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Dynamically Extending Spatial Databases to support 
CityGML Application Domain Extensions 

using Graph Transformations 
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Abstract: As a domain extendable 3D city model the OGC standard CityGML has been 
increasingly employed as a dominant consensus over different application areas. An essential 
challenge encountered in many research and commercial activities in the field of 3D city 
modelling is to find a reliable approach for achieving high-efficient storage and management 
of data models according to CityGML with its Application Domain Extensions (ADE) in order 
to ensure interoperable data access across broad application domains. Based on graph 
transformation, this paper introduces a new approach along with an extensive database 
structure that allows for dynamically extending the spatially-enhanced relational databases 
for handling arbitrary CityGML ADEs by means of graph transformation systems. With this 
approach, relational database schemas with simplified and optimized table structures can be 
automatically generated from the XML application schemas of CityGML ADEs by performing 
a series of user-defined graph transformation rules which can describe complex mapping rules 
for transforming object-oriented data models to relational database models in a fully 
declarative way. The proposed approach has been successfully implemented and tested based 
on a number of different CityGML ADEs like Energy ADE, Dynamizer ADE, and 
UtilityNetwork ADE.  
 

1 Introduction and motivation 

Over the recent years, the OGC standard CityGML has been increasingly used as a semantic 3D 
city model for describing the relevant entities in the landscape and urban space. It is designed as 
an application schema based on the Geography Markup Language 3 (GML3) and includes a wide 
range of feature classes along with their interrelationships as well as their relevant thematic and 
spatial properties which can cover the most varying needs of different application domains. 
However, in many practical applications, an essential issue often encountered while using 
CityGML is that many additional feature classes or extra attribute types are required to represent 
some certain objects or data structures for performing domain specific analysis or simulations such 
as energy demand calculations, utility network analysis, facility management, noise propagation 
simulations etc. For this reason, CityGML provides an extension mechanism called “Application 
Domain Extension (ADE)” allowing third parties to dynamically and systematically extend the 
existing CityGML data models by attaching extra application schemas which can contain 
additional feature classes and attribute properties defined for specific application domains. Since 
3D city model objects usually have well-defined identifiers which are usually kept stable 
throughout the lifetime of the referenced real-world objects, the complete 3D city models being 
attached with diverse domain-specific information are hence considered as a good basis for 
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building an integrative platform for realizing interoperable data exchange across different 
application domains.  
In order to efficiently store and manage CityGML-based 3D city models regarding their complex 
data structures and spatial characteristics, spatially-enhanced relational database management 
systems (SRDBMS) were often chosen to serve as the central data repositories as they are usually 
featured with extensive spatial capabilities compared to other types of database systems. A 
representative relational database solution is the 3D City Database (3DCityDB), an Open Source 
software for the storage, management, and analysis of 3D city models according to the CityGML 
standards.  It is shipped with a compact relational database schema resulted from a careful mapping 
of the object-oriented data model of CityGML 2.0 to a fixed database structure which has been 
employed as standard database implementation in many production environments and commercial 
projects all over the world. However, the 3DCityDB database schema has no support for CityGML 
ADEs and the underlying design decisions strongly rely on many manual steps, for example 
recognizing a certain complex model structure and mapping it to a particular target database 
structure, which make the automation of the mapping process for CityGML ADEs much harder 
than the generic solutions proposed in the many literatures. Furthermore, since CityGML ADE 
models can be arbitrarily defined with very complex model structures in practical situations, a 
challenging task is to find a way for dynamically and automatically extending the 3DCityDB 
database schema in order to efficiently store and maintain geospatial data of arbitrary CityGML 
ADEs (cf. Fig. 1).  

 
Fig. 1: Conceptual workflow for creating a dynamically extendable 3D geo-database for storage and 

management of CityGML ADEs using spatially enhanced relational database management 
systems 

Within this paper, we will present a new graph-based framework which uses typed and attributed 
graphs for semantically representing the object-oriented data models of CityGML ADEs and 
utilizes graph transformation systems to automatically generate compact relational database 



Z. Yao & T.H. Kolbe 

318 

schemas extending the 3DCityDB. The transformation process is performed by applying a series 
of fine-grained graph transformation rules which declaratively describe user-definable mapping 
rules for transforming complex object-oriented data models to relational database schemas. With 
this approach, the 3DCityDB database schema has been structurally enhanced to be dynamically 
extendable for arbitrary CityGML ADEs and can, hence, be used as an integrative information 
backbone for interoperable data access for a wide range of domain-specific information according 
to the CityGML standard.  
The rest of this paper is structured as follows: Section 2 addresses the relevant concepts for the 
modelling and development of CityGML ADEs and provides the theoretical foundation for our 
work. Section 3 introduces an extended database structure for 3DCityDB which becomes to be 
dynamically extendable for handling multiple CityGML ADEs simultaneously. In section 4 we 
propose a conceptual approach for schema transformation using graph transformation systems for 
realizing the automatic generation of relational database schemas from CityGML ADE application 
schemas. In addition, a technical implementation of the proposed conceptual approach is detailed 
in section 5. The last section draws the conclusions about the presented study and outlines the 
relevant aspects of our future research and development work. 

2 Model Driven Approach for the development of CityGML ADEs  

A fundamental understanding of the mechanisms behind the development of CityGML ADEs is 
the major prerequisite for the establishment of the graph-based framework presented in this paper. 
Basically, the data models in software and systems engineering are nowadays usually developed 
by following the well-known design approach called “Model Driven Architecture (MDA)” issued 
by the Object Management Group (OMG). MDA aims to provide a systematic way for facilitating 
the development of software and data models using Computer-Aided Software Engineering 
(CASE) tools (GA et al. 2006). The key idea of this design approach is that an abstract platform-
independent model (PIM) representing the underlying conceptual models shall be first created at 
the earlier stage of the development lifecycle and then be implemented for different application 
platforms at a later stage by transforming it into the corresponding platform-specific models (PSM) 
such as XML schema and database schema etc. In order to ensure the unambiguity and consistency 
of the definition and description of model structures, the Unified Modelling Language (UML) was 
chosen as the standard modelling language for describing the platform-independent models since 
it comes with a rich set of graphic notations and syntaxes allowing to visually represent complex 
model structures as well as to fully represent the respective semantic meanings.  
In the field of geographic information modelling, the combined use of MDA and UML has been 
predominantly adopted as the main instrument for the development of geospatial information 
models on the basis of the so-called “ISO 19100 standards family” issued by the Technical 
Committee (TC) 211 of the International Organization for Standardization (ISO). This bundle of 
standards comprises a series of abstract specifications which jointly provide a general guideline 
for geographic information modelling regarding the definition and description of geographic 
phenomena in order to ensure the interoperability of data exchanges across different application 
platforms. For example, the ISO standard 19109 “Rules for Application Schema” comprehensively 
specifies the rules on modelling of real-world features along with their attribute properties as well 
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as their interrelationships such as generalization/specialization and association relationships like 
aggregations and compositions (ISO 19109:2005). In particular, the spatial properties of features 
such as their geometric-topological characteristics can be comprehensively expressed using the 
geometry and topology models defined in the ISO standard 19107 “Spatial Schema” specification 
(ISO 19107:2003). Other relevant modelling aspects such as temporal schema, metadata, and 
coverage etc. are explicitly covered in the standards ISO 19108, ISO 19115, and ISO 19123 
respectively. Based on these abstract standards, the ISO 19136 standard “Geography Markup 
Language (GML)” was released which provides an open and manufacturer independent framework 
for the definition of geospatial data models on the application level (ISO 19136:2007). The main 
GML model components like geometries, topologies, coverages, coordinate- and time reference 
systems etc. are wholly and partly drawn from the conceptual models defined in the ISO 19100 
standard family and implemented as a XML-based schema (GML Schema) according to the XML 
encoding conventions specified in the ISO 19118 standard (ISO 19118:2011). Moreover, the ISO 
19136 standard additionally specifies an extensive UML profile together with a normative UML-
to-XML encoding rule set which builds an MDA-compliant framework allowing for the 
development of a variety of application schemas based on a standardized exchange interface using 
GML (cf. Fig. 2). 

 
Fig. 2: Relationship between the ISO 19100 standard family and CityGML ADEs 

As a GML application schema, CityGML specifies domain specific concepts for 3D city models 
formally by extending GML’s data models for the spatio-semantic modelling of 3D city and 
landscape objects. It is a platform-independent geospatial information model that has been realized 
as a XML-based application schema (CityGML Schema) in compliance with GML schema. 
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According to the CityGML specification, CityGML is featured with an extension mechanism 
called “Application Domain Extension (ADE)” allowing to dynamically enrich the CityGML’s 
predefined data models with extra classes and attribute properties to develop a domain-specific 
GML application schema. According to literature (VAN DEN BRINK  et al. 2013), CityGML ADEs 
can also be originated and developed from the start with the design of a platform-independent 
model using UML models by following the MDA approach. An XML-based application schema 
pointing to the CityGML and GML schemas can later be automatically generated by means of the 
UML-to-XML encoding rules defined in the ISO 19136 standard (SHAPECHANGE 2016). Although 
the UML model can be directly serialized to a text-based document using the standard format 
“XML Metadata Interchange (XMI)” for information exchange, CityGML ADEs developed by 
third parties are mostly provided by means of XML schema definition (XSD) files instead. This is 
because, on the one hand, the XML schema provides a sophisticated syntactical structure which is 
able to fully represent the semantics of object-oriented models with complex data structures and 
can also be easily interpreted and parsed by many XML-schema-aware software tools and 
programming libraries. On the other hand, the XML instance documents can also be directly 
checked against their meta-models using the respective XML schemas to ensure the validity of the 
corresponding geospatial data.    

3 Extendable relational database structure for CityGML ADEs  

In 3D GIS applications, typically database management systems (DBMS) are employed for 
achieving high-efficient data storage and management as well as interoperable data access for 
large-volume geospatial data. Since the data models of CityGML ADEs may comprise 
heterogeneous information about the domain-specific features along with their spatial and non-
spatial properties, a number of open-source and commercial database products with spatial 
extensions have been developed and also intensively investigated in research and development 
projects to ascertain their key functional capabilities and limitations in handling GML-compliant 
geospatial data. These database products can be roughly categorized into two types according to 
their native database structure, namely non-relational and relational databases. The former one can 
be further classified into object-oriented databases, document-oriented databases, and graph 
databases etc. According to the literature (MAO et al. 2014, AGOUB et al. 2016), such non-relational 
databases are currently still more or less limited in their capabilities and performance of performing 
certain kinds of spatial operations and coordinate transformations which are of great importance 
for the use of CityGML ADEs in practical applications. Thus, due to their extensive abilities for 
storing, analyzing, and processing spatial data elements, the spatially-enhanced relational database 
management systems (SRDBMS) such as the commercial Oracle with ‘Spatial’ license and the 
open-source PostgreSQL with ‘PostGIS’ extension etc. are nowadays predominantly employed in 
many enterprise applications and services to maintain GML-conformant data. 
As a representative relational database solution, the open-source 3D geodatabase “3DCityDB” was 
developed for CityGML. It can be operated using the Oracle and or PostgreSQL database 
management system. The database schema of 3DCityDB results from a careful, manual mapping 
of the object-oriented data model of CityGML onto a compact relational database structure 
optimized with respect to database complexity, operating performance, and semantic 
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interoperability. Over the past years, the 3DCityDB has been widely deployed in many commercial 
production environments to manage virtual 3D models for many cities worldwide like Munich, 
Berlin, Zurich, Rotterdam, Helsinki, Singapore, and London etc. (KOLBE et al. 2016). However, 
the current version of the 3DCityDB does not provide a generic solution for handling datasets of 
CityGML ADEs. This limitation hinders the usage of 3DCityDB to be disseminated for many 
domain-specific application fields which in turn have a strong need for dynamically extending 
3DCityDB for arbitrary CityGML ADEs. In order to achieve this objective, an extended database 
structure based on the original 3DCityDB database schema was proposed in the course of this 
research work and the conceptual database design is sketched in the following figure in terms of 
an informal package diagram.  

 

Fig. 3: Dynamically extendable database structure for storing CityGML ADE data in the 3DCityDB 

As shown in the figure above, the new 3DCityDB database schema is designed in a modular 
fashion. It consists of three parts, namely Metadata Module, Core Data Module, and Dynamic 
Data Module. The green grids enclosed in the Core Data Module represents those database tables 
that are already included in the current version of the 3DCityDB database schema which is 
responsible for storing the standard CityGML models such as Building, Tunnel, Transportation, 
CityFurniture, CityObjectGroup, Generic, Appearance etc. For a given CityGML ADE, an 
additional group of database tables forming as a separate module belonging to the Dynamic Data 
Module (pink grids in the figure) shall be created and attached to the 3DCityDB database schema 
and the relationships (e.g. generalization/specialization and associations) among the model classes 
of CityGML and CityGML ADEs are adequately reflected using database foreign key constraints 
which can also ensure the data integrity and consistency within the database system. The Metadata 
Module associated with the Dynamic Data Module is used for storing the relevant meta-
information (e.g. the XML namespaces, class affiliations etc.) about the application schema of the 
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registered CityGML ADEs as well as about the database objects (e.g. indexes, columns, foreign 
key constrains) created in the corresponding Dynamic Data Module. In this way, the SQL 
statements for e.g. dropping the database tables of an individual CityGML ADE can be directly 
derived from the database schema which hence become to be dynamically manageable for 
handling multiple CityGML ADEs within the one database instance.   

4 Automatic derivation of relational database schemas for CityGML 
ADEs using a Graph Transformation System 

4.1 General concepts 

Concerning the fact that domain-specific data models of CityGML ADEs may define arbitrarily 
complex data structures within their XML schema definition files, one of the key challenges 
regarding the use of the database structure presented in the previous section is to find a way to 
automatically derive efficient database schemas. Whereas the XML schema of a CityGML ADE 
natively represents an object-oriented data structure, the target database schema has a relational 
table structure which should result from a corresponding model transformation process to perform 
the mapping of an object-oriented model (input model) to a relational database model (output 
model). For this, both the input and output models have to be mapped onto some computer-
interpretable representations such that the model transformation process can be automatically 
carried out by applying a set of predefined mapping rules within a computer-aided transformation 
engine. A couple of commercial and open-source software systems like Go Loader (SNOWFLAKE 
2016) and Deegree (DEEGREE 2016) etc. have been developed for this problem which are capable 
of reading and parsing GML-compliant application schemas and automatically generating the 
desired relational database schemas for different types of modern database management systems 
such as Oracle and PostgreSQL/PostGIS.  

 
Fig. 4: General approach for deriving relational database schemas based on model transformation  

However, these software systems are usually limited in performing such model transformation 
processes by following a number of simple and rigid mapping rules, i.e. each GML class or 
complex data type is mapped onto one individual database table, and an association between two 
GML classes is represented using an associative database table connecting with the database tables 
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of the respective GML classes. Such kinds of mapping rules can easily result in a large amount of 
database tables and will, therefore, lead to time-consuming data retrieval processes when, for 
example, performing a complex query on those data contents that are distributed over many 
database tables, because a large number of database joins are required which have a significant 
negative impact on the overall database performance. This issue has been taken into account by 
the software system “Go Loader” which provides a special optimization strategy that maps 
multiple associated feature classes onto one database table in order to ensure that the overall 
number of the generated database tables will not exceed a given maximum number. However, this 
solution lacks the ability to treat some special cases in a special way and can only rigidly reduce 
the database complexity without concerning the semantic clarity. For example, in case two non-
abstract feature classes have an inheritance relationship and both are attached with different 
attribute properties, each feature class shall be mapped to an individual database table rather than 
a shared one, because such separated table representation is not only space-efficient for the 
database but also has much more clear class affiliation to facilitate the data access to the respective 
database tables for ETL software tools.   
In order to achieve a good trade-off between database complexity and semantic clarity, the design 
decisions applied during the manual development of the 3DCityDB database schema must be 
captured and abstracted to a set of mapping rules which will be adopted in the generation process 
of relational database schemas for CityGML ADEs. The general idea of this design decision is that 
a group of classes with particular characteristics shall be first simplified into an optimal model 
structure which can be transformed to a relational database model with a simple mapping step (cf. 
STADLER et al. 2009). However, such design decision process strongly relies on many manual 
operations, because the class groups usually have varying characteristics and complex structures 
which are hardly formalized as programming code implemented in traditional software systems 
for performing automatic operations. Moreover, the mapping process can become even more 
complicated due to the possible iterative procedures in case that the simplified class groups need 
to be again further optimized if they satisfy some further simplification criteria. Concerning the 
above-mentioned issues, a novel approach is needed to overcome the above-mentioned issues with 
the help of an appropriate formalism to represent the source and target models as well as their 
mapping rules.   

4.2 Mathematical background and conceptual solution 

Since both the object-oriented model and the relational database model intrinsically have a graph 
structure, the semantic meanings and mapping relationships of both models can be represented 
using a special kind of graph whose nodes and edges shall be assigned with types and attributes. 
With such graph, the model transformation can be adequately abstracted as an algebraic graph 
transformation comprising a series of user-defined graph transformation rules ሼݎଵ, ,ଶݎ … ,  ௡ሽ thatݎ
can be used to declaratively describe the model transformation rules and be successively applied 
using a graph transformation system (or graph rewriting system) for typed and attributed graphs. 
According to the fundamental theory of this system (EHRIG et al. 2004), each graph transformation 
rule is equivalent to a match morphism in the form of :ݎ	ܮ → ܴ where ܮ is called left-hand side 
(LHS) graph, whereas ܴ is called right-hand side (RHS) graph. The LHS graph can be seen as a 
match pattern which could be algebraically isomorphic to one of those graphs ሼܩଵ

ᇱ, ଶܩ
ᇱ , … , ௡ᇱܩ ሽ 
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that are a subset of the given host graph	ܩௌ, where ܮ	 ≅ ௫ᇱܩ	  and	ሼܩଵ
ᇱ , ଶܩ

ᇱ , … , ௡ᇱܩ ሽ ⊆  ௌ. Perܩ	
default, the given transformation rules are ordered randomly by the graph transformation system 
and each will be selected and checked against the host graph ܩௌ. Alternatively, the processing 
sequence can also be scheduled by grouping them into a set of layers sorted in descending order 
according to the user-defined priorities and as such will be processed successively. When a graph 
transformation rule is being processed and if a match of the LHS has been found in the host graph, 
this graph transformation rule will be interpreted as being applicable and the matched subgraph 
will be substituted by the RHS immediately. In the subsequent operation, the modified host graph 
 ௜ will in turn be treated as the input for the next transformation step and the entire graphܩ
transformation process will hence be carried out within an iterative procedure which will be 
terminated until no further applicable transformation rule can be found. In the last step, and the 
latest state of the host graph	்ܩ will be treated as the final result of the graph transformation 
process (cf. Fig. 5). 

 

Fig. 5: General process chain in graph transformation systems (cf. TAENTZER et al. 2006) 

In addition, a transformation rule can be further constrained by defining additional conditions 
which are generally categorized into two types: the attribute-based prerequisite condition called 
Positive Application Condition (PAC) and the graph-based prohibitive condition called Negative 
Application Condition (NAC). The PACs are combined with the logical operator “AND” and thus 
a graph transformation rule will only be triggered when all its PACs are fulfilled. In the contrary, 
the NACs use the logical operator “OR” and make a transformation rule not to be applicable if one 
of the NACs is satisfied. Therefore, the proper use of PACs and NACs offers a variety of 
possibilities for specifying a graph transformation rule being subject to different kinds of 
application conditions. For instance, in practical applications, there is a frequently applied NAC 
which is algebraically identical with the RHS of the respective transformation rule and can be used 
for avoiding the unexpected infinite loop of running the same graph transformation rule. Moreover, 
the graph transformation system supports the declaration of types for graph objects (e.g. nodes and 
edges) and also the definition of an abstracted meta-graph (or called type graph) ܶ (cf. Fig. 5) 
which has a similar fashion compared to the UML meta-model in model-driven engineering and 
can serve as a global constraint on the declared node and edge types by prescribing the structural 
relationships among them, i.e. the associations and inheritance hierarchies between node types, the 
multiplicities and role names of the edges etc. Due to its rich semantic structure the meta-graph is 
well capable of formally describing the meta-models of the object-oriented models according to 
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the ISO 19100 standard family as well as the underlying conceptual models of the relational 
database models along with the model mapping structures. In the following figure, an excerpt of 
our developed meta-graph is depicted in which the yellow nodes represent elements of the object-
oriented (source) schema and the green nodes represent elements of the relational (target) database 
schema. Based on this graph representation, a model-driven framework can be established for the 
automatic derivation of a relational database schema from a GML application schema using graph 
transformation systems.  

 

Fig. 6: An excerpt of the meta-graph for representing the conceptual model mapping structure 

The yellow nodes together with the associated edges among them constitute a meta-subgraph for 
representing the structural information (e.g. associations and inheritance relationships) of those 
classes that are transitively derived from the GML class “FeatureType”. The definition of this 
subgraph follows the XML encodings defined in the GML specification (ISO 19136) in accordance 
with the conceptual models of the ISO 19109 General Feature Model (GFM). First, the inheritance 
relationship is represented by means of the node type Extension being connected with the edge 
types contains and baseType both of which are connected with the node type FeatureType. This 
graph structure is adopted from the syntax of the extension mechanism of XML schema according 
to which a subclass defined as a XML <complexType> shall enclose an <extension> XML element 
having a reference to the respective super class. Second, the association such as aggregation and 
composition between two feature classes can be explicitly mapped onto a node with the type 
FeatureProperty which links the node type FeatureType via the edge types contains and 
targetType. This graph representation follows the so-called “feature-property-feature” encoding 
structure where an aggregate class represented as an XML element can contain a child element 
acting as a “property” element which shall have a reference to the member class in order to 
establish the class association.  
The green nodes and their associated edges are meant to be used for semantically representing the 
meta-model of the relational database schema especially regarding the relations between database 
tables. In general, a database table shall have only one primary key acting as a unique record 
identifier which can be made up of one or more columns known as “primary key columns”. In 
order to establish a connection between two database tables, one of them should have a special 
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column called “foreign key column” pointing to a primary key column in another one by defining 
a so-called “foreign key constraint”. It is also allowed to define multiple foreign key constraints 
on different columns to link with the one primary key column within the same table. Based on this 
conceptual database structure, a corresponding graph representation is designed in the following 
way: A node type Table representing the database table is created and connected with the node 
types PrimaryKeyColumn and ForeignKeyColumn to reflect the ownership using the edge type 
contains. The foreign key constraint is explicitly represented using the node type Join which links 
the ForeignKeyColumn with the PrimaryKeyColumn using the edge type joinFrom and joinTo 
respectively.  
Concerning the conceptual models of the mapping relationships between object-oriented models 
and relational database models, the edges with the type mapsTo are utilized to link the 
corresponding entities of both models according to our following mapping principles: 

 A feature class shall be mapped onto a database table which also allows to be shared by 
multiple feature classes if they have inheritance relationships among them. 

 In case that two feature classes with inheritance relationship are mapped onto one database 
table, the inheritance relationship should also be mapped onto this database table. For other 
cases, an additional foreign key constraint shall be used for the representing the inheritance 
relationship. 

 The association between two feature classes shall be always mapped onto a foreign key 
constraint. 

Above, a variety of graph transformation rules can be flexibly designed by developers in a 
declarative way. In total, we have defined 11 of these rules to cover all occurring mappings. For 
the illustrative purpose, we have chosen a representative graph transformation rule realizing a 
relatively complex model transformation whose underlying idea is shown in the following figure. 

 

Fig. 7: General idea for the mapping of an object-oriented model with the composite pattern onto an 
efficient relational database model 

The objected-oriented data model sketched on the left of the figure builds a recursively composite 
data structure according to the design pattern “Composite Pattern” (cf. GAMMA et al. 1995). The 
target database structure on the right side was originally introduced in the 3DCityDB 
documentation (KOLBE et al. 2016) and has been successfully implemented for the 3DCityDB 
database schema to perform fast and efficient queries on composite geospatial data stored in 
relational databases. The key idea of this database design is, on the one hand, to utilize one database 
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table for the mapping of all the involved feature classes along with their inheritance relationships. 
On the other hand, a foreign key column PARENT_ID is used for representing the composition 
relationship. Additionally, this database table receives a foreign key column ROOT_ID which 
holds the ID of the root element of each composite hierarchy and hence allows for fast retrieving 
of all its child elements by querying on the attribute ROOT_ID in order to avoid time-costly 
recursive database joins. More details about the corresponding database implementation can be 
found in the technical documentation of 3DCityDB. The following figure gives an overview of 
how the presented mapping concept is formulated as a graph transformation rule with respect to 
the meta-graph illustrated in figure 6. The LHS graph shown on the left of figure 8 stands for the 
object-oriented model, whereas the RHS graph receives a copy of the LHS graph in addition with 
a set of new nodes and edges which represent the target database model and the explicit mapping 
information between the entities of both models. Moreover, this graph transformation rule can be 
additionally equipped with a NAC being structurally identical with the RHS in order to ensure that 
this transformation process will be executed only one time.      

 
Fig. 8: Graph transformation rule in accordance with the mapping concept illustrated in Fig. 7 

4.3 Prototypical implementation  

This section introduces a converter tool which was implemented based on the presented conceptual 
solution presented in the previous sections regarding the automatic derivation of a 3DCityDB 
compliant relational database schema from the GML application schema of a CityGML ADE. This 
converter tool is as a stand-alone Java application which employs the AGG graph transformation 
system (TAENTZER et al. 2003) for performing the dedicated graph transformation process. For test 
purposes, a number of existing valid CityGML ADEs such as Energy ADE (NOUVEL et al. 2015), 
UtilityNetwork ADE (KUTZNER & KOLBE 2016), and Dynamizer ADE (CHATURVEDI & KOLBE 
2016) have been used for automatically deriving their corresponding relational database schemas. 
These schemas are given as SQL scripts. When they are executed, new tables according to the 
CityGML ADEs are being created in the 3DCityDB. The tables extend to the latest version (3.3.0) 
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of the 3DCityDB database schema and the SQL scripts are online available from a web-based 
GitHub repository2. The following figure gives an overview of the entire process chain of this 
converter tool which is logically decomposed into three parts and each is explained in detail in the 
following paragraph.   

 
Fig. 9: Model Transformation using Graph Transformation System 

In the first processing step, the XML schema definition (XSD) file of the input CityGML ADE is 
read into the converter tool using the Java library XSOM for reading and retrieving the underlying 
structural and semantic information from the XML elements. Subsequently, the parsed information 
is internally mapped onto Java objects forming an AGG-compliant graph representation of the 
object-oriented data model. In the next step, the created AGG graph will be used as the input graph 
for the AGG engine in order to apply the predefined graph transformation rules for performing the 
desired graph transformation process according to the mapping rules employed during the 
development of the 3DCityDB relational database schema. These graph transformation rules along 
with their supervisory meta-graph can be easily created by means of the graphical editor program 
delivered together with the AGG engine which allows for interactively defining and drawing the 
graph structures and saving them in XML format which can be reused by other AGG engines 
running on different platforms. After having completed the transformation process, the input graph 
together with the newly created nodes and edges will form the output graph representing the 
information of the object-oriented model and the derived relational database model as well as the 
mapping information between both modes. In the last step, the output graph will be resolved by 
the converter tool retrieving the target relational database schema which is then written to an SQL 

                                                 
2 https://github.com/yaozhihang/3DCityDB-Extensions-for-CityGML-ADEs 
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document for a chosen database system like Oracle or PostgreSQL/PostGIS. Additionally, the 
mapping information can also be derived from the output graph in the form of an XML-based 
mapping schema that is used to facilitate the automatic data transformation between CityGML 
ADE instance documents and database systems via the standardized open interface WFS for web-
based data access. 

5 Conclusions and outlook 

The 3D city models which are using CityGML together with its extension mechanism Application 
Domain Extension (ADE) are nowadays being broadly used as a common information hub for 
representing the most relevant urban objects along with their diverse graphical, topological, as well 
as semantic properties. As cities are highly complex systems in general whose underlying domain-
specific information are usually very large in size and often also have complex data structures, the 
high-performance storage and management of such kinds of data information are usually required 
for a variety of simulations and analyses in the field of 3D GIS and pose a challenge to many 
researchers and software developers. The key intention of the presented work is to find and explore 
a new approach to dynamically extend the spatially-enhanced relational database management 
systems (SRDBMS) for efficiently handling the geospatial data elements of arbitrary CityGML 
ADEs. 
A dynamically extendable database structure was first proposed which was designed based on the 
extension of the open source 3DCityDB database schema to provide an integrative database 
platform for handling multiple CityGML ADEs at the same time. Second, the automatic derivation 
of relational database schemas from the XML schema definition (XSD) files of CityGML ADEs 
was expressed as a special kind of model transformation process, in which the logical mapping 
rules between object-oriented models and relational database models were declaratively described 
as a set of user-defined graph transformation rules which can be carried out within a graph 
transformation system. Finally, based on the introduced conceptual solution, a Java-based desktop 
application has been developed to technically implement the automatic procedures ranging from 
the parsing and creation of a graph representation of the input CityGML ADE application schema 
via the execution of the dedicated graph transformation process up to the derivation of the target 
relational database schema in SQL format together with the respective mapping schema in terms 
of XML structure.  
Future work will focus on the continuing development of the presented converter tool by 
improving and refining the existing graph transformation rules or adding new ones for 
automatically generating more compact and efficient relational database schemas. It is also 
planned to include this converter tool as well as the proposed extendable database structure into a 
future release of the 3DCityDB to provide the basis for handling arbitrary CityGML ADEs. For 
the practical use of this database solution, numerous challenging tasks are raised, including e.g. 
the development of a generic data access tool for interacting with the dynamically created database 
schema, since the current version of the 3DCityDB import/export tool doesn't support for reading 
and writing data elements of CityGML ADEs and hence must be conceptually as well as 
functionally extended. Moreover, an enhanced version of the WebGL-based 3D web client (Yao 
et al. 2016) being part of the 3DCityDB software package will be developed for the interactive 3D 
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visualization and exploration of spatial and thematic information of any CityGML ADEs on the 
web. In summary, our long-term development goal is to make the 3DCityDB software package to 
be an extensive open-source application platform with full support for the interoperable 
management, access, analysis, and visualization of domain-extendable 3D city models according 
to the CityGML standard.  
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