
38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München – Publikationen der DGPF, Band 27, 2018

597

Classification of Laser Scanning Data Using Deep Learning

FLORIAN POLITZ
1, BASHIR KAZIMI

1
 & MONIKA SESTER

1

Abstract: In the last couple of years Deep Learning has gained popularity and shown
potential in the field of classification. In contrast to 2D image data, Airborne Laser
Scanning data is complex due to its irregular 3D structure, which turns the classification
into a difficult task.
Classifying point clouds can be separated into pointwise semantic classification and object-
based classification. In this paper, we investigate both classification strategies using
Convolutional Neural Networks (CNNs). In the first part of this paper, we focus on the
semantic classification of 3D point clouds into three classes as required for generating
digital terrain models. The second part of this paper deals with classifying archaeological
structures in digital terrain models.

1 Introduction

Airborne laser scanning (ALS) is a very versatile technology with many applications such as
terrain modelling, hydrology or archaeology. In ALS a laser pulse measures the time a laser
beam requires to travel from a remote sensing module to the earth’s surface and back. 3D point
coordinates can be calculated using the position and direction of the remote sensing module in a
global coordinate system as well as the direction and distance of the measured laser beam. An
ALS point cloud is a collection of those point measurements for a specific area and is utilised for
several applications such as ground point detection, topographic mapping or object recognition.
From the raw point cloud to a final product, the point cloud undergoes several processing steps
with different intermediate products. In order to generate a digital terrain model (DTM), a
semantic and pointwise classification on the raw point cloud is necessary to distinguish between
objects on the ground and the ground itself. Subsequently, through those classified points, a
DTM can be interpolated, which is usually saved as a rasterised height map or a triangulated
irregular network (TIN). Finally, height maps or TINs can be the basis for further data analysis
or classification such as object recognition or object reconstruction.
In the past, traditional machine learning algorithms have been used to classify the data to the
requested products. As special type of a machine learning algorithm Convolutional Neural
Networks (CNNs) moved into the focus of attention due to winning at the latest image
benchmark competitions such as ImageNet and PASCAL VOC for 2D image processing by a
large margin (KRIZHEVSKY et al. 2012; GIRSHICK et al. 2013). In contrast to regular 2D images,
3D point clouds possess an irregular data structure, which impede using CNN for semantic or
object-based point cloud classification directly.
This paper deals with pointwise and object-based laser scanning point classification using a
CNN. Firstly, we briefly overview the related work in order to classify laser scanning data in
chapter 2. Secondly, we introduce the CNN and its network layers in chapter 3. Thirdly, we will
present and discuss our work classifying ALS data using CNNs in the experiment’s section in

1 Leibniz Universität Hannover, Institut für Kartographie und Geoinformatik, Appelstraße 9a,

D-30167 Hannover, E-Mail: [Florian.Politz, Bashir.Kazimi, Monika.Sester]@ikg.uni-hannover.de

F. Politz, B. Kazimi & M. Sester

598

chapter 4. The experiment’s section is divided in two parts. The first part deals with semantic
classification of raw point cloud data. The point cloud shall be classified into the classes
“ground”, “non-ground” and “others” such as cars, trains and open wires in order to generate a
DTM. The second part deals with object-based classification. In this approach, archaeological
terrain structures and objects have to be classified from a rasterised height map. Lastly, we finish
the paper with a conclusion and outlook in chapter 5 as well as our references in chapter 6.

2 Related Work

For semantic classification using CNNs, laser scanning point clouds can be classified using
voxel-based, point-based or projection-based approaches. In voxel-based methods, the point
cloud is discretised to equally distributed 3D voxels, which are then fed into a CNN.
PROKHOROV (2010) used a 3D CNN to refine coarsely segmented point clouds of cars using a
voxel-based density grid. Meanwhile MANTURANA & SCHERER (2015a, 2015b) and HUANG &
YOU (2016) calculated a voxel-based occupancy grid from the point cloud as input data for a 3D
CNN. While MANTURANA & SCHERER (2015a) wanted to classify if a landing zone for
helicopters is safe or not, HUANG & YOU (2016) classified each point in an urban city point
cloud into one of seven classes such as buildings, trees, wires and poles. In the point-based
methods, the raw point coordinates and some additional information are fed into a CNN. QI et al.
(2017) showed the potential of this method by feeding their network called PointNet with raw
point coordinates, corresponding colour information and a normalised position.
While voxel-based and point-based methods benefit from highly dense 3D point clouds, ALS
point clouds are usually in 2.5D, where the point height can be considered as attribute. This is
why, in projection-based methods, an ALS point cloud is projected into 2D raster images. HU &
YUAN (2016) projected airborne laser scanning point clouds into 128×128 pixels images with the
normalised minimal, average and maximal height for each pixel as channel values. While HU &
YUAN (2016) only distinguished between ground and non-ground classes, our network is able to
classify a third class for other, artificial structures on the ground such as cars, which must be
eliminated from the point cloud for the DTM generation.
In object-based classification methods, the input data can be processed with two different ways.
In the first method, points are segmented into objects and then are fed into a classifier. Using this
method, MALLINIS et al. (2008) aimed to delineate forest vegetation polygons in a natural forest
in Northern Greece. They segmented homogeneous pixels into objects and applied a Nearest
Neighbour algorithm in order to classify these merged objects into different classes. DORREN et
al. (2003) also used the first method for forest mapping in steep mountainous terrains.
Furthermore, they fed those objects into a decision tree algorithm to classify each object into
their specific forest class.
In the second method, image patches are generated from training data by extracting digital
terrain models as rasterised height maps. The most common object class within a patch decides
its label. Using this method, PALAFOX et al. (2017) clipped squared grids of different sizes from
the centre of a visible object to generate training data and applied those grids as an input for a
classifier to detect landforms in Mars. The different sized patches are utilised to detect different
sizes of the underlying phenomenon and later fed into different CNNs for training. The results of
all CNNs are then aggregated to lead to a final classification. We utilise the second method in
our work and feed rasterised height maps in a CNN to classify terrain structures originating from

38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München – Publikationen der DGPF, Band 27, 2018

599

archaeological sites. The input for the CNN are squared grids with a single channel of object
heights. The model outputs a single class for the whole input grid.

3 Convolutional Neural Networks

CNN are a subgroup of general Neural Networks, which gained a lot of attention in the past
couple of years due to their remarkable results in several benchmark sets. Different linear and
non-linear functions build a CNN:
The linear functions can be separated into two different layer types: convolutional and fully-
connected layer. A convolutional layer connects units locally using kernel matrices and it
calculates a linear convolution. A convolutional layer is position-invariant, since it shares the
kernel weights over the whole image. While training, the network optimizes the kernel weights
as well as additional bias terms. Another linear function within a CNN is the fully connected
layer (FC-layer). In FC-layers each unit of one layer is connected with all units from the previous
layer leading to a very dense feature aggregation. Convolutional layers are utilised for feature
extraction from the input, while FC-layers gather the most important features for classification
and detection purposes at the end of CNNs.
Non-linear functions enhance the capacity of the network and allow non-linear feature
aggregation. The Rectified Linear Unit (ReLU) by NAIR & HINTON (2010) is a state-of-the-art
non-linear activation function for CNN. ReLU is defined as

݂ሺݔሻ ൌ 	 ቄ݉ܽݔሺ0, ሻݔ ݔ	݂݅				 ൐ 0
݁ݏ݈݁												0

ቅ, (1)

where x is the output of a convolutional or fully-connected layer. After ReLU only the non-
negative gradients with the most valuable features remain. Compared to ReLU, LeakyReLU by
MAAS et al. (2013) does not set the activation for x ≤ 0 to zero, but scales the activation by
multiplying with 0,01. As a result, the overall gradient-based optimisation algorithms improves
the training’s speed. Another non-linear function is max-pooling. In max-pooling two layers are
connected, so that only the maximal value within a specified patch of the first layer remains in
the next layer. As a result, only the most informative features persist, while spatial invariance is
achieved (SCHERER et al. 2010).
Lastly, dropout regularises the network to prevent overfitting. In dropout, network units are
randomly dropped while training (SRIVASTAVA et al. 2014). Consequently, in each epoch only a
fraction of the network is trained, since weight and bias parameters are only updated on activated
units. Therefore, the network is forced to learn more general features for each output class.
For classification purposes, the gathered features have to be transformed into discrete class
numbers. In case of binary and multiclass classification, a sigmoid and a softmax function are
applied respectively (BISHOP 2006).
The CNN consist of several layers: in the beginning of a CNN, convolutional layers build block
structures with ReLU and max-pooling layers. The convolutional part usually finishes with a
flattening of the last raster array of size n x n into a 1 × n*n vector, which is necessary to connect
convolutional layers with fully connected layers. For classification and detection purposes, fully
connected layer with ReLU, dropout and some kind of classification function for their specific
problem such as softmax are added at the end of the CNN. Figure 1 shows an exemplary CNN
and its structure.

F. Politz, B. Kazimi & M. Sester

600

Fig. 1: Exemplary CNN structure with convolutional and ReLU layers, max-pooling, flattening and a

FC-layer.

4 Experiments

4.1 Semantic Classification of airborne laser scanning point clouds

4.1.1 Input Data
For the experiments, ALS data from the survey state agency of Mecklenburg-Vorpommern
(LAiV-MV) in Germany are given. The ALS data was generated in September 2012 and is
located in the southeast of Rostock, Germany. The data includes a 20 km² wide area with a point
density of around 4 points/m². The classes “ground”, “non-ground” and “cars” are manually
classified and are applied as target data for a supervised classification approach. The resulting
ground points are the basis to interpolate a Digital Terrain Model (DTM). As dynamic or
artificial objects such as cars are not part of a DTM, they have to be eliminated from the point
cloud.
A Convolutional Neural Network (CNN) expects input data in a regular structure such as an
image. For the CNN, we generate the input data similar to HU & YUAN (2016). For that reason,
we project a 3D point and its environment into a 2D image structure. This is done by creating
image patches around individual points, which are representing the point’s environment. The
patch size of 128m was chosen. Choosing such a large environment gives the network the
opportunity to distinguish between large areas of flat ground and huge buildings with flat
rooftops. Then, all points in that patch are sorted into 1m² raster, leading to a 128×128 pixel
image. Additionally, for each raster cell within this image the minimal, average and maximal
height are calculated. Finally, the height of the random point i declared as zi is subtracted from
each height value (zmin, zavg, zmax) and normalized by a sigmoid function

ሻݔሺ݀݅݋݉݃݅ܵ ൌ 	
ଵ

ଵା௘షೣ
 , (2)

where x equals {zmin, zavg, zmax} – zi. The resulting 2D structure is a 128 pixel × 128 pixel image
with three channels (normalised minimal, average and maximal height values) for each point in
the point cloud. The process chain from the point cloud to the input data is shown in figure 2.

38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München – Publikationen der DGPF, Band 27, 2018

601

Fig. 2: Process chain to generate rasterised input data from an irregular point pi and its environment

within a point cloud.

4.1.2 Network structure
We adopt a similar CNN to the VGG16 network of SIMONYAN & ZISSERMAN (2015). In 2014,
the VGG16 network achieved first and second place in the ImageNet localisation and detection
challenge respectively. Since the detection challenge distinguishes 1000 classes, the capacity of
the network is unnecessarily huge for our task to classify three classes. In order to prevent
overfitting, we only rebuilt the first four blocks of VGG16 including several convolutional layers
with ReLU and Max-Pooling at the end of each block. The kernel size for the convolutional
layers is 3x3 and 2x2 for max-pooling layers following VGG16. After the last max-pooling, the
aggregated features maps are flattened and two fully-connected layers with dropout are added to
the network. A LeakyReLU is applied in between the FC-layers in order to fasten the training
process while maintaining all gradients. At the end, a softmax function distinguishes the
resulting features into the classes “ground”, “non-ground” and “cars”. Additionally, the input
size is set to 128×128 pixel in comparison to the original VGG16 size of 224×224. The complete
network structure is shown in table 1. Convolutional layers are abbreviated as “conv”.

4.1.3 Experiments
For the experiments, we split the point cloud data into three separate regions, leading to training,
validation and testing data. The training data and their corresponding labels optimise the
parameters from the CNN during training. While training, the validation data verifies the
network’s capacity to generalise the data in order to prevent overfitting. Finally, the test data
tests the optimised network independently from the training process. For the training region
126,000 points (42,000 points of each class) and for the validation and testing regions 18.000
points (6000 points of each class) are randomly picked from their respective regions. The ratio of
training: validation: testing is 7:1:1.

F. Politz, B. Kazimi & M. Sester

602

Tab. 1: Overview of the network structure

Layer Name Size (width x length x channel) Number of Parameters
Input 128 x 128 x 3 0
Conv Block 1

- Conv and ReLU
- Conv and ReLU
- Max-pooling

128 x 128 x 64
128 x 128 x 64

64 x 64 x 64

1,792
36,928

0
Conv Block 2

- Conv and ReLU
- Conv and ReLU
- Max-pooling

64 x 64 x 128
64 x 64 x 128
32 x 32 x 128

73,856
147,584

0
Conv Block 3

- Conv and ReLU
- Conv and ReLU
- Conv and ReLU
- Max-pooling

32 x 32 x 256
32 x 32 x 256
32 x 32 x 256
16 x 16 x 256

295,168
590,080
590,080

0
Conv Block 4

- Conv and ReLU
- Conv and ReLU
- Conv and ReLU
- Max-pooling
- Flattening

16 x 16 x512
16 x 16 x512
16 x 16 x512

8 x 8 x512
1 x 1 x 32768

1,180,160
2,359,808
2,359,808

0
0

Dropout 1
FC-layer 1
LeakyRelu
Dropout 2
FC-layer 2 (with softmax)

1 x 1 x 32768
1 x 1 x 256
1 x 1 x 256
1 x 1 x 256
1 x 1 x 3

0
8,388,864

0
0

771
 Total 16,024,899

Additionally, a few hyperparameters have to be set for training the network. The specific
parameters divide into network related parameters and optimisation related parameters. The
network parameters include the amount of units in the first fully connected layer (FC-Layer 1,
check table 1) and the drop rate parameter in the dropout layer. The amount of units in FC-Layer
1 decides about the operating network capacity. In case of fully connected layer, the parameter
amount calculates as input_channel*output_channel + output_channel for weights and bias
respectively. In case of 256 output_channels for FC-layer 1 as shown in table 1, the amount of
necessary parameters for this layer reaches over 50% of the total training parameters. The more
output units in FC-layer 1, the more the network capacity is increasing, but also the more training
parameters are necessary to compute. The drop rate describes how many units are randomly
dropped out during training, f.e. using a dropout rate of 0.75 leads to 75% dropped out units in
this layer. The higher the drop rate, the sparser is the network while training, which forces the
network to learn more general features rather than the training set itself. While testing, dropout is
not applied to the network. The optimisation hyperparameter relate to all hyperparameters, which
describe the optimisation process during training. The training was executed with a batch size of
50 using the cross entropy as loss function and categorical accuracy as metric. The Adam
optimiser is utilized as optimising function (KINGMA & BA 2015). The optimiser consists of
different parameters such as learning rate, ߚଵ, ߚଶ, ߝ and decay. For this experiment, we explore
different learning rate values while keeping all other parameters for Adam as mentioned in the
original paper by KINGMA & BA (2015). Additionally, we explore different parameter values and
their influence towards the resulting classification accuracy.

38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München – Publikationen der DGPF, Band 27, 2018

603

During training, in each epoch 50 input images are used to update the parameter values. Each
input image is fed into the network during training only once. Therefore, the training process
lasts 2520 epochs to process all input images. The Keras API (KERAS-TEAM 2018) provides pre-
trained VGG16 weights for the ImageNet data set. We initialised the weights of the
convolutional layers with the provided weights and are kept untrainable for the first 20 epochs of
training. Consequently, those weights do not lose their feature learning ability while the
parameters in the fully connected layers are focused on classifying those extracted features from
the convolutional layers to the target classes. After the first 20 epochs, all weights are included in
the updating step to approach the given data.
After training, the classification ability of the network can be tested by classifying the test data
set. We trained several networks with different parameter sets in order to validate the influence
of each parameter and their respective classification accuracy score. Each parameter is tested
separately, while the not observed parameter values within each test are set to the following
values: number of units in FC-layer 1 256, dropout rate 0.75 and learning rate 0.0001.
The resulting accuracy scores for every tested parameter are shown in table 2. The first column
shows the accuracy scores when the amount of units in FC-layer 1 is changed. 512 and 256 units
achieve around 3% better results than networks with only 128 or even 1024 units for this layer.
Although the resulting network of 512 units achieves a slightly better accuracy score, this layer
also consists of 16,777,728 parameters, which have to be optimised, compared to the 8,388,864
parameters for the network with only 256 units in this layer as shown in table 2. For different
drop rates in the second column in table 2 the results are not as clear as for the number of units in
the fully connected layer. The accuracy score here only differs within 2% for drop rates between
0.70 and 0.85. Despite this trend, when the drop rate is set to 0.90, the accuracy score decreases
for more than 5%. Such a drop indicates that the network is no longer be able to achieve correct
results, because its structure is too sparse. For the learning rate, a value in the interval between
0.0005 and 0.00005 seems sufficient according to the third column in table 2 with difference of
2% in the accuracy score. Choosing a learning rate of 0.00001 results in an accuracy score of
only 84,46%. In this case, the amount of training epochs is simply not enough for the low
learning rate to reach the global minimum in only 2520 updates.

Tab. 2: Accuracy scores for different parameter values

Amount of units in FC-
layer 1

Drop rate Learning rate

Parameter
values

Accuracy
score

Parameter
values

Accuracy
score

Parameter
values

Accuracy
score

1024 86.82 0.70 89.83 0.0005 89.03
512 90.26 0.75 90.00 0.0001 91.14
256 90.00 0.80 88.71 0.00005 89.31
128 85.23 0.85 90.42 0.00001 84.46

 0.90 84.23

In table 3 the confusion matrix between the classes ground, non-ground and cars for the best
network classification using 256 units in the FC-layer 1, a drop rate of 0.75 and a learning rate of
0.0001 are shown. This network achieves an overall accuracy score of 91,14%. The network
classified around 94% of the classes ground and cars correctly, but only 84,13% non-ground
points were classified correctly. 10,95% of all non-ground points were wrongly classified as
ground points.

F. Politz, B. Kazimi & M. Sester

604

Tab. 3: Confusion matrix for 18,000 randomly picked test points [%]. Each class is equally distributed.

 Predicted label
Ground Non-ground Cars

True label

Ground 94.37 3.47 2.17
Non-ground 10.95 84.13 4.92

Cars 0.07 4.35 94.92

To identify the location of these misclassifications, we tested our CNN on a 250×250 m² area
within the 20 km² point cloud, which have not been used for any previous training, validation or
testing of the CNN. In comparison to the randomly picked testing data with an equal class
distribution, we picked a test region with a highly unbalanced class distribution. The test region
also consists of a challenging terrain with steep slopes as shown in figure 3. Despite the given
challenges, the CNN achieved an overall accuracy of 88,41% for the test region.

Fig. 3: Orthophoto of the 250 x 250 m² test region in the southeast of Rostock, Germany in September

2014. The Orthophoto resembles the region, but the ALS data is recorded in September 2012.

Figure 4 shows the misclassifications between ground and non-ground classes. The
misclassification of ground as non-ground lies mostly in the forest area in the northwest and in
the mound in the southwest. The latter is caused by the lack of training data with mounds. The
misclassifications within a forest are to be expected for two reasons. First, most of the ALS
points within forest areas are at the first pulse on the treetops, so that points on the ground are
sparse. Consequently, the ground cannot be represented correctly by zmin in the input images.
Second, there is no guarantee, that points from last pulse are representing the ground, leaves or
some undergrowth, so even for the manual classification, ground points within a forest are
considered challenging. The same explanation applies for the misclassification of non-ground as
ground in the forest area. Additionally, there are misclassifications on the field in the east as well
as a steep slope in the southeast. The data set is recorded in September, where the fields are
usually mowed down and ploughed resulting in a very rough ground structure. Consequently, the
differentiation between ground and stubble field is not clear. Steep slopes are always a challenge
in DTM generation. Additional training data with steep slopes will help the CNN to learn this
special kind of ground better.

38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München – Publikationen der DGPF, Band 27, 2018

605

Fig. 4: Misclassifications from our CNN on the test region. Misclassifications are colour-coded as

green, while the remaining classification results are blue. (left) The CNN classified ground as
non-ground. (right) The CNN classified non-ground as ground.

4.2 Object-based Classification

4.2.1 Input Data
The goal of the second project is to determine archaeological terrain structures such as hollow
ways, pits, heaps, shafts, sink holes, but also historical roads and water bodies in DTMs. The
data set is a DTM acquired from Harz Mountains region in Lower Saxony, Germany. In our first
experiments, we concentrated on two object classes, which are easily distinguishable in DTMs.
To generate training data for our network, we labelled known water bodies and roads in the data
set in an automatic fashion by intersecting the DTM with GIS data containing these features.
Afterwards, we clipped 100×100 pixels images sampled in regular distances on the GIS data,
where each pixel represents the elevation value. Figure 5 illustrates the DTM with the overlay of
GIS data. The clipping process for generating training data and example inputs for the model are
shown in figure 6. The images are normalised according to

݅′ ൌ
௜ିஜ

ఙ
, (3)

where ݅′is the normalized value for each pixel, ݅ is the previous (original) pixel (elevation), μ is
the mean elevation for the whole dataset and ߪ is the standard deviation for the whole dataset.
Normalisation is necessary for the model to be able to learn from patches in one DTM and to
identify features in another DTM. Without normalisation, the learnt features are specific to the
training data and not transferable to any new data.
The network classifies water bodies and roads. In total, 36,248 images are used in training.
18,927 of those are road images, while the remaining 17,321 images show water bodies. Around
80% of the data is utilized for training and 20% for testing.

F. Politz, B. Kazimi & M. Sester

606

Fig. 5: Overlay of roads and water bodies on top of DTM.

Fig. 6: Clipped roads to create labelled test data.

Table 4 summarizes the characteristics of the data set used in this experiment.

Tab. 4: Data set used for object-based classification

 Dataset 1: DTM data
training images 28,997
testing images 7,251

Input size 100 x 100 x 1

classes
2 (water bodies &

roads)

4.2.2 Network Structure
The CNN model for object-based classification takes a height map of size N x N as input and
outputs a single label for the entire input image. The model consists of three blocks with a
convolutional layer, ReLU and a max-pooling layer. Another convolutional layer and ReLU
follows these blocks. The model finishes with a fully connected layer and a softmax function to
classify the aggregated features into the respective classes. Table 5 summarizes the structure of
the model for the data set. Convolutional layers are abbreviated as “conv”.

38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München – Publikationen der DGPF, Band 27, 2018

607

Tab. 5: Overview of the network structure for object-based classification

Layer Name Size (width x length x channel) Number of Parameters
Input 100 x100 x 1 0

Conv and ReLU 100 x 100 x 16 592
Max-pooling 50 x 50 x 16 0

Conv and ReLU 50 x 50 x 32 115,232
Max-pooling 25 x 25 x 32 0

Conv and ReLu 25 x 25 x 16 12,816
Max-pooling 12 x 12 x 16 0

Conv and ReLu 12 x 12 x 8 2,056
Flattening 1 x 1 x 1152 0

FC-layer (with softmax) 1 x 1 x 2 2,306
 Total 133,002

4.2.3 Experiments
For training the CNN, we also chose the loss function as the categorical cross entropy and Adam
as optimiser (KINGMA & BA 2015). The batch size is 32 and the learning rate is 0.001. After
completing the training process, the model was tested. The CNN achieves a test accuracy of
75%. To provide a better insight into the results, we list the confusion matrix for the test set in
table 6.

Tab. 6: Confusion matrix for test data [%]

 Predicted label
Water bodies Roads

True label Water bodies 72.45 27.55
Roads 22.68 77.32

As observed in table 6, 72.45% of water body images were classified correctly while the
remaining 27.55% were misclassified as roads. In case of road images, 77.31% were classified
correctly and 22.68% were misclassified as water bodies. There are two main reasons for the
misclassifications. First, the training data set is small and deep neural network models usually
require many training examples. The second reason for the misclassification is probably in the
way the training images have been clipped. While clipping grids of 100×100 pixels from the
DTM, some of the examples of water bodies might contain roads, and vice versa. Figure 7 shows
some example inputs and their predictions by our model.

F. Politz, B. Kazimi & M. Sester

608

Fig. 7: Example inputs and predictions by our model. The input size is 100 x 100 pixel. a) Road input
classified correctly as road. b) Road input classified incorrectly as water body. c) Water body
input classified correctly as water body. d) Water body input classified incorrectly as road.

5 Conclusion and Outlook

In this research, we explored and discussed different methods to classify airborne laser scanning.
In the first method, each point in the point cloud is classified. The second method deals with
object classification using digital terrain models, which are a derived product from airborne laser
scanning point clouds. A convolutional neural network (CNN) was applied as classifier in both
methods. A CNN requires a regular structure for their input, which irregular point clouds from
airborne laser scanning does not provide.
For this reason, the 3D point clouds were projected into 2D images in the first method. For each
point, the normalized minimal, average and maximal height is taken into account as input
images. The trained network classifies the point cloud into the classes ground, non-ground and
car and achieves an overall accuracy of 91,14% while testing, which is sufficient for practical
use to derive a digital terrain model. From the scientific point of view, this is not enough. As
mentioned in experiments in chapter 4.1.3 there are still some errors left in the trained network
resulting in around 10% of the non-ground points being misclassified as ground points. In future
work, we will reduce those misclassifications. Equally, we will increase the number of classes in
our network in order to distinguish buildings from vegetation in the non-ground class as well as
streets from simple ground points in the ground class.
The object-based classification also achieves reasonable results. Only by considering the
elevation values in a grid containing the whole object in our data set, the model learns to identify
objects with an accuracy of around 75%. In summary, the object-based classifier implemented in
this research proves to be appreciable. With more training data, the model is expected to learn
better and gain a higher accuracy. To this end, additional training data will be included from
other areas; furthermore, also perturbations of the existing training data (e.g. rotation or scaling)
will be applied to create more data with a higher variation. Additionally, we will extend the
model to detect more classes such as hollow ways, pits, heaps, shafts, sink holes, etc. After
classification, the next task is to delineate the object geometry and create 3D object models.

38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München – Publikationen der DGPF, Band 27, 2018

609

6 References

BISHOP, C., 2006: Pattern Recognition and Machine Learning. Springer Science+Business
Media, LLC. Singapore. ISBN 978-0-387-31073-2, 198.

DORREN, L.K.A., MAIER, B. & SEIJMONSBERGEN, A.C., 2003: Improved Landsat-based forest
mapping in steep mountainous terrain using object-based classification. Forest Ecology and
Management 183 (1-3), 31-46.

GIRSHICK, R., DONAHUE, J., DARRELL, T. & MALIK, J., 2013: Rich features hierarchies for
accurate object detection and semantic segmentation. Extended version of the published
conference paper at CVPR 2014. arXiv: 1311.2524v5.

HU, X. & YUAN, Y., 2016: Deep-Learning-Based Classification for DTM Extraction from ALS
Point Cloud. Remote Sens. 2016 (8), 730.

KERAS-TEAM, 2018: Keras: Deep Learning for humans. GitHub repository,
https://github.com/keras-team/keras

KINGMA, D.P & BA, J.L., 2015: Adam: A method for stochastic optimization. Published as a
conference paper at ICLR 2015. arXiv:1412.6980v9.

KRIZHEVSKY, A., SUTSKEVER, I., & HINTON, G.E., 2012: ImageNet classification with deep
convolutional neural networks. Proceedings of the 25th International Conference on Neural
Information (NIPS) 2012 (1), 1097-1105.

MAAS, A., HANNUN, A.Y. & NG, A.Y, 2013: Rectifier Nonlinearities Improve Neural Network
Acoustic Models. ICML’13 Proceedings of the 30th International Conference on Machine
Learning. JMLR: W&CP (28).

MALLINIS, G., KOUTSIAS, N., TSAKIRI-STRATI, M. & KARTERIS, M., 2008: Object-based
classification using Quickbird imagery for delineating forest vegetation polygons in a
Mediterranean test site. Published in ISPRS Journal of Photogrammetry and Remote
Sensing, 63(2), 237-250.

MANTURANA, D. & SCHERER, S., 2015a: 3D Convolutional Neural Networks for Landing Zone
Detection from LiDAR. Published in IEEE International Conference on Robotics and
Automation (ICRA) 2015, 3471-3478.

MANTURANA, D. & SCHERER, S., 2015b: VoxNet: A 3D Convolutional Neural Network for Real-
Time Object Recognition. Published in IEEE International Conference on Intelligent
Robots and Systems (IROS), 922-928.

NAIR, V. & HINTON, G. E. 2010: Rectified Linear Units Improve Restricted Boltzmann
Machines. ICML’10 Proceedings of the 27th International Conference on Machine
Learning, 807-814.

PALAFOX, L. F., HAMILTON, C. W., SCHEIDT, S. P., & ALVAREZ, A. M., 2017: Automated
detection of geological landforms on Mars using Convolutional Neural Networks.
Computers and Geosiences, 101, 48-56.

PROKHOROV, D., 2010: A convolutional Learning System for Object Classification in 3D Lidar
Data. IEEE Transactions on Neural Networks, 21(5), 858-863.

SCHERER, D., MÜLLER, A. & BEHNKE, S., 2010: Evaluation of Pooling Operations in
Convolutional Architectures for Object Recognition. International conference on artificial
neural networks. Springer, Berlin, Heidelberg, 92-101.

F. Politz, B. Kazimi & M. Sester

610

SIMONYAN, K. & ZISSERMAN, A., 2015: Very Deep Convolutional Networks For Large-Scale
Image Recognition. Published as a conference paper at ICLR 2015. arXiv:1409.1556v6.

SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., SUTSKEVER, I., & SALAKHUTDINOV, R., 2014:
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine
Learning Research, 15, 1929-1958.

QI, C.R., SU, H., MO, K. & GUIBAS, L.J., 2017: PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation. Proc. IEEE Computer Vision and Pattern Recognition
(CVPR), 1(2), 4, arXiv: 1612.00593v2.

