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Smart Phone Accuracy of Multi-Camera Pedestrian Tracking 
in Overlapping Fields of View  

STEFFEN BUSCH
1 

Abstract: In this paper, we analyze the suitability of event mapping via smart phones by 
evaluating the accuracy of pedestrian tracking. We employ a multiple view tracking and 
bundle adjustment and recover the scale by an alignment to reference points measured via a 
total station. The use of multiple perspectives by loosely time synchronized smart phones, 
enables a least squares assignment of detections while improving the pose estimation of pe-
destrians and reducing occlusions. Finally, we used a total station to track a pedestrian to 
evaluate our results and show that the photogrammetric smart phone tracking accuracy of 
20 cm is suitable for event mapping in the daily traffic situations. 
 

1 INTRODUCTION  

Nowadays, with the explosive development of 
technology for the internet of things, various sen-
sors record lots of information in our world. This 
work is about the pedestrian tracking accuracy ex-
amination by exploiting wide spread smart phone 
sensors. By use of smart phones we will be able to 
comprehensively map the movement of pedestrians 
with multiple mobile devices, we call agents. As 
we demonstrated in our previous work (BUSCH et 
al. 2016), the movements of objects can be utilized 
to generate dynamic maps. These maps provide 
information about the real paths (trajectories) of 
pedestrians, when and where events occur and, 
similar to floating car data, traffic information.  
The resulting data can be used to generate infor-
mation about periodic events and especially to de-
tect anomalies such as traffic accidents or crowded 
scenes. Such dynamic maps can improve the navigation in cities and be a useful tool for city 
planning (FAYAZI et al. 2015). The more detailed mapping of the spatiotemporal traffic behavior 
will play a significant role in future mobility solutions. Thus, pedestrian trajectories are a valua-
ble source for such new kinds of maps. The tracking information could be obtained with high 
frequency by the daily traffic of the future, when more traffic participants are equipped with ap-
propriate sensors. As of now, a comprehensive data collection is possible by traffic control or 
smart phone cameras, for instance. This is achieved by following the concept of holding maps 
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Fig. 1:  Three time synchronized images 
of a scene, taken from three dif-
ferent camera viewpoints. Esti-
mated person pose is overlaid. 
The bottom left and right images 
show a mismatch in the head 
association to illustrate that this 
detection, too, fails sometimes.  
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up-to-date by using crowd-sensing information of the daily traffic. For that reason we use smart 
phones as ”all-in-one” sensors and analyze their accuracy. In order to investigate the pedestrian 
tracking from multiple viewpoints, we used a multi-camera network consisting of smart phone 
cameras, to analyze the tracking accuracy. This is relevant in maps due to the necessity for relia-
ble 3D information like trajectory planning and obstacle handling. The real world tracking results 
rely on the position and orientation of the cameras, which we determined by a point cloud align-
ment, since this method can locate independent cameras and enables a crowd sensed tracking. 
During the last decade, we have witnessed an explosion in Computer Vision techniques for pe-
destrian detection and tracking (LEAL-TAIXÉ et al. 2016; LINDER et al. 2016; ZHANG et al. 2016). 
This task is critical for surveillance, autonomous driving and robotics applications. Even though 
pedestrian detection and tracking have attracted a lot of researchers, it still poses many challeng-
es due to the alteration of pedestrians’ pose, scale, or changes in the scene illumination. Addi-
tionally, in a crowded scene, pedestrians are usually occluded by others, which is a problem that 
cannot be solved effectively by single camera views. Combining images from multiple view-
points can provide a more comprehensive knowledge of a scene, in which missing information in 
a particular view can be supplemented by the others (MITTAL & DAVIS 2003). This method not 
only helps to overcome the limitations of monocular camera views, but also improves the ro-
bustness of the 3D position estimation during the pedestrian tracking procedure. However, it is 
difficult to fuse information from different camera views because of uncertainties in detection 
and pedestrian correspondence ambiguities. To tackle this problem, we propose a framework to 
track pedestrians in 3D on a ground plane using images from multiple cameras. Our method ex-
tends the recursive dynamic Bayes network multi-person tracker, which was introduced by 
KLINGER et al. (2015) to a scenario of three cameras. Besides that, we propose a method for find-
ing the correct combination of detections from different views. For this purpose, we combine 
detections of different perspectives by spatial intersection and a Gauss-Markov method. Then we 
calculate the probability of the resulting combinations and filter outliers. Afterwards, we select 
the most likely combinations and utilize the prediction information of the Kalman Filter for the 
association process. Thus, we strive to enhance the reliability and precision of trajectories. We 
test our approach on a database produced by ourselves, in which areas of interest were captured 
by three smart phone cameras placed at three different viewpoints. One pedestrian tracking tra-
jectory is compared against the ground truth trajectory determined using a total station (tachyme-
ter). Figure 2 illustrates the alignment problem of multiple detections from different perspectives. 
The derivation from the detectors leads to several combination possibilities by spatial intersec-
tion between the viewpoints. Our approach is looking for the correct combination of detections 
by filtering the set of all possible combinations.  
The rest of the paper is structured as follows: in Section 2 we discuss previous relevant research. 
Section 3 describes our method in detail. Section 4 illustrates our experiment with the captured 
scene. After an evaluation of our approach in Section 5 we sum up with conclusions in Section 6. 
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2 Related Work  

This section starts with an over-
view of (event) mapping ap-
proaches, since the comprehen-
sive mapping of events has in-
spired our work. Afterwards, 
different detection approaches 
are presented due to their high 
influence on the tracking ap-
proaches. Finally, various track-
ing approaches are discussed.  
Today floating car data (FCD) is 
used for more effective path 
planning, avoiding congestions 
and optimizing transportation 
systems. Various works (RAZA & 
ZHONG 2017; TREIBER & 
KESTING 2013) predict traffic 
flow information based on trajectory analysis to make traffic faster, safer and more environmen-
tally friendly. These approaches analyze trajectories generated by camera observations or by 
ordinary Global Navigation Satellite System (GNSS) data matched to a map. In addition to FCD, 
even maps and much more information are generated and updated by crowd-sensing data 
(HAKLAY & WEBER, 2008; HU et al., 2017). LANDSIEDEL & WOLLHERR (2017) calculated a root 
mean square error of around 1.5m between open street map, which is generated by using ordi-
nary GNSS receivers, and a laser scanner reference map. GNSS trajectories generated by crowd 
sourcing are a widespread source to map much more information. For example ROETH et al. 
(2017), RUHHAMMER et al. (2017) and DURAN et al. (2016) automatically mapped road network 
graphs by trajectory analysis. ZOURLIDOU & SESTER (2015) and EFENTAKIS et al. (2017) used 
GPS tracks to enrich network graphs with information about turning behavior. Furthermore 
RUHHAMMER et al., (2017) and FAYAZI et al. (2015) generate higher detailed information about 
the spatial-temporal behavior at the network graph through traffic light sequences (TLS). In addi-
tion, they identify TLS as valuable information for traffic flow optimization. Furthermore, 
WANG et al. (2016) show that with the knowledge of TLS the travel time could be reduced by 
about 36%. All of the trajectory analysis approaches depend on trajectory precision. ATIA et al. 
(2017) showed that at least an accuracy of around 0.90 m is required for match detection to lane 
accurate maps. The precision of “GNSS only solutions” are not suitable for crowd sourcing be-
cause the low cost sensors’ error varies between 5 m and 22 m (DURAN et al., 2016), but high 
cost solutions are expensive for a comprehensive and high frequency use. (KNOOP et al., 2017) 
used GPS Precise Point Positioning to adjust low cost measurements and reached a precision of 
1.2 m with a reliability of 95%. Another more accurate low cost approach is presented by VI-

VACQUA et al. (2017), their vision based self-localization reached a precision of 0.06 m average 
and 0.54 m maximal error. We use these quality measures to evaluate smart phones as a valuable 

Fig. 2:  Filtering of all possible combinations generated by the 
least square assignment of spatial intersection of dif-
ferent angles. 
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crowd sensing tracking sensor. Next, we discuss the previous studies concerning pedestrian de-
tection and tracking.  
Pedestrian detection and tracking have been studied intensively during the last 20 years and their 
performances have been boosted continuously. Currently, there are three principal families of 
methods for detecting and localizing pedestrians in images. The first group of algorithms extracts 
hand-crafted features such as histogram oriented gradient (HOG), integral channel feature (ICF) 
or deformable part model (DMP) (DOLLÁR et al., 2009) of relevant objects, followed by a super-
vised classifier like SVM (DALAL & TRIGGS, 2005; VIOLA & JONES, 2001; FREUND & SCHAPIRE, 
1997). The other method trend utilizes the Convolutional Neural Network (CNN) which is able 
to automatically obtain the optimum and high level features from raw pixels by training a deep 
network with great amounts of positive and negative training samples (CAO et al., 2016; CORDTS 
et al., 2016; DENG et al., 2009; LIN et al., 2014; REDMON & FARHADI, 2016). These two classes 
of methods deliver comparable results on different benchmark databases, such as KITTI Vision 
Benchmark Suite (GEIGER et al., 2012), ETH (ESS et al., 2008), MOTChallenge (LEAL-TAIXÉ et 
al., 2015). Another class of detector approaches for static cameras uses background modelling 
(ST-CHARLES et al., 2015) to detect a person by detecting differences between dynamic and static 
background layers and a current frame. 
Using detections in each image frame, the tracking can be accomplished by associating pedestri-
ans between two consecutive image frames. Most of the state-of-the-art methods employ the 
tracking-by-detection pipeline to track pedestrians, both in 2D and 3D spaces, and achieved im-
pressive results (CHOI et al., 2013; KLINGER et al., 2017; MILAN et al., 2013). KLINGER et al., 
(2017) utilized the HOG-SVM to detect pedestrians in an image sequence. Next, the pedestrian 
association was performed using linear programming. They employed the Kalman filter and a 
dynamic Bayesian network to predict and correct the pedestrian trajectories as well. Moreover, 
they did not consider each pedestrian movement independently, but took into account interac-
tions and affectations of other movements in the scene as well.  
Our tracking method for multiple viewpoints is an extension of KLINGER’S (2017) approach. 
However, we take it a step further by replacing the HOG-SVM with deep learning detectors to 
obtain improved detection accuracy. We also include a multi view alignment module to deter-
mine the corresponding pedestrian across all viewpoints. Despite many techniques have been 
developed to solve the pedestrian tracking challenges, tracking from a single camera viewpoint 
usually fails in case of occlusion and is less accurate due to lacking information concerning the 
whole scene. Several approaches have been studied to leverage multi-view object tracking. To 
track pedestrians in crowded scenes, KHAN & SHAH (2006) performed a planar homography con-
straint to clarify the occlusion and localize positions of pedestrians based on the measured foot 
blobs. Both BERCLAZ et al. (2011) and LEAL-TAIXE et al. (2012) treated the multi-view tracking 
problem as a flow optimization task. Utilizing the relationship of knowledge obtained from mul-
tiple view point images by joining spare learning, HONG et al. (2013) could extract more suffi-
cient information to boost the performance of his particle-filter-based tracker. XU et al. (2016) 
adopted a hierarchical composition model to generate the object trajectories through maximizing 
a posterior. While the existing approaches achieved remarkable improvements employing differ-
ent approaches, they are more or less imposed on appearance resemblance, movement smooth-
ness, sparsity, 3D position coincidence, etc., of pedestrians over temporal and spatial domains. In 
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the same manner, we take those cues into the tracker. Our tracking approach differs from high 
precision multi-camera tracking approaches such as used for motion capturing systems for film 
studios since we do not apply our approach in a closed room with defined background for Chro-
ma keying with high precision time synchronized cameras, a full bundle adjustment over all 
cameras with unlimited observations and controlled light conditions. 
We focus on the multi view alignment task to reduce the effect of occlusion, in which the corre-
sponding pedestrians are determined with assumption of 3D position coincident over multiple 
viewpoints. Moreover, we perform our tracking in 3D world space and compare our results to a 
ground truth trajectory to get a quantitative measurement of accuracy we can achieve in realistic 
applications. 

3 Multi-View Tracking  

We extend the conventional tracking approach from KLINGER et al. (2017) by use of different 
perspectives from a multi-camera network. The different viewpoints enable a more precise 3D 
position estimation in comparison to a single mono camera. Moreover, they make the tracking 
much more robust against occlusion. The framework of our approach includes four primary 
phases (see Figure 3): first, the detection, in which pedestrians are recognized and localized sepa-
rately in each image. Secondly, the alignment task is executed to find the corresponding pedes-
trians between different views. Next, the detections are concatenated across frames in the data 
association phase. Finally, the trajectories of pedestrians are smoothed by applying a Kalman 
filter for the position of detections and predicted locations inferred from previous image frames. 
This section will first explain the localization methods since the tracking is based on the known 
camera positions. Afterwards, each step is explained in more detail in the corresponding chapter. 

3.1  Pose Estimation via Point Cloud Alignment 

To determine the camera positions, we use a point cloud alignment because this method allows 
for an independent localization for each camera. The poses only depend on a point cloud map 
and a short image sequence of a moving camera. For the alignment we calculate a point cloud via 
bundle adjustment and align it to the reference points from the total station. For this we pick cor-
responding points manually for a Four Point Congruent Sets (4PCS) (AIGER et al. 2008) registra-
tion algorithm. Thus, a transformation including the scale between the coordinate frame of the 
bundle adjustment and the coordinate frame of the total station is calculated. With this pose in-
formation we identify the ground plane. This ground plane is used to project every detection onto 
the ground and approximate the real world position for each detection. 

Fig. 3:  The framework of our proposed tracker 
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3.2 Pedestrian Detection 

For the detection, we adapt two different deep learning based methods which were recently pub-
lished and can efficiently perform the pedestrian detection task. On one side, YOLO: Real-Time 
Object Detection (REDMON & FARHADI 2016) produces bounding boxes of pedestrians; we inter-
pret the center of the bottom bounding box line as a foot point for the tracking. On the other side, 
the 2D pose estimation approach (2DPE) (CAO et al. 2016; LIN et al. 2014) delivers the skeletons 
of detected pedestrians, whereby we combine the neck x-position and lowest ankle y-position in 
order to precisely detect the foot point of pedestrians. Particularly, only the pre-trained networks 
provided by the authors are used and no domain adaptation to our newly generated data set is 
done since the models generalized well. Three images from three different viewpoints with over-
laid pose skeletons are depicted in Figure 1.  

3.3 Multi-View Alignment 

In our case, the problem of data association expands by the use of multiple cameras. To simplify 
the association process, we combine the detections of the same persons from different views be-
fore starting to process. Thus, we create all possible combinations from the detections of differ-
ent views and assume that each combination describes the same person. We then optimize the 
detected 3D position of that person by correcting the image coordinates of the detections so that 
they describe the same point in 3D. Based on this spatial intersection by using the Gauss-Markov 
model (2), with the design matrix A (1), we identify the correct combinations, which have the 
smallest residuals. To find that smallest residual independent of camera count, we use the square 
improvements (3) and the chi square function (4). In more detail, we use the Jacobian matrix of 
the object (world) coordinates X, Y and Z of the collinearity equation (KRAUS 2004) and use the 
assumption that Z is constant to determine the design matrix 
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(1)

Where: ௜݂ ൌ focal length of camera i 

N୧ 	ൌ 	 r௜,ଶ,଴൫X	 െ T୧,୶൯ ൅	r୧,ଶ,ଵ൫Y	 െ T୧,୷൯ 	൅ 	r୧,ଶ,ଶ	ሺZ	 െ T୧,୸ሻ  

ξi	 ൌ r୧,଴,଴	൫X	– T୧	,୶൯ 	൅ 	r୧,଴,ଵሺY	 െ T୧,୷ሻ 	൅	r୧,଴,ଶሺZ	 െ T୧,୸ሻ  

η୧ 	ൌ 	 r୧,ଵ,଴൫X	 െ Tሺ୧,୶ሻ	൯ ൅	r୧,ଵ,ଵ൫Y	 െ T୧,୷൯ ൅	r୧,ଵ,ଶ൫Z	 െ T୧,୸൯  

T୧,୶|୷|୸ 	ൌ 	world	coordinat	of	camera	i	  

	 ௜ = orientation of camera iݎ 
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We iterate the Gauss-Markov model to optimize the 3D position x’ of each combination,  

ᇱݔ  ൌ ሺA୘PAሻିଵA୘Pl . (2)

Where:  

l												 ൌ 	 ሺx଴	y଴ … x୧	y୧0ሻ்  

x௜, y୧ 					ൌ image coordinates of detection 
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σ୷౟, σ୶౟ 	ൌ 	standard	derivation	of	detector	i	  

 ௣          = standard derivation for ground Z coordinateߪ

Thus, we improve the image observation by finding the smallest residuals v = Ax−l and use the 
variance propagation to find the right matches (NIEMEIER 2001). Then the sum of the squared 
improvements is calculated as follows: 

 Ω ൌ vTPv  (3)

Afterwards, the chi square function is used to calculate a comparable measurement independent 
of the count of perspectives a. Inspired by the global test, we used the cumulative distribution of 
the chi square function to get a probability for the detections belonging to the same object: 

 

 Pୈ ൌ 1 െන χଶୟିଶ
ଶ

Ω

଴
 (4)

Where: 

a = count of different perspectives.  

Finally, we filter the unlikely combinations which are smaller than a defined threshold and en-
sure that no detection is used twice.  

3.4 Data Association  

For the association from detections to trajectories we use the Mahalanobis distance (5) to weight 
how well a detection belongs to a track, which actual position is prediction-based on the previous 
walking direction: 

 δM ൌ ቀ
xୈ 	െ x୘
	yୈ 	െ ்ݕ
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Where: 

xୈ, yୈ= coordinates of detected 2D position  

x୘, y୘= coordinates of predicted 2D object position 

Σୈ, Σ୘= the covariance matrices of detection and prediction 

Thus, δM is used to calculate the weight ݓ஽,୘ (6) for the detections belonging to a tracked pedes-
trian:  

்,஽ݓ  ൌ ݁ିଵ/ଶఋெ (6)

Afterwards, we used mixed integer linear programming from BERKELAAR et al. (2004) to assign 
the right detections by use of a Branch-and-bound method for solving the optimization problem. 
Thus, we employ the constraints that every detection and trajectory could have one assignment at 
most. 

3.5 Prediction and Filtering (Kalman Filter) 

For tracking we use a dynamic Bayes Network of KLINGER et al. (2015). From each detection we 
calculate the two positions foot ݌௙ and head ݌௛, which both have the same x-image coordinate of 
the neck, while y-coordinates are estimated corresponding to the coordinate of the lower ankle 
and the upper eye detection. The tracking is performed by an extended Kalman filter in the real 
world coordinate frame by tracking X, Y, Z of the foot pF and the head pH, whereby only Z dif-
fers. In addition the hidden variables for the speed [vx, vy] along X and Y are part of the tracking 
state 7: 

,݅ݓ   	ݐ ൌ 	 ሾ ௜ܺ ,௧, ௜ܻ,௧, ௙ܼ,௜,௧, ܼ௛,௜,௧, ௫ݒ ,௜,௧, ௬,௜,௧ሿ (7)ݒ

 
Where: 

i	 = object index  
  time index = ݐ

௙ܼ, ܼ௛ = Z coordinate of food and head  

The measurement matrix of the Kalman filter is 
similar to the design matrix equation 1 but is 
extended by the observed head position. For 
this, the Z coordinates of the heads are given by 
the height of the detected bounding boxes. 

4 Experiment  

We tracked pedestrians in a network of three 
smartphone cameras. The cameras were placed 
in a triangle with an edge length of around 
20 m and with a horizontal orientation. The 
floor plan of our setup is depicted in Figure 4.  

Building 

Building 
Parking  

Lot Cam #2 

Cam #1 

Cam #3 

Total Sta-
tion 

Gully cover for 
orientation 

Fig. 4:  Floor plan for our recorded sequences. In 
regions of overlapping field of views, pe-
destrians are visible in more than one 
camera. 
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In our experiment the agents were mounted on tripods at a height of 1.3 m above ground, a per-
son’s usual smartphone carrying height. In addition we measured a precise ground truth with 192 
total station (Leicar LSM50) measurements of one pedestrian. This person carried a support rod 
mounted with a 360-degree prism at a height of about 3 m to prevent occlusions. For the calcula-
tion of the real world transformation, including the missing scale information, we measured 10 
points with the total station and manually aligned the point cloud of the bundle adjustment. In 
order to focus on the accuracy of the detection and the tracking, we used only one static pose for 
each smartphone. The point cloud alignment could be used to localize the position of an agent 
based on 3D point clouds of mobile mapping systems, e.g. the 4PCS performs with a root mean 
square error (RMSE) of 0.027 m. Furthermore, we analyzed the influence of the transformation 
error in a mean pixel error of 11.3 by projecting the real world marks into the images. This rela-
tively big mean pixel error distorted the results of less than 1 pixel standard derivation of the 
bundle adjustment and was added to the standard derivation of the detectors. Thus, we used a 
standard derivation of 40 pixels for the detected y and 30 pixels for the x image coordinate. We 
captured a crowded scene including 10 pedestrians for a period of two minutes. All trajectories 
of the tracked persons with the total station are shown in Figure 5. The pedestrians walked back 
and forth in the scene. We recorded many occlusions, as expertly anticipated in Figure 1. In more 
detail, we used a notebook to record the tracking data of the total station and time stamped the 
position with the processor time as soon as they arrived along the serial connection. We captured 
the images via action listener and time stamped this image at the arrival with the processor time 
of the smart phone. After we saved the image in the internal storage of the smart phone we cap-
tured the next image. Thus, the recording with full HD resolution (1920×1080 pixels) was not 
synchronized and the frame rate of each smart phone was not constant, but no variations were 
lower than 5fps. The images from different perspectives allowed for a higher tracking precision 
by triangulation of synchronized detections. The time synchronization was applied by the Wi-Fi 
internet connection of the smart phones and the notebook via the Network Time Protocol (NTP) 
to a global NTP sever. For the evaluation we identified a time lag of one second for the connec-
tion between total station and the notebook. Due to the irregular image capturing we used a 100 
millisecond time window to synchronize the images. 

5 Evaluation  

The evaluation is structured in two parts, starting with the evaluation of the detection precision, 
including a comparison between bounding box and skeleton detectors, and the analysis of the 
improvements by combining multiple perspectives. Afterwards, the analysis of the tracking re-
sults is presented.  

5.1 Detection Statistics 

In this paragraph we discuss the detection results that we achieved with the pre-trained detectors. 
We evaluate every detection from our image sequence by calculating precision, recall and f-score 
of both YOLO and 2DPE detectors. Table 1 shows the precision, recall and f-score for the YO-
LO bounding box detector, while in Table 2 the results for the 2DPE are shown. The perfor-
mance of the 2DPE skeleton detector on the sequences of camera 1 and camera 3 is better, while 
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the YOLO approach delivers the higher f-score for the sequence of camera 2. Secondly, we ana-
lyze the enhancement of spatial intersection for detections. We assume that the nearest position, 
calculated by projecting the detection onto the ground (GP) or least square assignment of spatial 
intersection (OP), is the position of the reference person, called closest position assumption in 
the following. The next section (Tracking 5.2) will indicate that this assumption holds true in 
most cases. Nevertheless, the analysis will show some outliers, which appear because of an as-
signment of an OP of another person to the reference pedestrian. Based on the closest position 
assumption we compare the accuracy of the position GP and OP by their difference to the refer-
ence. 

Fig. 5a:  Trajectories from mono camera tracking. 
All trajectories belong to the pedestrian 
tracked by the total station 

Fig. 5b:  Trajectories from multi-camera tracking.  
All trajectories belong to the pedestrian 
tracked by the total station 

 
Tab. 1: Detection results for the Yolo V2 bounding box detector 

 Precision Recall F1-score 
Camera 1 0.98 0.91 0.95 
Camera 2 0.96 0.82 0.88 
Camera 3 0.98 0.81 0.89 
 

Tab. 2: Detection results for the CMU pose estimation 

 Precision Recall F1-score 
Camera 1 1 0.94 0.97 
Camera 2 1 0.77 0.87 
Camera 3 0.96 0.92 0.94 
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Fig. 6:  Histogram of detection differences of detectors. Objective is a high number of trajectory points 
by a small distance to the reference

 
The higher accuracy of the skeleton detector is shown in Figure 6. The average precision of posi-
tions is raised from 0.31 m to 0.2 m by the spatial intersection of multiple views for the bonding 
box positions. This improvement is higher in contrast to the skeleton detector with an improve-
ment of the mean accuracy from 0.2 m to 0.16 m. This difference occurs because of the higher 
bounding box height variation of the bounding box detector. This result shows that less accurate 
detections benefit more from the spatial intersection, but more variations have a fatal influence 
on the tracking, as will be shown in the next section (5.2 Tracking). Nevertheless, this higher 
accuracy shows the benefits of spatial intersection for determining positions from detections. A 
closer look at the positional improvement by spatial intersection is given in Figure 7 by calculat-
ing the difference between the distance to the reference of the two positions GP and OP for both 
detectors. A positive value means that the OP was closer to the reference and a negative value 
shows that the GP was closer to the reference. High negative values are explicable by comparing 
a spatial intersection of different persons because of the single observability of the reference pe-
destrian and depicted outlier. Another uncertainty of the analysis is given by the difference be-
tween the position of the camera tracked foot point and tripod point tracked by the total station. 
Nevertheless, Subfigure 7a shows that most of the improvements are positive with the mean of 
0.101 m for the bounding box detector. Subfigure 7b shows more negative values for the skele-
ton detector, but the decline varies around ± 20 cm and thus is more strongly influenced by the 
different tracking points from cameras and the total station. Finally, Subfigure 7c shows the dif-
ferences between the automatically chosen OPs and the GPs for the tracking process, which are 
aligned to the reference person. The fact that the outliers are missing in this case indicates that 
they were caused by violation of the nearest position assumption. The average change by optimi-
zation of -0.01 for the automatically chosen positions indicates enhancement potential of our 
filtering step. However, at least in 73 out of 186 situations an improvement at the automatically 
chosen positions was achieved. Besides the improvements of the estimated positions, our ap-
proach was able to summarize the detections of different views and thus performs an end-to-end 
tracking despite the occlusion scenarios. For the tracking, the huge set of all possible combina-
tions was filtered to identify the right pairs of detections.  
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(a) (b) 

(c) 
Fig. 7:  Differences of detection and ground truth 

Figure 8 shows the fusion of the detections by summarizing the detections of different perspec-
tives which belong to the same person. This snapshot visualizes our way from several detections 
through the exponential growing set of combinations to the small set of filtered positions, which 
reflects the real number of pedestrians at the scene. 

Fig. 8:  Summary of detections by filtering all 
possible combinations of different views 

Fig. 9:  Histogram of the distance of tracked tra-
jectories and nearest detected position to 
the reference trajectory assigned by time 
stamp



S. Busch 

98 

5.2 Tracking 

After the analysis of the detection precision we analyze the tracking accuracy. The different short 
trajectories in Figure 5 a show that no accurate tracking is possible because of many occlusions 
in case of a mono view. The influence of the bounding box size variance is shown in Figure 5b, 
where inaccurate detections break tracks and thus new tracks start farther from the reference. 
That is why no end-to-end tracking was possible with the bounding box detector. For that reason, 
we show every trajectory by this detector, which was once assigned to the reference pedestrian in 
Figure 5b as dotted blue lines. In contrast to the bounding box tracking, our approach by using 
the skeleton detector was able to continuously track the reference pedestrian. Even in the case of 
occlusion situations, where the distance of pedestrians was only 30 cm - as depicted in Figure 1-
we received no identity switches. Thus, an end-to-end tracking was possible and the track is 
shown in Figure 5b with a dashed green line. To make the end-to-end tracking result of the skele-
ton detector comparable to the bounding box detector with many identity switches, we used the 
nearest trajectory to the reference at each time step, which was assigned to the reference person 
once and compared their distances. Figure 9 shows the higher accuracy and the outlier resistance 
of tracking with use of the skeleton detector in contrast to the use of the bounding box detector. 
This figure shows the amount of positions over their distance to the reference. Our final result for 
our tracking approach via smart phones and a skeleton detector is a RMSE of 0.23 with a vari-
ance of 0.01. Besides this accuracy the small difference between the RMSE for the positions 
from the skeleton tracking and detector (0.23 m and 0.2 m) showed the high assignment preci-
sion of our approach. The Kalman filtering reduces the outliers (maximum position error) and 
shows results that are more robust. Moreover, the same RMSE analysis for the position from the 
bounding box detector (0.35 m and 0.31 m) demonstrates the robustness of our summary of dif-
ferent perspectives, even in cases of high variation at the detections. However, the variation of 
the bounding box detections led to more outliers and identity switches. Since skeleton detections 
are more precise, the identity switches are reduced from six for the bounding box detector to zero 
switches for the skeleton detector. 

6 Conclusion  

We presented a multi-view tracking approach with the overarching goal of event mapping, which 
was able to track a pedestrian on our dataset without identity switches despite occlusion scenari-
os in a crowded scene. We were able to ensure a maximal failure of 42 cm and a mean precision 
of 20 cm by using simple time-synchronized smartphones, a neural network detector and the 
spatial intersection of different viewpoints. We showed that the positions of cameras, estimated 
by a bundle adjustment and a point cloud alignment can be used to track pedestrians with this 
accuracy. In future work we will extend this approach to mobile camera networks to build a dy-
namic map with the long term objective of anomaly detection in dynamic maps.  
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