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Involving Different Neighborhood Types for the Analysis 
of Low-level Geometric 2D and 3D Features 

and their Relevance for Point Cloud Classification 

MARTIN WEINMANN1, CLÉMENT MALLET2 & BORIS JUTZI1 

Abstract: In this paper, we address the automatic interpretation of 3D point cloud data in 
terms of associating a (semantic) class label to each 3D point. In particular, we aim at 
analyzing the behavior of standard handcrafted low-level geometric 2D and 3D features for 
different neighborhood types. For this purpose, we present a framework that considers four 
neighborhood definitions as the basis for calculating a set of 18 low-level geometric 2D and 
3D features which, in turn, are provided as input to three classifiers relying on different 
learning principles. We demonstrate the performance of our framework on a benchmark 
dataset for which a labeling with respect to three structural classes (linear, planar and 
volumetric structures) as well as a labeling with respect to five semantic classes (wire, 
pole/trunk, façade, ground and vegetation) is available. The derived results clearly reveal 
that the suitability of the considered neighborhood types and thus the relevance of 
respectively extracted features with respect to the classification task varies significantly.  
 

1 Introduction 

The automatic analysis of 3D point cloud data is a topic of major interest in photogrammetry, 
remote sensing, computer vision and robotics. Among a variety of tasks, attention has been paid 
in particular to 3D point cloud classification, where the objective consists in automatically 
labeling the given 3D points with respect to pre-defined classes. Thereby, the main challenges 
are represented by the irregular point sampling, very different types of objects, the typically high 
complexity of observed scenes and the high computational burden arising from the consideration 
of large 3D point clouds in combination with a rich diversity of available features. 
Many investigations on 3D point cloud classification rely on the use of geometric features and, 
consequently, a respective processing pipeline typically involves (1) the recovery of a local 
neighborhood for each point of the 3D point cloud, (2) the extraction of geometric features via a 
consideration of the spatial arrangement of all points inside the local neighborhood and (3) a 
supervised classification via a classifier trained on representative training data. Accordingly, the 
quality of derived classification results relies on the selected neighborhood definition, the 
extracted features and the involved classifier. 
In this paper, we focus on analyzing the behavior of standard handcrafted low-level geometric 
2D and 3D features for different neighborhood types. For this purpose, we consider four 
neighborhood definitions as the basis for feature extraction: (1) a cylindrical neighborhood with 
a fixed radius of 1m, (2) a spherical neighborhood with a fixed radius of 1m, (3) a spherical 
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neighborhood formed by the ݇ ൌ 50 nearest neighbors, and (4) a spherical neighborhood formed 
by the ݇opt nearest neighbors whereby the optimal scale parameter ݇opt is selected for each 3D 
point individually via eigenentropy-based scale selection (WEINMANN et al. 2015a). Based on 
these neighborhoods, we calculate a set of 18 low-level geometric 2D and 3D features and, 
subsequently, we evaluate their relevance for the classification task. For this purpose, we present 
classification results achieved for three classifiers relying on different learning principles 
(instance-based learning, probabilistic learning and ensemble learning) and for different 
classification tasks. By involving a benchmark dataset for which a labeling with respect to three 
structural classes (linear structures, planar structures and volumetric structures) as well as a 
labeling with respect to five semantic classes (wire, pole/trunk, façade, ground and vegetation) is 
available as shown in Fig. 1, we demonstrate that the relevance of extracted features with respect 
to a classification task may significantly vary depending on the selected neighborhood type. 
 

          
Fig. 1: Benchmark dataset with a reference labeling with respect to three structural classes (left), which 

indicate linear structures (red), planar structures (gray) and volumetric structures (green), and 
with a reference labeling with respect to five semantic classes (right), which are represented by 
wire (blue), pole/trunk (red), façade (gray), ground (brown) and vegetation (green). 

 
This paper represents an extension of our previous work (WEINMANN et al. 2015a), where we 
presented a framework for semantic 3D point cloud interpretation based on optimal 
neighborhoods, relevant features and efficient classifiers. From this framework, we make use of 
(1) the eigenentropy-based scale selection in order to recover the optimal scale parameter ݇opt for 
each 3D point individually and (2) the extraction of a set of 18 low-level geometric 2D and 3D 
features. In addition, we now consider further neighborhood types as a basis for extracting the 
same set of handcrafted features, and we evaluate their relevance with respect to two different 
classification tasks. Thus, our contribution consists of an extended framework which involves 
 

 the recovery of local neighborhoods based on conceptually different neighborhood types, 
 the extraction of low-level geometric 2D and 3D features on the basis of different 

neighborhood types, and 
 a classification via standard classifiers relying on different learning principles. 
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After briefly summarizing related work (Section 2), we proceed with describing the proposed 
framework in detail (Section 3). Subsequently, we present the results derived for a benchmark 
dataset (Section 4), whereby we focus on both the behavior of geometric features for different 
neighborhood types and the classification results derived for two different classification tasks. 
Finally, we provide concluding remarks and suggestions for future work (Section 5). 

2 Related Work 

The semantic classification of 3D point cloud data typically relies on the use of geometric 
features. The extraction of such geometric features often exploits characteristics of the local 3D 
structure, i.e. local neighborhoods have to be recovered (Section 2.1). On the basis of the 3D 
points within the recovered local neighborhoods, a variety of geometric features can be 
calculated (Section 2.2). These features are then provided as input to the classifier that is trained 
on representative training data (Section 2.3). 

2.1 Neighborhood Recovery  

In general, there are very different strategies for recovering local neighborhoods for the points of 
a 3D point cloud. Among the most commonly used neighborhood types, one can find spherical 
neighborhoods parameterized by a radius (LEE & SCHENK 2002), cylindrical neighborhoods 
parameterized by a radius (FILIN & PFEIFER 2005), spherical neighborhoods parameterized by the 
number of nearest neighbors with respect to the Euclidean distance in 3D space (LINSEN & 

PRAUTZSCH 2001) and cylindrical neighborhoods parameterized by the number of nearest 
neighbors with respect to the Euclidean distance in 2D space (NIEMEYER et al. 2014). However, 
all these neighborhood types rely on a scale parameter which is represented by either a radius or 
the number of nearest neighbors. To define this scale parameter, prior knowledge about the scene 
and/or the data is typically involved. Furthermore, the same value of the scale parameter is 
commonly selected for all points of the 3D point cloud. To allow for more variability and thus 
account for the fact that structures of different classes might favor a different neighborhood size, 
data-driven approaches for optimal neighborhood size selection have been presented (MITRA & 

NGUYEN 2003; LALONDE et al. 2005; DEMANTKÉ et al. 2011; WEINMANN et al. 2015a). 
Instead of describing the local 3D structure at a specific scale, it is possible to describe the local 
3D structure at different scales and thus also how the local 3D geometry behaves across scales. 
Respective approaches for instance focus on the combination of multiple spherical 
neighborhoods with different radii (BRODU & LAGUE 2012) or the combination of multiple 
cylindrical neighborhoods with different radii (NIEMEYER et al. 2014; SCHMIDT et al. 2014). The 
combination of different entities such as voxels, blocks and pillars results in multi-type 
neighborhoods (HU et al. 2013) and the use of multi-scale, multi-type neighborhoods in the form 
of a combination of both spherical and cylindrical neighborhoods with different scale parameter 
has been proposed in (BLOMLEY et al. 2016). 

2.2 Feature Extraction  

Based on the recovered local neighborhoods, a variety of geometric features can be calculated. 
Among these, the eigenvalues of the 3D structure tensor (JUTZI & GROSS 2009) are often used to 
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derive the local 3D shape features presented in (WEST et al. 2004; PAULY et al. 2003) which are 
widely used for classifying 3D point cloud data. To address further characteristics of the given 
3D point cloud data, it has been proposed to additionally extract features based on angular 
characteristics (MUNOZ et al. 2009), height and plane characteristics (MALLET et al. 2011), a 
variety of low-level geometric 3D and 2D features (WEINMANN et al. 2015a), moments and 
height features (HACKEL et al. 2016), or specific descriptors addressing surface properties, slope, 
height characteristics, vertical profiles and 2D projections (GUO et al. 2015). 

2.3 Classification  

The calculated features are provided as input to the classifier which may rely on different 
strategies.  On the one hand, it is possible to involve standard classifiers such as a Random 
Forest classifier (CHEHATA et al. 2009) or a Support Vector Machine classifier (MALLET et al. 
2011). A comprehensive comparison of a variety of standard classifiers relying on different 
learning principles is presented in (WEINMANN et al. 2015a) and reveals that a Random Forest 
classifier provides a good trade-off between classification accuracy and computational 
efficiency. On the other hand, it is possible to take into account that the derived labeling should 
be spatially regular which can be enforced via statistical models of context such as Associative 
Markov Networks (MUNOZ et al. 2009), non-Associative Markov Networks (SHAPOVALOV et al. 
2010), or Conditional Random Fields (NIEMEYER et al. 2014; WEINMANN et al. 2015b). 

3 Methodology 

In the scope of this paper, we focus on a framework for point cloud classification, which allows 
statements about the suitability of involved neighborhood types and the relevance of respectively 
extracted features with respect to the considered classification task. This framework is illustrated 
in Fig. 2 and consists of three components addressing neighborhood recovery (Section 3.1), 
feature extraction (Section 3.2) and classification (Section 3.3). 
 

 
Fig. 2: The proposed framework for point cloud classification with four options for neighborhood 

recovery, four types of low-level geometric features and three options for supervised 
classification (NN: Nearest Neighbor; LDA: Linear Discriminant Analysis; RF: Random Forest). 
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3.1 Neighborhood Recovery 

As geometric features describing a point ܆଴ are typically derived by considering the local 
surrounding of ܆଴, a crucial prerequisite for calculating geometric features consists in the choice 
of an appropriate neighborhood definition. We therefore include four different neighborhood 
definitions in our framework: 
 

 a spherical neighborhood ௦ܰ,ଵm, where a sphere is centered at ܆଴ and has a radius of 1m, 
 a cylindrical neighborhood ௖ܰ,ଵm, where a cylinder is centered at ܆଴, has a radius of 1m 

and is oriented along the vertical direction, 
 a spherical neighborhood ௞ܰୀହ଴ comprising the ݇ ൌ 50 nearest neighbors of ܆଴ with 

respect to the Euclidean distance in 3D space, and 
 a spherical neighborhood ௞ܰ,opt comprising the optimal number ݇opt of nearest neighbors 

of ܆଴ with respect to the Euclidean distance in 3D space, whereby ݇opt is selected for 
each point individually via eigenentropy-based scale selection (WEINMANN et al. 2015a). 

3.2 Feature Extraction  

Once a local neighborhood has been derived for each point ܆଴, the spatial arrangement of points 
within that local neighborhood can be described via geometric features. Here, we focus on the 
use of low-level geometric features that have been presented in (WEINMANN et al. 2015a). These 
features comprise the local 3D shape features of linearity, planarity, sphericity, omnivariance, 
anisotropy, eigenentropy, sum of eigenvalues and change of curvature (WEST et al. 2004; PAULY 

et al. 2003) that rely on the eigenvalues of the 3D structure tensor. In addition, features are 
defined based on geometric 3D properties that are represented by the height of ܆଴, the distance 
between ܆଴ and the farthest point in the local neighborhood, the local point density, the 
verticality, and the maximum difference as well as the standard deviation of the height values 
corresponding to those points within the local neighborhood (WEINMANN et al. 2015a). As the 
presence of different man-made objects can be assumed in urban scenes, some further features 
rely on a 2D projection of all points within the local neighborhood onto a horizontally oriented 
plane. Using the 2D projections, it is possible to define local 2D shape features in terms of the 
sum and the ratio of the eigenvalues of the 2D structure tensor (WEINMANN et al. 2015a), and 
geometric 2D properties are given by the distance between the projection of ܆଴ and the farthest 
point in the local 2D neighborhood and the local point density in 2D space. 

3.3 Supervised Classification  

For classification, we integrate three classifiers relying on different learning principles into our 
framework. This allows us to draw more general conclusions about the suitability of different 
neighborhood types and thus the relevance of respectively extracted features with respect to the 
classification task: 
 

(1) Nearest Neighbor (NN) classifier: 
This classifier relies on the principle of instance-based learning, where the induction is 
delayed to the prediction stage. Accordingly, there is no training stage. In the prediction 
stage, each feature vector belonging to a sample in the test set is compared to the feature 
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vectors corresponding to all samples in the training data and the class label associated 
with the most similar feature vector in the training data is selected. Due to the typically 
large number of required comparisons of feature vectors (here with respect to the 
Euclidean distance), the prediction stage is likely to cause a higher computational burden. 

(2) Linear Discriminant Analysis (LDA) classifier: 
This classifier relies on the principle of probabilistic learning. In the training stage, a 
multivariate Gaussian distribution is fitted to the training data, i.e. the parameters of a 
Gaussian distribution have to be estimated for each class, assuming that the instances of 
each class follow a Gaussian distribution in the feature space. Thereby, the LDA 
classifier involves the simplifying assumption that the same covariance matrix can be 
used for all classes so that only their means vary. In the prediction stage, it is evaluated 
with which probability each feature vector belonging to a sample in the test set is 
assigned to the different classes, and the class with the maximum probability is selected. 

(3) Random Forest (RF) classifier: 
This classifier relies on the principle of ensemble learning (BREIMAN 2001). In the 
training stage, the strategy of bagging (BREIMAN 1996) is applied to generate an 
ensemble of randomly trained decision trees. More specifically, different subsets of the 
training data are randomly drawn with replacement so that an individual decision tree can 
be trained for each subset. In the prediction stage, for each feature vector belonging to a 
sample in the test set, each of the randomly trained decision tree casts a vote for one of 
the defined classes and, typically, the majority vote is selected to obtain an appropriate 
prediction of the respective class label. 

4 Experimental Results 

In the following, we first present the involved benchmark dataset (Section 4.1). Subsequently, 
we focus on the behavior of geometric features for different neighborhood types and present the 
derived classification results (Section 4.2). Finally, we discuss the derived results with respect to 
different aspects (Section 4.3). 

4.1 Dataset 

We evaluate the performance of our framework on the Oakland 3D Point Cloud Dataset 
(MUNOZ et al. 2009), a widely used benchmark dataset acquired with a mobile laser scanning 
system in the vicinity of the CMU campus in Oakland, USA. The dataset is split into a training 
set comprising about 36.9k points, a validation set comprising about 91.5k points and a test set 
comprising about 1.3M points. For each point, a reference labeling with respect to three 
structural classes (linear structures, planar structures and volumetric structures) is available as 
well as a reference labeling with respect to five semantic classes (wire, pole/trunk, façade, 
ground and vegetation) as shown in Fig. 1. To distinguish between both classification tasks, we 
refer to Oakland-3C and Oakland-5C, respectively.  
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4.2 Results 

First, we focus on the structural behavior of the low-level geometric features for the different 
neighborhood types. Thereby, we exemplarily consider the behavior of the three dimensionality 
features of linearity, planarity and sphericity which is illustrated in Fig. 3. It can be observed that 
the different neighborhood types have a significantly different impact on feature extraction.  
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Fig. 3: Behavior of the dimensionality features of linearity, planarity and sphericity for the considered 
scene: the color encoding indicates high values close to 1 in red and reaches via yellow, green, 
cyan and blue to violet for low values close to 0. 
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Fig. 4: Number of neighboring points for the different neighborhood types: the color encoding indicates 
neighborhoods with 10 or less points in red and reaches via yellow, green, cyan and blue to 
violet for 100 and more points. 

 
Additionally, we consider the number of neighbors within the local neighborhood which is 
visualized in Fig. 4. Due to their significantly different impact on feature extraction, it can be 
expected that the different neighborhood types might also significantly differ in their suitability 
with respect to the classification task. To verify this, we use the different neighborhood types as 
the basis for extracting the 18 low-level geometric 2D and 3D features which, in turn, are 
provided as input to three classifiers relying on different learning principles. In the training stage, 
we take into account that an unbalanced distribution of training examples per class might have a 
detrimental effect on the classification results (CRIMINISI & SHOTTON 2013) and hence use a 
reduced training set comprising 1000 training examples per class. In the prediction stage, we 
estimate the class labels for the validation set. For Oakland-3C, the derived classification results 
are provided in Tab. 1 and visualized in Fig. 5. The quantitative results reveal an overall 
accuracy in the range of about 67-94% and a ߢ-value in the range of about 28-76%. For 
Oakland-5C, the derived classification results are provided in Tab. 2 and visualized in Fig. 6. 
Here, the quantitative results reveal an overall accuracy in the range of about 68-96%, whereas 
the ߢ-value is in the range of about 49-90%. 

4.3 Discussion 

The derived results clearly reveal that the spherical and cylindrical neighborhood types 
parameterized by a radius result in local neighborhoods that comprise a larger number of 3D 
points, while the neighborhoods recovered via eigenentropy-based scale selection tend to be 
comparably small (Fig. 4). Furthermore, it can be observed that the selected cylindrical 
neighborhood type is not well-suited for classifying mobile laser scanning data as extracted 
features exhibit a rather non-intuitive behavior with seam effects (Fig. 3) and do hence not lead 
to appropriate classification results (Tab. 1, Tab. 2, Fig. 5 and Fig. 6). In contrast, the use of the 
other neighborhood types results in adequate classification results for almost all cases, with one 
exception for the combination of using locally optimal neighborhoods and a RF classifier. For 
that case, misclassifications mainly occur in regions of low point density (Fig. 5 and Fig. 6).  
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Tab. 1: Classification results obtained for Oakland-3C when using four different neighborhood types. 

Neighborhood Overall Accuracy [%]  ߢ [%]  

Type NN LDA RF NN LDA RF 

௦ܰ,ଵm 90.80 92.78 91.74 66.09 72.30 69.47 

௖ܰ,ଵm 84.00 78.29 82.26 50.57 41.55 48.30 

௞ܰୀହ଴ 92.41 91.27 92.52 70.49 67.60 71.39 

௞ܰ,opt 67.86 90.91 93.83 28.33 67.47 75.24 
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Fig. 5: The observed scene classified with respect to three structural classes which are represented by 
linear structures (red), planar structures (gray) and volumetric structures (green). 
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Tab. 2: Classification results obtained for Oakland-5C when using four different neighborhood types. 

Neighborhood Overall Accuracy [%]  ߢ [%]  

Type NN LDA RF NN LDA RF 

௦ܰ,ଵm 90.26 95.11 93.73 79.18 88.78 85.71 

௖ܰ,ଵm 85.22 86.73 85.89 70.01 72.68 71.18 

௞ܰୀହ଴ 91.09 95.28 95.36 80.61 89.06 89.26 

௞ܰ,opt 68.06 94.38 94.15 49.17 87.30 86.66 
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Fig. 6: The observed scene classified with respect to five semantic classes which are represented by 
wire (blue), pole/trunk (red), façade (gray), ground (brown) and vegetation (green). 
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In addition, it should be taken into account that the neighborhood types ௦ܰ,ଵm, ௖ܰ,ଵm and ௞ܰୀହ଴ 
rely on a scale parameter that is selected heuristically and kept identical for all points of the point 
cloud. For a 3D point cloud acquired with a different scanning device or within a different scene, 
the point sampling might exhibit different characteristics so that the selected scale parameters 
might not be that suitable anymore. In contrast, the neighborhood type ௞ܰ,opt allows a data-
driven selection of the scale parameter for each individual 3D point. Accordingly, it takes into 
account that different classes might favor a different neighborhood size. Furthermore, it better 
accounts for variations in point density (Fig. 5 and Fig. 6), particularly when using a LDA 
classifier or a RF classifier. 
Among the considered classifiers, the LDA classifier and the RF classifier yield results of similar 
quality and tend to outperform the NN classifier for almost all cases. Due to the simplifying 
assumptions made with the LDA classifier – which cannot be guaranteed for the acquired data –
using the RF classifier seems to be favorable. 
Consequently, we conclude that local neighborhoods selected via eigenentropy-based scale 
selection are to be preferred as the basis for feature extraction, as respectively extracted features 
allow deriving appropriate classification results when using a RF classifier which we consider as 
the favorable option for classification. 

5 Conclusions 

In this paper, we have considered different neighborhood types and analyzed the respective 
behavior of low-level geometric 2D and 3D features and their relevance for point cloud 
classification. We have presented a framework allowing for the use of four neighborhood types 
as the basis for extracting a set of 18 low-level geometric 2D and 3D features which, in turn, are 
provided as input to classification. For the latter, we involved classifiers relying on three 
different learning principles. The derived results for a benchmark dataset with two reference 
labelings indicate that the relevance of extracted features with respect to a classification task may 
significantly vary depending on the selected neighborhood type. While the selected cylindrical 
neighborhood type clearly reveals less suitability with respect to the classification task, 
particularly the neighborhood types relying on a number of nearest neighbors lead to appropriate 
classification results, especially for the stronger classifiers based on probabilistic and ensemble 
learning. 
In the scope of future work, it seems worth investigating the behavior of multi-scale 
neighborhoods in more detail. Thereby, the computational burden is typically significantly 
higher so that efficient approaches are required as for instance a recently proposed approach 
relying on a scale pyramid that is created by repeatedly downsampling a given 3D point cloud 
(HACKEL et al. 2016). Additionally, we plan to address the (partially) noisy behavior of the 
derived labeling. In this regard, we intend to use different approaches to impose spatial regularity 
on the classification results. A further aim consists in the transfer of the derived classification 
results to the level of single objects in the observed scene as a first step towards scene 
understanding. 
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