
in large parts of Central, Northern, and Western Europe in the summer of 2018. The drought was 
characterized by considerable rainfall lacks, combined with exceptionally high temperatures, es-
pecially during June and July. Hence, this event can probably be characterized as one of the global-
change-type droughts mentioned above. Summer temperatures in Germany were only exceeded 
by temperatures in 2003, and the lack of rainfall in some areas was unprecedented in the historical 
recordings (IMBERY et al. 2018). The drought had severe consequences for vegetation health and 
crop yield (REINERMANN et al. 2019) and especially forests, with widespread low remote sensing 
vegetation index values and a strongly reduced vegetation productivity. Increased tree mortality 
during 2018 and 2019 is also reported, but partly may also be attributed to legacy effects and not 
only the drought itself (BURAS et al. 2019).  
Remote sensing has been a widely used tool to appraise the impacts of drought events on ecosys-
tems for decades (AGHAKOUCHAK et al. 2015). However, the impacts of droughts on forests have 
often been underestimated (ALLEN et al. 2015) and there are various challenges to the remote sens-
ing of these effects, including the choice of proper datasets with regards to resolution and coverage 
as well as the appropriate assessment method (ZHANG et al. 2013). It is feasible to compare the 
impacts of droughts or other disturbances to forest’s typical phenology to get a sense of how severe 
it is. These comparisons however have often been based on parametric methods that may not ac-
tually well explain forest’s phenological cycles (CHÁVEZ et al. 2019). Additionally, there is a need 
for approaches that allow a near-realtime monitoring of drought events (ALLEN et al. 2015) as well 
as working with multi-sensor data to be more resilient towards cloudy pixels (ZHANG et al. 2013). 
Furthermore, some drought effects exhibit delays and take place in the years following the drought 



40. Wissenschaftlich-Technische Jahrestagung der DGPF in Stuttgart – Publikationen der DGPF, Band 29, 2020 

3 

events, so it is often sensible to consider a study period of multiple years. Here, we try to meet 
these requirements by estimating the impact of the drought of 2018 in on a mixed forest in Ger-
many. This is done in a non-parametric way that allows for the comparison to a baseline phenol-
ogy. We use all data from the Landsat and Sentinel-2 sensors available since the year 2000 and 
compare the forests’ development for the years 2018 and 2019 to their phenological baseline, com-
puted using a kernel density estimation (KDE). 

2 Data & Methods 

2.1 Study Area 

The proposed procedure of this study is tested for a mixed forest area in Germany: the Kottenforst 
area (Fig. 1a), located directly in the south west of the city of Bonn in the state of North-Rhine-
Westphalia, is a cohesive forest area of about 40 km2 size. Though there are a variety of tree species 
abundant, Quercus robur L. (Common oak), Quercus petraea MATT. (Sessile Oak), Picea abies L. 
(Norway Spruce) and Fagus sylvatica L. (European Beech) prevail in most areas (BOSCH 1997). 
The area is relatively humid, typically receiving around 650 mm of rainfall annually (WACHTER 
2009). The forest is protected to a diverging degree. Namely, large areas are strictly protected, 
whereas some allow for forestry to some degree and contain plantations.  

 
Fig. 1:  Study area Kottenforst. A cloud-free Sentinel-2 composite (a) and the position of the study area 

inside Germany are displayed (b). In b), the green box indicates the tile of the common Land-
sat/Sentinel-2 gridding system in which the area is located. c) displays the forest pixels of the 
area that did not experience a stand-replacing disturbance between 2000 and 2017 with the 
number of clear sky observations (CSOs), i.e. the number of pixels that were not contaminated 
by clouds, snow, aerosols etc. based on each image’s quality flags 

2.2 Data 

For this study, data from different moderate-resolution multispectral sensors were used. This in-
cludes Landsat TM, ETM+ and OLI as well as Sentinel-2 MSI imagery. With their similar spatial 
spectral characteristics, they can be used as a ‘virtual constellation’ (WULDER et al. 2015) whose 
data can be combined to create a denser time series and be more independent from cloud coverage. 
We regarded all available imagery of these sensors from January 01, 2000 to September 30, 2019. 
Data before the year 2000 was not included for two reasons: first, the shorter period reduced the 
prevalence of trends in the data and thus reduces their effect on the fitting of the baseline phenol-
ogy. Second, we used secondary data to remove areas that are not suitable for this study whose 
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data range however only includes the period since 2000. In total, we acquired 1823 images: 927 
Landsat and 896 Sentinel-2 scenes. 

2.3 Methods 

The multi-sensor satellite imagery had to be properly radiometrically corrected to ensure a sensible 
inter-calibration between the sensors. Here, we used the Framework for Operational Radiometric 
Correction for Environmental monitoring (FORCE; FRANTZ 2019). FORCE can generate analysis- 
ready data (ARD) from both Sentinel-2 MSI as well as Landsat TM, ETM+ and OLI data by ap-
plying one consistent pre-processing scheme (FRANTZ et al. 2016). We applied the FORCE built-
in topographic, atmospheric and BRDF corrections. Both Landsat and Sentinel-2 data were pro-
jected into one common, tiled grid to ease further processing; whereby Sentinel-2 was resampled 
to the 30 m resolution that matches the Landsat sensors. During processing, the FORCE software 
also created a variety of quality flags for each image, including a cloud and cloud shadow mask 
based on the Fmask algorithm (ZHU et al. 2015). However, the algorithm implemented in FORCE 
is adjusted for the lack of a thermal infrared band in the Sentinel-2 data – it considers parallax 
effects in the imagery to better detect clouds (FRANTZ et al. 2018). The output of the FORCE 
preprocessing steps was one consistent data cube of ARD at 30 m resolution, with cloudy and 
otherwise contaminated pixels being excluded and both Landsat and Sentinel-2 imagery projected 
into one common gridding system (FRANTZ 2019).  
To ensure that only forest pixels were considered that did not experience any stand-replacing dis-
turbance which would distort the fitting of the baseline, we applied one final preprocessing step. 
Using the global forest change data by HANSEN et al. (2013) implemented in Google Earth Engine 
(GEE; GORELICK et al., 2017), we generated a mask of all pixels that were classified as forest in 
2000 and were not regarded as ‘lost’ until 2017. This mask was exported from GEE and applied 
to the ARD output of FORCE. The utilization of this procedure limited the suitable Landsat data 
to the period since 2000. From the resulting data we computed two multispectral indices to assess 
the drought effects: first, the Normalized Difference Vegetation Index (NDVI) as the most com-
mon remote sensing index that is sensible to plant health was regarded, which calculates as fol-
lows: 

𝑁𝐷𝑉𝐼 ൌ  
ேூோିோௗ

ேூோାோௗ
  (1) 

where 𝑁𝐼𝑅 corresponds to the near infrared and 𝑅𝑒𝑑 to the red band in the imagery. The second 
used index, the Normalized Difference Moisture Index (NDMI) is more sensitive to leaf water 
content and consequently especially suitable to detect the effects of droughts (cf. ZHANG et al. 
2013). It is calculated similarly to the NDVI: 

𝑁𝐷𝑀𝐼 ൌ  
ேூோିௌௐூோଵ

ேூோାௌௐூோଵ
  (2) 

where 𝑆𝑊𝐼𝑅1 corresponds to the first shortwave infrared band of both Landsat and Sentinel-2. 
The NDVI and NDMI data were used as the input for the drought-related analysis itself, i.e. the 
fitting of a phenological baseline of the years 2000-2017 and the comparison of the drought year 
of 2018 and the follow-up year of 2019 to this baseline. The fitting of the phenological baseline is 
done with a non-parametric procedure by using a bivariate kernel density estimation (KDE). This 
approach was first introduced by CHÁVEZ et al. (2019) to assess insect defoliation in deciduous 
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forests in South America based on MODIS Enhanced Vegetation Index (EVI) imagery. It was 
implemented into the npphen package (CHÁVEZ et al. 2017) for the R programming language (R 

CORE TEAM 2019) and modified for this study. 
The procedure is graphically documented in Fig. 2 and consisted of five distinct steps: First, each 
pixel’s NDVI/NDMI time series was divided into a baseline period – the years of 2000 to 2017 – 
and the target period in which the drought and its immediate aftermath took place – January 01, 
2018 to September 30, 2019 (Fig. 2a). The dates of the baseline period where then converted to 
Day of Year (DOY) values, resulting in a transformed feature space where DOY is the independent 
and NDVI or NDMI, respectively, is the dependent variable (Fig. 2b). Mathematically, the feature 
space can be described as 𝑋  ൌ  ሺ𝐷𝑂𝑌;  𝐼𝑁𝐷ሻ் , 𝑖 ൌ  1, … ,𝑛 where 𝐼𝑁𝐷 is the respective remote 
sensing index (ESTAY & CHÁVEZ 2018). This feature space served as the input for the KDE. The 
goal of the KDE is now to approximate the probability density function 𝑓ሺ𝑥ሻ: 

𝑓መሺ𝑥;𝐻ሻ ൌ ଵ


∑ 𝐾ுሺ𝑥 െ 𝑋ሻ

ୀଵ   (3) 

where 𝑥 corresponds to a generic point in the feature space 𝑋. 𝐾 denotes the used kernel, which 
is a Gaussian kernel in this case (DUONG et al. 2019); and 𝐻 is the estimated smoothing bandwidth 
that serves as an input for the kernel (WAND & JONES 1995, p. 91). The resulting density estimate 
(Fig. 2c) is standardized to sum 1 and consequently transformed into a 2-dimensional probability 
distribution, allowing for the derivation of confidence intervals around the most probable index 
value per DOY. This most probable index value forms the phenological baseline for each year 
(Fig. 2d). When the phenological baseline is compared to the observations of the target years (like-
wise converted to DOY-Index value pairs), these confidence intervals can be used to assess 
whether the observed values are actually a ‘true’ anomaly (Chávez et al., 2019). In addition to the 
difference in index values between baseline phenology and actual observations, the likelihood of 
these differences being an anomaly is an additional output (Fig. 2e). While the whole procedure is 
exemplified here for one pixel, it was applied to all forest pixels without stand-replacing disturb-
ance between 2000 and 2017 in the Kottenforst area. Thereby, the raster-based function of the 
npphen package returns data cubes of the difference in index values between the fitted baseline 
and the observed values.  
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Fig. 2:  Analysis procedure exemplified for the NDVI values of one pixel in the Kottenforst area. The 

original time series (a) is divided into a baseline and a target period, as indicated by the orange 
line. The values of the baseline period are transformed into a DOY-NDVI feature space (b), for 
which a KDE is applied (c). From this KDE, the phenological baseline (dark green line) as well 
as the probability of an observation being an anomaly (light green shades) can be derived (d). 
Both can then be compared to the target year observations, likewise converted to DOY-NDVI 
values (e) 
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3 Results & Discussion 

As there were two years being observed using two different vegetation health indices, a total of 
four data cubes were output. Fig. 3 illustrates the difference between baseline and observation for 
one example timestep of 2018 and one of 2019 for both indices. Fig. 4 depicts the complete vege-
tation development of 2018 and 2019 compared to the phenological baseline for one pixel. 

 
Fig. 3:  Example results of the Kottenforst area for one day in 2018 (a, b) and 2019 (c, d), both chosen 

due to low cloud coverage. NDVI (a, c) and NDMI (b, d) differences from the baseline are dis-
played for all available pixels. White indicates a difference of zero, blueish colors illustrate posi-
tive deviations, red indicates negative differences. Grey areas are either cloud-contaminated, 
not covered by forest or did experience a stand-replacing disturbance during the reference pe-
riod. The black circle is centered around an example pixel (see Fig. 4) 
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As Fig. 3 depicts, the drought did indeed influence the two examined forests, not only in the 
drought year of 2018, but also during the following vegetation period in 2019. In the Kottenforst 
area, NDVI values did not differ much from their phenological baseline during the peak of the 
drought at the end of July (Fig. 3a) but were still lower typically. In terms of the NDMI, negative 
differences were not extreme, but still visible, indicating a reduced leaf water content (Fig. 3b). 
By mid-2019, NDVI values were restored to baseline values in most areas, even being higher than 
regular in some. Yet, there are several small patches with very high negative anomalies – the neg-
ative difference in NDVI values between baseline and observation typically amounted to 0.5 or 
greater (Fig. 3c). At the same time, during mid-June of 2019, NDMI values were lower for large 
parts of the forest, implying a longer-term consequence of the drought: a reduced leaf water content 
even if the NDVI values are regular or above in the consecutive growing season. This may possibly 
be caused by an ongoing lack of soil moisture. 
As the example pixel marked in Fig. 3 is part of a Norway spruce plantation, it did not experience 
much yearly phenological variation during the reference period, as illustrated by the bold green 
lines in Fig. 4a and 4b. Yet there has been some general variability, indicated by the relatively 
wide confidence intervals, displayed as lighter green shades. NDVI and especially NDMI values 
for 2018 were below the baseline, especially during the second half of the year. In 2019, both 
indices diminished and the probability of the respective values being an anomaly is very high, with 
NDMI exceeding 0.95 in some parts of the year. The plantation suffered from water stress and 
bark beetle attacks in 2018 and was thus clear-cut in 2019, which likely explains these results.  
The procedure applied here has both advantages and limitations. A strong advantage is its non-
parametric nature. The approach neither relies on any thresholds nor predefined functions, e.g. 
harmonic functions (ZHU et al. 2012) to represent seasonality. Instead, it uses the observed vege-
tation community and its dynamics itself (cf. ESTAY & CHÁVEZ 2018). The system is consequently 
easily applicable to different ecosystems. Beneficial is also its high robustness to missing and 
faulty values as well as outliers. This is visible in Fig. 4b where there apparently were some outliers 
that caused the ribbons in the bottom center. These however had no influence on the fitted phenol-
ogy baseline. In contrast to other methods that have similar targets, this procedure not only quan-
tifies anomalies but also clarifies the degree of deviation from the regular phenology in terms of 
confidence intervals. This is highly important, especially if in the case of a drought event, man-
agement measures have to be planned and applied. Using the medium-resolution Landsat and Sen-
tinel-2 sensors results in an increased spatial precision compared to coarser-resolution sensors like 
MODIS, while the combination of both leads to a temporal resolution that is still comparably high. 
Thus, the procedure meets several of the demands to forest drought impact assessments mentioned 
in the introduction. 
Among the limitations of our approach is the fact that, while the alterations of vegetation develop-
ment during a drought year can be assessed, there is no direct proof that these alterations were 
actually caused by the drought. Possible biases in this context include the interplays of drought 
with other disturbances and legacy effects of past influences of the forest (BURAS et al. 2019; SEIDL 

et al. 2017). Furthermore, outliers in the data, as exemplified by Fig. 4b, often may not influence 
the phenological baseline, but its confidence intervals. Including proper measures in our workflow 
to remove these outliers and compute more accurate confidence intervals would be a meaningful 
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enhancement. An additional improvement may be the application and comparison of different re-
mote sensing indices. Using the Vegetation Condition Index for example that scales each pixel’s 
NDVI time series with its respective maximum and minimum and that is commonly applied in 
drought impact assessments (AGHAKOUCHAK et al. 2015; KOGAN 1990) or the Disturbance Index 
(HEALEY et al. 2005), commonly used in forest disturbance research, may further increase the 
validity of the results. 

 
Fig. 4:  Phenological baseline in terms of NDVI (a) and NDMI (b) for the pixel indicated in Fig. 3. The 

bold green line is the baseline, the lighter shaded areas indicate the anomaly probability. Super-
imposed are the respective DOY-Index values for 2018 (orange) and 2019 (black) as points, the 
lines in the re-spective colors are smoothing splines that are fit using these points 
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4 Conclusion 

We applied a non-parametric procedure as well as multi-sensor multispectral satellite imagery to 
estimate the effects of droughts a mixed forest area in Germany. This study serves as a proof of 
concept and showed that the original idea of using a kernel density estimation and satellite imagery 
to analyze forest disturbances is feasible. It cannot only be performed for MODIS data with rela-
tively coarse resolutions and uniform observation cycles (cf. CHÁVEZ et al. 2019), but is also trans-
ferrable to higher-resolution, multi-source data with variable spatial, spectral and temporal char-
acteristics. While there are some issues and problems remaining, solving which would considera-
bly improve the approach and resolve several pitfalls, the idea works well and may further be 
elaborated. Combining it with in-situ data could be a benefit, e.g. to compare the drought response 
of different tree species. The method may be not only for drought effects on forests, but also for 
other ecosystems as well as disturbances or other phenomena that require the comparison of a 
vegetation community’s yearly development to their baseline phenology. The approach can com-
plement other techniques that serve the same purpose and can technically be even used for opera-
tional monitoring, where the phenological baseline is updated if a season without a major disturb-
ance takes place and each new satellite observation is compared to it. To summarize, the method 
can be highly beneficial to researchers and users that are concerned with investigating and moni-
toring the temperate forests of Europe where disturbance regimes, especially the prevalence of 
droughts, are changing rapidly. 
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