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Abstract: Collections of free and open-access Earth observation (EO) data with global cov-
erage are growing with increasingly higher spatial resolutions and temporal frequency. 
They are one of the few globally consistent data sources available for generating infor-
mation in support of international initiatives. However, these data require automated work-
flows for handling, processing and analysis, including methods to convert data into valid in-
formation.  
A proof-of-concept implementation of a semantic EO data cube is presented using Open Da-
ta Cube technology to generate ad-hoc reproducible, scalable, repeatable and spatially-
explicit information as indicators to support monitoring international environmental initia-
tives. Sentinel-2 data for the study area in north-western Syria (30,000km²) are incorporated 
daily, including automatically generated generic semantic enrichment. As of December 
2018, this encompasses over 800 scenes (~480GB unprocessed Sentinel-2 data). A semantic 
query resulting in a normalised vegetation index of occurrence over 3 years for the entire 
study area is demonstrated as a proof-of-concept example. 
 

1 Context 

Technological advances have driven many changes in Earth observation (EO) from space, in-
cluding new, innovative sensors and ways to handle, store and process rapidly growing data ar-
chives. In 1972, the launch of the Landsat programme began what is now the longest record of 
Earth's status and dynamics from space. Opening the archive to public access in 2008 set the 
stage for free and open EO data (WULDER et al. 2012). The Sentinel satellites from the EU's EO 
programme, Copernicus, have provided data since 2014. This has increased the spatial resolution 
and temporal frequency of freely and openly available EO data from a variety of sensors, includ-
ing radar and multi-spectral instruments. Often referred to as big Earth data, the challenges this 
type of data poses researchers are not merely technological, in terms of data storage, access and 
processing, but rather in developing methods to distill information from this wealth of data. 
Free and open, high-resolution EO data are ideal sources of evidence for generating meaningful 
information products to support decision-makers in an international context. They provide con-
sistent global coverage, independent of political or other human-imposed borders, offering po-
tential for large-scale, multi-temporal and persistent monitoring and analysis, especially with 
continued data acquisition for years to come (DRUSCH et al. 2012). The data are constantly gath-
ered without requiring tasking or direct acquisition costs for those utilising them, and their high 
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temporal frequency could improve timeliness of actionable information for global initiatives giv-
en automated information extraction processes (e.g. automated-prior-knowledge based or ma-
chine learning classification procedures). 
Semantic enrichment (i.e. generating meaningful information) is necessary for turning data into 
understandable information products. Optical EO data (e.g. Sentinel-2) cannot directly measure 
most objects, processes or events on Earth because digital numbers are not a standard unit and 
many different surfaces can be represented by similar values. Indicator extraction is one way to 
translate this data into meaningful information. Automatic spectral categorisation (i.e. prelimi-
nary classification) is one existing transferable method for initial, generic semantic enrichment 
that can be used to generate indicators (BARALDI et al. 2010). 
Automated workflows are necessary for handling the Sentinel-2 mission's expected 3.4TB of 
daily data volume (EUROPEAN SPACE AGENCY 2017). The data have a relatively high velocity due 
to global coverage, on average every five days at the equator, and quite a variety in terms of con-
sistency and quality levels (e.g. cloud coverage differs depending on the spatio-temporal loca-
tion) (SOILLE et al. 2018). 
The work presented here is an example of an automated, reproducible framework for handling 
and analysing big EO data. It demonstrates the benefits of automated, knowledge-based, generic 
semantic enrichment as the basis for multi-temporal, spatial, semantic queries to produce diverse, 
transferable, semi-automated indicators for a variety of domains, including environmental moni-
toring. 

2 Applied Use-Case 

The north-western Syrian border to Turkey was chosen as the use-case location based on existing 
EO-based research (TIEDE et al. 2014), low average cloud cover in the Sentinel-2 archive, and 
the currently on-going conflict, which makes other methods of data acquisition challenging or 
impossible. The area is comprised of three Sentinel-2 granules covering over 30,000km² (lati-
tudes 36.01°-37.05°N; longitudes 35.67°-39.11°E). Data included is from 28 June 2015 until the 
time of writing (19 December 2018; see Fig. 1) and incorporates any new data available in the 
Copernicus Open Access Data Hub on a daily basis. Two relative orbits cover this area resulting 
in temporally denser data availability where they overlap (Fig. 2). 

2.1 Proof-of-Concept Implementation 

The workflow implemented here focuses on automation and big data. It encompasses automated 
downloads from the Copernicus Open Access Hub, re-formatting Sentinel-2 data for processing, 
preliminarily classification with the Satellite Image Automatic Mapper (SIAM™) (i.e. generat-
ing multiple information layers), indexing Sentinel-2 scenes and information layers into an im-
plementation of the ODC and ingesting information layers (Fig. 3). This process runs automati-
cally every day for each of the three study area Sentinel-2 granules (37SBA, 37SCA, 37SDA). 
The result is daily incorporation of the most recently available Sentinel-2 data ready for analysis 
that can include semantic queries. Queries are facilitated using Jupyter notebooks by accessing 
the ingested information layers produced by SIAM™ via the ODC’s python API. At the time or 
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writing, over 800 scenes (ca. 480GB unprocessed Sentinel-2 data) and their information layers 
are ingested and can be queried. 

 

Fig. 1:  Snapshot of data included in the implementation as of 19 December 2018 

 
Fig. 2:  Study area based on 3 overlapping granules (e.g. 37SBA, 37SCA, 37SDA provided in UTM 

Zone 37N) with overlapping Sentinel-2 relative acquisition orbits (modified from AUGUSTIN et al., 
2018) 
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Fig. 3:  Automated workflow overview from download to data cube incorporation (AUGUSTIN et 
al., 2018) 

Spectral-based image pre-classification, as implemented by SIAM™, divides the feature space of 
a multi-spectral image into semantic semi-concepts using a knowledge-based approach, which is 
in contrast to data-driven approaches (e.g. supervised classification) (BARALDI et al. 2010; BAR-

ALDI 2011; BARALDI 2018). This could also be called descriptive colour naming, because the 
resulting semi-categories refer to similar pixels in terms of the multi-spectral information a pixel 
can offer. Assuming scenes are calibrated to a minimum of top-of-atmosphere reflectance, semi-
concepts generated by SIAM™ are comparable and transferable between multiple images and 
optical sensors without any additional user-defined parameterisation (i.e. fully automatic). This is 
the only software used in the workflow that is closed-source. 
All other software is open-source. The computing environment used for this implementation is a 
Red Hat Enterprise Linux 7 virtual machine with 16 virtual CPU at 2.5GHz clocking, 31GB 
RAM and 3TB of generic, all-use storage. The entire workflow is implemented using python in 
reproducible virtual environments using bash scripts run as automated cronjobs in Linux. The 
ODC technology is implemented with a PostgreSQL backend. Refer to AUGUSTIN et al. (2018) 
for more detailed information about the technical implementation. 

2.2 Discussion and Example 

The automated workflow stops at incorporation into the ODC implementation, resulting in a se-
mantic EO data cube. This data cube can then be semi-automatically queried using existing Jupy-
ter notebooks (i.e. existing blocks of interactive code), to construct various queries utilising the 
ODC’s python API.  
Concepts of reproducibility were strong drivers behind this implementation. The reproducibility 
of information extraction in this case is highly linked to the level of automation of information 
production, which is quite high. The methods and results of any query ought to be reproducible, 
given access to the same Sentinel-2 data, versions of the SIAM™ and ODC software, python 
computing environments, code and queries. Incorporating all Sentinel-2 data available for an 
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area including information layers generated through pre-classification in an implementation of 
the ODC can currently be considered as providing the data in an analysis-ready way. Due to the 
fully automated preparation of data from acquisition to ODC ingestion, this implementation can 
be considered highly repeatable. Given the automation developed in this work, a copy of this 
semantic data cube could be rebuilt in a similar computing environment in an estimated 5 days, 
assuming at least four parallel SIAM™ processes and stable downloads. 
One example of a semantic query is for a normalised index of observed semi-concepts over time, 
e.g. for vegetation-like semi-concepts after having filtered out cloud-like semi-concepts (Fig. 4). 
As seen in Figure 5, such a query was conducted for nearly 3 years of data (28 June 2015 until 
22 June 2018) over the entire spatial extent of the implementation (i.e. over 30,000km² with 10m 
pixels) (Fig. 5c and 5e). In addition, a query for the number of scenes available per pixel was 
conducted (Fig. 5a), as well as calculating the number of “clean pixels” by excluding cloud-like, 
snow-like, and unknown semi-concepts (i.e. relatively high reflectance in multiple spectral 
bands) (Fig. 5b). Each of these three massive queries took around 4 hours to complete in the giv-
en computing environment. Keep in mind, each query accessed the information layers belonging 
to 591 independent Sentinel-2 scenes. Figure 5d displays free and open OpenStreetMap (OSM) 
data to demonstrate the plausibility of the results, whereby multiple canals, buildings and even 
the border are visible in the absence of vegetation-like observations, and visible field structures 
coincide with the normalised vegetation occurrence output. 
For such a massive query in terms of space, time and data volume, the number of scenes and 
clean pixels helps contextualise the heterogeneity of data underlying the results. What is lacking 
is a metric or analysis of distribution through time, which, for example, would make seasonal 
cloud-cover differences over large areas visible. Additionally, the simplified “clean pixel” calcu-
lation tends to exclude buildings (e.g. city of Aleppo), shallow water bodies (e.g. saline lake, 
Jabbūl, in the south), and other highly reflective, ambiguous surfaces. This could be overcome 
with more complex rules to take temporal (in)stability of semi-concepts into account, or their 
spatial neighbours (e.g. moving towards object detection and object-based methods in space and 
time). 

 
Fig. 4:  This demonstrates how vegetation-like semi-concept occurrence aggregated over time is calcu-

lated. Green represents various vegetation-like semi-concepts, light-grey cloud-like, and 
pink/magenta anything else (e.g. bare soil). The clean stack contains observations excluding 
cloud-like semi-concepts following semantic-enrichment. The query selection contains only veg-
etation-like observations. Author’s illustration 
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Fig. 5:  Multiple semantic queries of the same spatio-temporal extent were conducted: (a) number of availa-
ble scenes; (b) number of pixels excluding cloud-like, snow-like and unknown semi-concepts; (c) 
normalised vegetation index based on vegetation-like semi-concepts. A closer look of (c) identified 
with a red inset square is visible in (e). Existing OSM data for the same area and scale as (e) is 
visible in (d). Author's illustration 
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3 Looking Forward 

The contribution and innovation demonstrated by this proof-of-concept implementation is the 
automated set-up of a semantic data cube. The semantic data cube contrasts to most other exist-
ing data cube implementations because it stores information and data together in an analysis-
ready way, allowing ad-hoc multi-temporal, spatial and semantic queries, while supporting re-
producible results. The generic, application-independent semantic enrichment utilised enables 
queries and EO-based indicator extraction for many thematic tasks. The semantic semi-concepts 
can be thought of as transferable, reproducible, sensor-agnostic building blocks for conducting 
further analysis. Given solid documentation on methods applied to generate output, reproducible 
results and repeatable analysis ought to be possible since the information layers (i.e. basis for 
semantic queries and analysis) continue to exist in the data cube and are stable concepts. This 
could be particularly relevant for supporting global initiatives (e.g. UN’s sustainable develop-
ment goals (UNITED NATIONS 2015b), Sendai Framework for Disaster and Risk Reduction 
(UNITED NATIONS 2015a)) because information is based on data collected independent of politi-
cal borders and in a constant, relatively unbiased way.  
However, the work presented here is not only a technical implementation towards developing 
indicators, but also an initial exploration of some of the challenges faced when working with 
dense time-series of EO data over larger spatial areas and timespans. These challenges directly 
result from qualities that are characteristic of big Earth data, i.e. their volume, velocity, and vari-
ety, but also varied methods of information generation and heterogeneity in underlying data and 
assumptions. This heterogeneity can encompass the distribution, variation, variability and uncer-
tainty in space and time for all multi-temporal EO analysis and archives, especially when cover-
ing relatively large spatial extents. 
This is a moment in time with unprecedented processing capabilities and free and open data 
availability. It is increasingly important to have meaningful, comprehensive and standardised 
methods to characterise and visualise uneven spatio-temporal distribution and coverage, uncer-
tainty and variability as well as variation in data quality (e.g. cloud coverage) for different big 
Earth data sources and archives. Just because the data can possibly be considered unbiased in 
their regular, global acquisition does not mean that information generated from them are unbi-
ased or will be used and understood in ways that are not misleading to different audiences. The 
more data that is incorporated in analysis and information generation, the more important it be-
comes to characterise the underlying data in terms of difference in quality and the previously 
mentioned characteristics. 
Further research will include: (1) increasingly expressive or comprehensive rule-sets for queries 
taking spatial (e.g. neighbours, texture, objects), or temporal context (e.g. before and after, 
(dis)continuity, patterns like phenology) into account; (2) developing reliable indicators tested 
for agreement with existing sources that may be relevant to existing international initiatives; and 
(3) exploring methods and metrics to better assess the distribution, variation, variability and un-
certainty inherent to dense, multi-temporal EO analysis and archives. 
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