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Abstract: Pedestrian detection is an active research field in computer vision and 
photogrammetry today due to its importance for applications related to autonomous driving, 
machine human interaction, and surveillance. Object proposals play a significant role in 
guiding a classifier where to examine image regions that may contain pedestrians. In this 
paper, we present a proposal framework employing both 3D information derived from stereo 
images and RGB cues to generate pedestrian bounding box proposals with high recall and 
relatively small number of candidates. Our proposal generator has two stages: (1) 
generating a large number of proposals to achieve a good recall value; and (2) eliminating 
unreasonable initial candidates based on 3D cues and pedestrian geometric constraints. 
Preliminary experiments on the Kitti benchmark dataset show that our proposal framework 
is comparable to state-of-the-art methods. 
 

1 Introduction 

Today, pedestrian detection, a specific case of object detection, is one of the most vigorous 
research areas in computer vision and photogrammetry, especially in applications related to 
autonomous driving, robotics, safety, surveillance, etc. With the support of these systems, human 
effort in processing huge amounts of images, which is time-consuming, expensive and 
subjective, can be reduced or completely avoided.  
In recent years, Convolution Neural Networks (CNNs) have undergone a dramatic development, 
which enabled object detection to become more and more accurate and reliable (REDMON et al. 
2016; GIRSHICK 2015; REN et al. 2015; GIRSHICK et al. 2014). However, every CNN object 
detector depends on a region proposal method to determine possible locations in an image where 
desired objects can appear. A typical paradigm for this is exhaustive search in the entire image 
with sliding windows of multiple scales (HARZALLAH et al. 2009; VEDALDI et al. 2009). This 
approach is easy and simple, but results in a very large number of candidates, which makes it 
computationally expensive to adopt a complex classifier for reliable recognition. Recently, 
algorithms were suggested which exploit low level features to generate a set of proposals to 
reduce the number of regions which have to be examined more closely (ALEXE et al. 2012; 
UIJLINGS et al. 2013; CHENG et al. 2014; ZITNICK & DOLLÁR 2014). These algorithms proved 
their effectiveness on different datasets like PASCAL VOC (EVERINGHAM et al. 2010) or 
ImageNet (DENG et al. 2009). However, for a dataset containing objects with large scale 
variation, occlusion, and truncation like the Kitti benchmark for autonomous driving (GEIGER et 
al. 2012), most of these methods do not achieve a satisfactory recall with a relatively small 
number of proposal bounding boxes (HOSANG et al. 2016).  
In this work, with the focus on generating object proposals for pedestrians using a stereo camera, 
we tackle the problem of region proposals in two steps, and we aim to obtain a high recall with a 
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limited number of proposals. First, a large number of proposals is produced in an initial step to 
recover a high recall. Then, a filtering step eliminates proposed regions that most certainly do not 
contain pedestrians. For that purpose, we employ geometric constraints relating to pedestrians 
and scene context information, and we re-rank all bounding boxes produced from the first step 
with a scoring function. The candidates with the highest scores are then selected for further 
analysis and classification. Two main assumptions are made about pedestrians: they all stand on 
the ground and have restricted size. Further assumptions concern the scene, which we take as 
being composed of a horizontal ground plane and a number of objects with primarily vertical 
extent. To demonstrate the efficiency of our approach, we conduct experiments on the Kitti 
dataset. The performance of our region proposal is analysed and compared to other state-of-the-
art methods. 
The remainder of this paper is arranged as follows: Section 2 reviews related works. Section 3 
presents the methodology and algorithms used in our work. Section 4 illustrates our experimental 
results, followed by the conclusion in Section 5. 

2 Related Works 

In this chapter we discuss previous work concerning region proposal methods. It is the aim of a 
proposal generator to determine all instances of interesting objects in an image with as few false 
alarms as possible, delineating them, e.g., by bounding boxes. The result allows more 
sophisticated and accurate classifiers like CNNs to be adopted to detect the objects. Currently, 
several paradigms are widely applied for the region proposal task.  
Objectness scoring: this approach uses a sliding window in multiple scales to examine every 
area in an image. Each region is then assigned an “objectness” score based on combining a 
number of cues such as normalised gradients, structured edges, texture, etc. Then the regions 
with the highest score are selected as proposal candidates. Several well-known algorithms in this 
group are objectness (ALEXE et al. 2012), edge boxes (EB) (ZITNICK & DOLLÁR 2014), BING 
(CHENG et al. 2014). EB is one of the most successful methods in this group, which efficiently 
evaluates a proposal candidate based on the contours located inside and on the edge of the 
bounding box. 
Super pixel grouping: representative proposal generators of this group are selective search (SS) 
(UIJLINGS et al. 2013) and multiscale combinatorial grouping (MCG) (ARBELAEZ et al. 2014). 
This technique exploits a hierarchical segmentation to obtain a set of super pixels, which are 
subsequently merged and scored by a ranking function. SS can deliver high quality proposals and 
is widely used by many detectors (WANG et al. 2013; GIRSHICK et al. 2014) due to its comparably 
short execution time and high recall. However, the results are sensitive to large size variation, 
occlusion, and truncation of objects. In addition, small objects lead to the requirement to select 
small super pixels, which can lead to high computation cost. 
3-D object proposal: the methods mentioned above mostly focus on solving the object proposal 
task based on RGB images. However, depth information can also provide a valuable cue for 
evaluating candidate regions. A few methods like MCG-D (GUPTA et al. 2014) consider depth 
information to improve performance. But their complicated scoring functions make the method 
rather slow. Using depth cues and energy minimization to infer potential objects with 3D boxes, 
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CHEN et al. (2015) can achieve a good recall value for the Kitti benchmark. Nevertheless, 
considering only 3D position and dismissing RBG information is not necessarily a good idea 
because many object features can only be distinguished in RGB images.   

3 Methodology 

In this study, we aim to develop a pedestrian proposal framework. After appropriate 3D scene 
modelling we generate initial proposals based on RGB image information using the EB method 
(ZITNICK & DOLLÁR, 2014). Then, we use 3D information obtained from the stereo image pair 
and geometric constraints corresponding to pedestrians to filter out unreasonable bounding 
boxes. 

3.1 Modelling the Scene 

Given a stereo image pair with known orientation parameters, the disparity map ܦ of all pixels 
with respect to the left image is first estimated using a state-of-the-art dense matching approach 
(YAMAGUCHI et al., 2014). Then, a point cloud ܲ is computed using the disparity values (Fig. 1). 

 
(a) 

     
(b) 

Fig. 1: The stereo image pair (a) is used to compute the disparity map (b). 

We assume our scene to be mainly composed of a more or less horizontal ground plane (e.g. a 
road), vertical planes (e.g. building facades) and the sky (which we don’t consider further). In 
addition, other objects such as pedestrians are present, which are our objects of interest. Many 
objects in an urban scene can be considered as vertical planar surfaces supported by the ground 
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plane. Reconstructing these vertical objects and the ground plane in object space would provide 
additional evidence for pedestrian detection. 

3.1.1 Potential obstacles  

We define potential obstacles, i.e. non-pedestrian objects, as regions in an image which are 
perpendicular to the ground plane. Under this definition, a number of pixels in each image 
column that have the same disparity value belong to an obstacle if we assume images to be taken 
with horizontal and parallel optical axes. A binary obstacle mask for each input image is 
estimated using the following steps proposed by HU & UCHIMURA (2005): 

Step 1 From the disparity map ܦ, the vertical or v-disparity image ௗܸ௜௦ is computed such that 
each column in ௗܸ௜௦ is a disparity histogram of the corresponding column in ܦ. 

 

Fig. 2: v-disparity image estimated from the disparity map shown in Fig. 1b.  

Step 2 The intensity of a pixel ݒሺݔ,   ܦ of ݕ ሻ in ௗܸ௜௦ represents the number of pixels in columnݕ
that have approximately disparity ݔ. Hence, the binary obstacle mask ܱ௠௔௦௞	can be built by 
finding pixels in the disparity map ܦ, which correspond to pixels with the entry in ௗܸ௜௦ larger 
than a threshold value. Those pixels in ܦ are considered as obstacle regions in ܱ௠௔௦௞.  

 

Fig. 3: The binary obstacle mask is built from the v-disparity image; obstacle pixels are shown in white.  

Step 3 Morphological closing is used to join small obstacle regions together. Then, all none-
obstacle regions smaller than a threshold are considered to be caused by errors and, thus, are 
included as obstacle areas. 

In fact, we produce two obstacle masks ܱ௠௔௦௞ଵ and ܱ௠௔௦௞ଶ by applying two different thresholds 
(Fig. 4). Based on a small threshold, ܱ௠௔௦௞ଵ contains nearly all vertical objects in the scene. In 
contrast, ܱ௠௔௦௞ଶ is computed with a higher threshold, so small objects (e.g. pedestrians) should 
not be part of this mask.  

3.1.2 Ground plane extraction 

Unlike vertical object pixels, ground plane pixels should have similar depths per row. Using this 
assumption, the ground plane is estimated as follows: 

Step 1 We use the obstacle mask ܱ௠௔௦௞ଵ to eliminate most pixels related to vertical objects in 
the disparity map, so that the remaining pixels in a new disparity map: 

௡௢௡௢௕௦ܦ ൌ ܱ௠௔௦௞ଵ .∗ (1) , ܦ

mostly belong to the ground plane. In (1), .∗ denotes a pixel-wise multiplication of the grey 
values.  
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Step 2 Ground pixels in ܦ௡௢௡௢௕௦ are determined in a similar way as the obstacle mask. However, 
instead of using the v-disparity image, we compute the disparity histogram of each row in 
 ௡௢௡௢௕௦ withܦ ௡௢௡௢௕௦ to generate a horizontal or h-disparity image. As a result, ground pixels inܦ
their 3D positions are collected in a set ௚ܲ௥௢௨௡ௗ ൌ ሼ݌ଵሺx, y, zሻ, … , ,௡ሺx݌ y, zሻሽ.  

Step 3 Any 3-D point ሺx, y, zሻ	lying on the ground plane ሺΩሻ must satisfy the planar equation 

ሺΩሻ: ܽx ൅ ܾy ൅ ܿz ൅ ݀ ൌ 0, (2)

where ሺܽ, ܾ, ܿሻ is the normal vector with length 1 and ݀ is the distance from the origin to ሺΩ).  

The ground plane ሺΩሻ is determined using the 3-D ground points ௚ܲ௥௢௨௡ௗ, together with 
RANSAC to remove outliers. Then, the ground pixels in the image which form a ground mask 
 ௠௔௦௞ are determined as those which have an absolute distance in object space to ሺΩሻ smallerܩ
than a value ߝ. 

 
(a) 

 
(b) 

Fig. 4: Binary obstacle mask  ܱ௠௔௦௞ଵ which covers almost all vertical objects (red part) (a). Binary 
obstacle mask ܱ௠௔௦௞ଶ	which covers large vertical objects only (b). 

 
Fig. 5: The disparity map without vertical objects in the obstacle mask ܱ௠௔௦௞ଵ (Fig. 2.a). 

3.1.3 Areas of interest 

We define areas of interest as those areas where pedestrian can appear in the image. Assuming 
that pedestrians are not taller than a threshold ݄݄݅݃௣௘ௗ௘௦, pixels corresponding to 3-D points 
having a distance to ሺΩሻ in object space smaller than ݄݄݅݃௣௘ௗ௘௦ and larger than ε belong to the 
area of interest, which are represented by a binary mask ܲܦ௠௔௦௞. Assuming a pixel ݀݌ሺܿ,  ሻ inݎ
 ௠௔௦௞ , where c and r are the pixel’s column and row indices, respectively, corresponds to theܦܲ
3-D position ݀݌ሺx, y, zሻ in object space, ܲܦ௠௔௦௞ is derived by (3):   
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,௠௔௦௞ሺܿܦܲ  rሻ ൌ ൜
1		if			ߝ ൏ ,ሺx݀݌ሺݐݏ݅݀ y, zሻ, Ωሻ ൑ ݄݄݅݃௣௘ௗ௘௦

݁ݏ݅ݓݎ݄݁ݐ݋												0
. (3)

In (3), ݀݅ݐݏ is the Euclidean distance from a point to a plane in 3-D space. 

 
Fig. 6: Extracted ground plane (green) and areas of interest (red) in the reference image of a stereo 

pair. 

3.2 Object Proposal and Re-ranking 

In order to search for pedestrians in the image, we apply an object proposal framework 
consisting of two stages to the areas of interest with the purpose of achieving a high recall while 
only producing a small number of candidate bounding boxes. A huge number of initial 
candidates are produced in the first stage; we then employ additional cues related to geometrical 
knowledge of pedestrians and scene information to eliminate unreasonable proposals. 

3.2.1 Initial proposals 

Instead of combining different features, the EB algorithm (ZITNICK & DOLLÁR 2014) directly 
generates object proposal from edge maps generated by the structured edge detector (DOLLÁR & 

ZITNICK 2013). EB computes objectness as the likelihood of a bounding box (BB) to contain an 
object based on the number of contours lying within and on that BB, where a contour is a set of 
edges forming a coherent boundary, curve or line. The reader is referred to (ZITNICK & DOLLÁR 
2014) for more details on how the objectness score is computed. The desired number of BB can 
be influenced by setting an objectness score threshold. There are three variants of EB based on 
different parameter values: EB 50, EB 70, and EB 90, in which the step size of the sliding 
window decreases and the density of sampling increases, respectively. Therefore, depending on 
the trade-off between accuracy, efficiency, and the number of desired proposals, one wants to 
achieve for a specific purpose, a suitable variant can be chosen. 
In this study, the variant EB 70, which has nearly similar running time as EB 50 but can produce 
more precise BB, is employed to generate regions that potentially contain any type of object. In 
order not to eliminate pedestrians in this early stage, we choose a small threshold for the 
objectness score, which will result in a relatively large number of regions. However, the grey 
values of image pixels that are outside the areas of interest according to ܲܦ௠௔௦௞ are set to 0 
before passing the image on to the EB 70 algorithm, so that no proposal regions that are 
completely outside the area of interest will be generated. 

3.2.2 Proposal ranking 

The initial proposal step produces candidate regions for unspecific types of objects, so that we 
want to filter out BB that are very unlikely to contain pedestrians. For that purpose, we exploit 
scene information and prior knowledge about pedestrians, which is not considered in the first 
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stage. We define features that encode this additional information and use them to define a 
combined scoring function, which is used to rank all proposals. Only BB with a high score are 
maintained because they are very likely to contain a pedestrian, whereas the others are discarded. 
The high-scoring BB can be fed to a sophisticated classifier for the final decision whether they 
contain a person or not. Details about that procedure are given in the following paragraphs.  

Overlap with the area of interest: this criterion expresses the fact that a good candidate region 
should lie inside or at least cover a part of the area of interest. We determine an overlap rate 

௜݂௡௧_௔௥௘௔ for each bounding box BB: 

௜݂௡௧_௔௥௘௔ ൌ
∑ ൫௉஽೘ೌೞೖሺ௖,௥ሻ൯೛ሺ೎,ೝሻ∈ಳಳ

|஻஻|
 , (4)

where ݌ሺܿ,  is the number of pixels |ܤܤ| and ܤܤ ሻ is a pixel of the proposal bounding boxݎ
covered by ܤܤ. BB having a high value of ௜݂௡௧_௔௥௘௔ are more likely to contain a pedestrian than 
BB with a low value of that ratio.  

Overlap with the road plane and obstacles: these criteria encode the fact that a bounding box 
containing a pedestrian should not cover too many pixels belonging to the road or to obstacles 
such as buildings, fences or tree trunks. We derive two ratios ௚݂ and ௢݂ for the overlap of a BB 
with the road plane and the obstacles, respectively, to evaluate this constraint, using ܱ௠௔௦௞ଶ to 
obtain ௢݂: 

௚݂ ൌ 	
∑ 	ሺீ೘ೌೞೖሺ௖,௥ሻሻ೛ሺౙ,ೝሻ∈ಳಳ

|஻஻|
, ௢݂ ൌ

∑ ሺை೘ೌೞೖమሺ௖,௥ሻሻ೛ሺ೎,ೝሻ∈ಳಳ

|஻஻|
 . (5)

Bounding box ratio: for a specific dataset, a pedestrian appearing in an image should have a 
size and a ratio between height and width within specific ranges; we assume this to be true even 
in the case of occlusions. This constraint is related to a two features ஻݂஻௥ and ஻݂஻௪: 

஻݂஻௥ ൌ
஻஻೓೐೔೒೓೟
஻஻ೢ೔೏೟೓

; ஻݂஻௪ ൌ ௪௜ௗ௧௛, (6)ܤܤ

where ܤܤ௪௜ௗ௧௛ and ܤܤ௛௘௜௚௛௧ are width and height of the bounding box ܤܤ in image 
space. 

Standing on the ground: this criterion is related to the knowledge that a pedestrian should stand 
on the ground. Even if just a pedestrian’s upper part is visible (due to occlusion), the distance of 
the lowest points of the related BB part from the ground should not be too large. We define the 
average distance ௙݂௘௘௧	 of the lower part of a BB from the ground to evaluate this criterion: 

௙݂௘௘௧	 ൌ 	
ଵ

ห஻஻೑೐೐೟ห
∑ ,݌ሺݐݏ݅݀ Ωሻ௣∈஻஻೑೐೐೟ , (7)

where ܤܤ௙௘௘௧ is a square area in the centre of the lower boundary of the bounding box ܤܤ  
(Fig. 7). 

Pedestrian height: this criterion is related to the knowledge about pedestrians’ heights. The 
average distance ௛݂௘௔ௗ	 of the upper part of a BB from the ground is used as a feature: 

௛݂௘௔ௗ	 ൌ 	
ଵ

|஻஻೓೐ೌ೏|
∑ ,݌ሺݐݏ݅݀ Ωሻ௣∈஻஻೓೐ೌ೏   , (8)
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where ܤܤ௛௘௔ௗ is a square area in the centre of the upper boundary of the bounding box ܤܤ  
(Fig. 7). 

 

 
Fig. 7: Head (ܤܤ_݄݁ܽ݀) and feet (ݐ݂݁݁_ܤܤ) area of a bounding box BB. 

Depth consistency: a bounding box ܤܤ covering a person should contain a large number of 
pixels which correspond to that person and thus have similar depth values. This criterion is 
represented as the highest percentage of pixels having similar depth in ܤܤ. We use the depth 
histogram of all pixels in ܤܤ to derive the corresponding value ௗ݂௘௣௧௛ : 

݄ௗ௘௣௧௛ሺiሻ ൌ 	
ଵ

|஻஻|
∑ 1ሺ݌ ∈ ,ܤܤ ݅ ∗ ܾ݅݊௦௜௭௘ ൏ ሻ݌ሺ݄ݐ݌݁݀ ൑ ሺ݅ ൅ 1ሻ ∗ ܾ݅݊௦௜௭௘ሻ
௡
௜  , 

ௗ݂௘௣௧௛ ൌ maxሺ݄ௗ௘௣௧௛ሻ , 
(9)

where ݄ௗ௘௣௧௛ሺiሻ is the histogram entry the ith bin, ܾ݅݊௦௜௭௘ is the size of each histogram bin, ݊ is 
the number of bins, and ݄݀݁ݐ݌ሺ݌ሻ is the depth value of pixel ݌.  

Scoring function: our scoring function uses the features ௜݂ described in Eqs. (3) to (8) to 
compute a score for each bounding box	ܤܤ delivered by EB 70. We assume these features ௜݂ to 
be independent and to follow normal distributions. Thus, our scoring function ݌൫ܥ௣௘ௗหܨ൯ 
delivering a likelihood for a BB to contain a pedestrian given the feature vector F which contains 
all the features ୧݂ 	defined earlier in this section is based on the following probabilistic model: 

൯ܨ௣௘ௗหܥ൫݌ ∝  ,௣௘ௗሻܥ|ܨሺ݌௣௘ௗ൯ܥ൫݌

∝ ∏௣௘ௗ൯ܥ൫݌ ൫݌ ௜݂หܥ௣௘ௗ൯
௡
௜ୀଵ  , 

∝ ∏ ൫݌ ௜݂หܥ௣௘ௗ൯
௡
௜ୀଵ  . 

(10)

൫݌  ௜݂หܥ௣௘ௗ൯ ൌ
ଵ

ටଶగఙ೑೔ሺ಴೛೐೏ሻ
మ

݁
ି
ሺ೑೔ష ഋ೑೔ሺ಴೛೐೏ሻ

ሻమ

మ഑೑೔ሺ಴೛೐೏ሻ
మ

.  (11)

In Eq. 10, ݌൫ ௜݂หܥ௣௘ௗ൯ is a likelihood function for ௜݂ assuming that the 	ܤܤ contains a pedestrian. 
The factorisation can be made due to our assumption of the features to be independent. The prior 
 ௣௘ௗ൯ for a BB to contain a pedestrian is supposed to be uniform and, thus, is neglected. Theܥ൫݌
index i indicates one of the features defined in Eqs. (3) to (8); n is the number of features 
evaluated. The individual likelihood terms are modelled as Gaussians (Eq. 11), where ߤ௙೔ሺ஼೛೐೏ሻ 
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and ߪ௙೔ሺ஼೛೐೏ሻ
ଶ  are mean and variance of the features ௜݂  for a BB supposed to contain a pedestrian. 

They are determined in a training step. We rank the BB according to the scoring function 
  .൯ and select the Nopt best BB as the final proposed regionsܨ௣௘ௗหܥ൫݌

4 Experimental results  

Dataset: We evaluate our approach on the Kitti object detection benchmark (GEIGER ET AL., 
2012), which has 7481 images in the training set. For these images, BB containing pedestrians 
are available. Just as the benchmark organisers, the BB are split into three sets (hard, moderate, 
easy) according to the level of difficulty to be expected for detecting the respective person based 
on the BB size, occlusion, and truncation levels in the input image. As the ground truth labels are 
not provided for the test set of the benchmark, we use only the training set for our evaluation. In 
order to be able rank our proposal, we first need to determine the means and variances of the 
normal distributions used to compute the ranking score according to Eqs. (10) and (11). 
Consequently, we apply cross-validation for the evaluation: we split the available images into 
five independent sets. In each test run, we use four sets (80% of the data) for learning the 
parameters of the score function and 20% for testing. We repeat this procedure five times, each 
time using a different image set for testing, so that in the end, each image contributes to the test 
set once. We report combined evaluation metrics over all test runs.  

We compare the performance of our new techniques to other state-of-the-art proposal methods, 
namely BING, SS, EB, MCG-D, and 3DOP from (CHEN et al., 2015). Among these methods, 
BING, SS, and EB take RGB images as input, whereas MCG-D and 3DOP use depth as an 
additional cue.  

Evaluation metrics: The quality of a BB proposal is estimated using its intersection over union 
ሺIoUሻ with the ground truth: 

IoUሺܣ, ሻܤ ൌ 	
ܣ ∩ ܤ
ܣ ∪ ܤ

 

Following the criteria of the Kitti benchmark (GEIGER ET AL., 2012), a BB proposal is counted as 
a true positive if its IoU is equal to or larger than 0.5. We are mostly interested in the recall, 
which is the percentage of BB containing pedestrians in the reference that were detected by our 
proposal method and, thus, correspond to true positives. We present recall as a function of the 
IoU threshold and assess the impact of the number Nopt of selected BB proposals on the results. 

Parameters settings: To estimate the obstacle masks ܱ௠௔௦௞ଵ and ܱ௠௔௦௞ଶ, we set the values of 
the two thresholds corresponding to the intensity of vertical disparity image to 40 and 200, 
respectively. We set the value ߝ in equation (2) to 0.2 (m). Further, a pedestrian is supposed not 
to exceed 2 meters in height. The side lengths of the squares containing the head and feet areas 
in Eqs. (7) and (8) (Fig. 7) are set to 1 3⁄  of the width of the bounding box. For estimating the 
depth constancy feature, we use a bin size of 1 meter for the depth histogram (see Eq. 9). 

Results: We use the EB 70 method (ZITNICK & DOLLÁR 2014) to generate initial BB and select 
20000 best candidates per input image based on the objectness score. The average recall of 
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pedestrians with IoU of 0.5 or better are 99.6%, 96.3%, and 88.6% for the easy, moderate, and 
hard sets, respectively; these numbers are upper bounds for the recall that our method can 
achieve because we do not define new BB proposals. Fig. 8 shows the recall of EB 70 and our 
method as a function of the IoU threshold. The figure shows that our ranking function works 
very well on the easy and moderate sets. When ranking the BBs according to our scoring 
function and selecting the best Nopt = 2000 proposals, we discard hardly any correct BB for the 
easy and moderate sets, so that we achieve nearly the same recall as EB 70. Thus, we can reduce 
the number of region proposals delivered by EB 70 by a factor of 10 while losing only a very 
small percentage of regions corresponding to pedestrians. For the hard  set, our method is not as 
successful; only when using the Nopt = 5.000 best proposals we can achieve a recall close to EB 
70 (Fig. 8); however, this still would reduce the number of BBs to be inspected by more complex 
processes by a factor of 4. Fig. 9 shows recall as a function of Nopt. Again it shows that using 
Nopt= 5.000 results in a reasonably good performance independently from the level of difficulty. 
In contrast, the state-of-the-art methods need 10.000 proposals to achieve approximately 90% 
recall for easy and moderate sets. To obtain our recall at 1.000 proposals, those methods need at 
least 5.000 bounding boxes (see Figs. 9 and 10). Only 3DOP outperforms our method when Nopt 
is lager than 1.000. This is mainly because they focus on 3D object proposals using deep 
learning techniques together with additional data. However, when Nopt is smaller than 1.000, our 
method produces even better result than the 3DOP. 

 
Fig. 8: Recall as a function of the IoU threshold. Init: Evaluation of the 20000 proposals generated by 

EB 70. The remaining curves were derived for different values for Nopt ሺ1000, 2000, 5000, 10000) 
for selecting the final candidates after ranking. 
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Fig. 9: Recall vs. number of candidates for pedestrian proposals on Kitti dataset of our approach. 

 

Fig. 10: Recall as a function of the number of candidates for pedestrian proposals on Kitti dataset of 
state of the art methods: BING, SS, EB, MCG, MCG-D, 3DOP.The graphs are adapted from 
CHEN et al. (2015). 

5 Conclusion 

In this paper, we have presented our simple but efficient framework for proposing regions that 
may contain pedestrians. It combines both, RGB and depth cues in two stages: initial proposal 
generating and filtering with a new score function. The experimental results show that by 
exploiting additional 3D cues, our approach can produce promising results and outperform most 
of the state-of-the-art methods. Specifically, we can achieve approximately 90% recall for the 
easy and moderate sets of pedestrians of the Kitti benchmark with 2.000 region proposals, and 
we can achieve reasonably good results when using 5000 proposals, thus reducing the 
computational costs of subsequent methods by a factor of 10 and 4, respectively. Moreover, with 
a very small number of proposals (less than 1.000), our proposal framework can achieve even 
better recall than the state-of-the art method 3DOP which is based on a sophisticated deep 
learning method. In the future, we will take advantage of CNN and our proposal method to 
develop a complete pedestrian detector, which will form the basis of pedestrian tracking. 
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