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Indoor Point Cloud Segmentation 
for Automatic Object Interpretation 

LAVINIA S. RUNCEANU1, SUSANNE BECKER1, NORBERT HAALA1 & DIETER FRITSCH1 

Summary: The paper presents an algorithm for the automatic segmentation of point clouds 
from low cost sensors for object interpretation in indoor environments. This algorithm is 
considering the possible noisy character of the 3D point clouds and is using an iterative 
RANSAC approach for the segmentation task. For evaluating the robustness, it is applied on 
two indoor datasets, acquired with the Google Tango tablet and with the NavVis M3 trolley. 
The realized evaluation reveals the potential of the two systems for delivering data suitable 
for automatically interpreting indoor structures.  
 

1 Introduction 

A large variety of systems and applications are offering mapping, localization and navigation 
services for outdoor environment. However, people spend most of their time indoor, where there 
is a lack in digital maps and where conventional GPS services do not work. Despite this need in 
indoor navigation applications, the developments in the field of augmented and virtual reality, 
including also game industry, and Building Information Modeling (BIM), are also requiring 
intelligent indoor models. In order to obtain the needed models, innovative equipment is required 
to replace the traditional systems, which are mostly expensive and sometimes inconvenient to use. 
Recently, a variety of systems, designed for this purpose, were made available on the market. In 
order to increase the mapping efficiency and in the same time to reduce the mapping costs, these 
systems integrate laser scanners, cameras and sometimes inertial measurement units. Also, they 
adapt their design to the indoor space, being built as a trolley or as a backpack (e.g. NavVis M3 
Trolley, Leica Pegasus). Another step further is made by the availability of devices integrating 
depth cameras, at a consumer-level. These platforms are using low cost sensors which made them 
affordable to the general public (e.g. Phab 2 Pro Phone, Google Tango Tablet, Microsoft Kinect). 
All this progress enables unexperienced users to contribute to the indoor mapping request, but in 
the same time this rises new challenges which need to be overcome. The acquired 3D data needs 
to be automatically interpreted in order to obtain the models for the aforementioned applications. 
For the automatic 3D data interpretation, segmentation is needed. Point cloud segmentation is a 
subject of research for many years, however point clouds coming from low cost sensors, rise new 
challenges for the segmentation and interpretation process, which are addressed by this work. 
The contributions of the paper are: 
 a robust algorithm for automatic extraction of wall structures in indoor scenarios;  
 analysis of the potential of different sensors to provide interpreted indoor structures with a 

data-based algorithm. 
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The paper is structured as follows: Section 2 provides an overview of the related work focused on 
the available indoor mapping systems and on the segmentation and reconstruction methods using 
point clouds. The used systems and the obtained indoor data are presented in section 3. The 
definition of the proposed interpretation algorithm is given in section 4. Section 5 gives an 
accuracy analysis of the input data, as well as of the automatically interpreted structures. 
Conclusions are given in section 6. 

2 Related Work  

The related work is presented separately considering the available indoor mapping systems and 
the point clouds reconstruction methods. 

2.1 Indoor mapping systems 

Being well suited for mapping textureless surfaces, often present in indoor environments, active 
systems are the most used for satisfying the indoor mapping request. Improvements in sensor 
design and technology as well as in the used algorithms have contributed to the large variety of 
systems used for 3D data collection today. A lot of research work is addressing the available data 
acquisition solutions for indoor modeling. However, in this paper, the focus is on the recent ones 
using Indoor Mobile Mapping Systems (IMMS) commercially available and low cost consumer-
grade range cameras will be mentioned here. 
Initially introduced as Zebedee by BOSSE et al. (2012), the ZEB1 from GeoSLAM (GEOSLAM 
2017) is composed of a 2D laser scanner, a low-cost IMU and two robotic systems springs. 
THOMSON et al. (2013) are comparing it and the iMS 3D from Viametris (VIAMETRIS IMS 3D 2017) 
with Terrestrial laser scanner (TLS) in terms of accuracy. Both IMMS systems delivered 
centimeter-accuracy, but the iMS 3D, composed of three 2D laser scanners and a Point Grey 
Ladybug spherical camera, proved to generate higher quality point clouds. BASSIER et al. (2015) 
investigated data acquisition techniques and workflows considering the transitory tendency from 
TLS to IMMS. Despite the previous mentioned systems, they considered also the M3 trolley from 
NavVis in their comparison. Another solution offered by Leica Geosystems is the integration of 
the needed mapping sensors in the Pegasus Backpack. KURIAN & MORIN (2016) used the 3D point 
cloud generated by it for developing a method of minimizing the computation cost and data storage 
for real-time mapping applications. Although range cameras were available for several years in 
the game industry, the research interest grew with the release of Microsoft Kinect (MSDN KINECT 
2017) in 2010. Being firstly based on structured light and later on time-of-flight (ToF) principle, 
the Microsoft Kinect became one of the most affordable device for 3D mapping. BÖHM (2014) 
includes it in his investigations, where he checked the performance of some structured light sensors 
in regard to accuracy and repeatability. Continuously improvement in the hardware and software 
made available low-cost range camera devices, aiming among others at indoor data acquisition, 
like it is the case of DPI-8 (DOTPRODUCT DPI-8 2017) and Google Tango tablet (WIKIPEDIA TANGO 
2017). The capabilities of the last mentioned one, Tango tablet, have been subject of research for 
indoor scanning by DIAKITÉ & ZLATANOVA (2016). 
Due to the indoor scene complexity and to sensors limitations (like battery life), normally the 
acquired data, is composed of multiple sessions (sometimes from different viewpoints), which 
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have to be aligned and geo-referenced, before other processing is performed. While there is the 
option to manually define the point correspondences and to apply an algorithm like Iterative 
Closest Point (ICP) (BESL & MCKAY 1992), this problem is mostly solved automatically with 
Simultaneous Localization and Mapping (SLAM) (LEONARD & DURRANT-WHYTE 1991) 
approaches. Each of the before mentioned systems are using a type of SLAM implementation for 
partially or totally solving the registration problem. Being commercial products, the used 
algorithm is not always good documented. However, some research works are addressing the 
SLAM problem specifically to the device, like: BOSSE et al. (2012) for Zebedee, NEWCOMBE et al. 
(2011) for Kinect, LASKAR et al. (2016) for Tango tablet. 

2.2 Segmentation and reconstruction methods using point clouds 

The resulted point clouds after the registration task are normally not used as an end product. They 
are usually modelled as surfaces and volumes with the use of a variety of reconstruction methods. 
A lot of research work was realized in this regard. However, most of it is making use of the 
Manhattan World constraints and it is dealing with high accurate data, coming from TLS. JEKE et 
al. (2009) are making use of the Manhattan World constraints and a graph structure for fitting 
cuboids to a point cloud, which are further merged to rooms and corridors. BUDRONI & BÖHM 
(2009) are performing a plane sweeping algorithm for identifying walls in a Manhattan World 
scenario. The approach used by VALERO et al. (2012) for wall segmentation is based on the work 
done by OKORN et al. (2010) and is finally delivering a boundary representation model. PREVITALI 
et al. (2014) are presenting an automatic reconstruction algorithm from TLS point clouds to 
semantically enriched models using terrestrial laser scanner data. BECKER et al. (2015) are 
proposing a grammar-based approach for automatic reconstructing 3D interiors from laser scanner 
point clouds. In his PhD thesis, KHOSRAVANI (2016) proposed an approach for obtaining 
topological correct indoor model from Kinect measurements. However, this solution is limited to 
small scale data (a room, a hallway, etc.), while we aim at reconstructing an entire floor. Also, part 
of the point clouds used within our investigations are less accurate than the point clouds provided 
by Kinect. Therefore, the algorithm from section 4 is proposed. 

3 Indoor Mapping Systems and Delivered Data 

In this work, two different systems, Google Tango tablet and NavVis M3 trolley, were used for 
the indoor mapping task. Their characteristics are presented in the followings. 

3.1 Google Tango tablet 

Being firstly introduced by Google in 2014, the Tango tablet (WIKIPEDIA TANGO 2017) is a 
development kit with 3D motion detection and depth measurement capabilities. Among sensors 
normally available for mobile devices, like accelerometer, gyroscope, GPS, etc., it also integrates 
a 3D depth sensor, composed by an infrared (IR) projector and IR sensor, and a wide-angle motion 
tracking camera (fisheye camera) (Fig. 1 (a)).  
The depth is perceived with the help of infrared structured light (FOFI et al. 2004), giving the device 
the possibility of measuring the distance to the surrounding objects in a range of 0.5 – 4 m, with 
approximately 1% accuracy. The resulted depth data can be obtained in form of a point cloud or a 
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textured mesh, its quality being directly influenced by the light source lighting the objects and by 
their reflectivity (GOOGLE TANGO 2016a).  
The device can track its own position and orientation in space (its pose) by making use of visual-
inertial odometry (LI & MOURIKIS 2012). Hence, the device’s pose combines the change in 
position, determined by tracking the features in the images from the motion tracking camera, and 
the rotation and acceleration changes, coming from the inertial motion sensors. However, this 
concept has limitations, over time the device poses being affected by drift (GOOGLE TANGO 
2016b). In order to reduce the aforementioned drift and to estimate the device’s position within 
the already measured areas, the device has area learning capabilities (GOOGLE TANGO 2017) which 
performs Simultaneous Localization and Mapping (THURN & LEONARD 2008). 
As a mobile device used for indoor scanning, the Tango tablet is very easy to handle and it gives 
to the user the flexibility of moving through the space, which a fixed scanner cannot offer. 
Nevertheless, it has limited resources which influence also the space extend which can be 
measured in a session. 

3.2 NavVis M3 trolley 

The M3 trolley is a 3D mapping solution, being released in 2014 by the company NavVis (NAVVIS 

M3 TROLLEY 2017). It integrates three Hokuyo UTM-30LX laser scanners, a HDR panoramic 
camera head composed of six cameras, an inertial measurement unit (IMU), WiFi sensors, a 
magnetometer and an on-board computer (Fig. 1 (b)). 
Despite the 3D point clouds, acquired in a range between 0.1 - 30 m, with an accuracy of 
approximately 3 cm, the M3 trolley delivers 360° panorama images with the possibility of virtually 
navigate through them afterwards. Also, these panorama images are used, during post-processing, 
to generate coloured point clouds, with different level of details up to 5 mm resolution (NAVVIS 

DEMO DATA 2017).  
During the data acquisition, quality maps, as 2D floor plans, are generated for each measurement 
session, by using a graph-SLAM algorithm (NAVVIS M3 TROLLEY 2017). This algorithm is based 
not only on the 2D laser input, but also on the panoramic images, IMU, WiFi and magnetic field 
measurements (BASSIER et al. 2015), and also enables the M3 trolley to centimeter-accurate 
estimate its position within the 2D map. This feature helps the user to be aware of the space still 
unmapped and to improve the data quality in terms of completeness. 
Even if the M3 trolley allows to maximum measure 45 minutes in a session, its 1.98 m height 
together with the normally low-height of the door openings is forcing the operator to pass it from 
room to room in compact form, which implies the need of a new calibration for the IMU sensors 
and so the start of a new session. Target points, previously set up, before the measurement took 
place, are called anchor points and are considered to be constrains for the SLAM back-end 
approach (GRISETTI et al 2010), enabling, in post-processing, the 2D maps optimization and the 
automatic registration of the point clouds. For each measurement session at least 2 anchor points 
have been used. Being designed especially for indoor scanning, the NavVis M3 trolley, together 
with the embedded algorithms, succeeded to exceed classical fixed scanner solutions in terms of 
efficiency and flexibility. However, it may not be such a suitable solution for staircases, very 
narrow spaces, or with very low ceiling, due to its construction. 
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Fig. 1: (a) Google Tango tablet; (b) NavVis M3 trolley 

4 Our Algorithm for 3D Indoor Interpretation 

The goal of our approach is to automatically interpret 3D indoor point clouds.  We decided to work 
with point clouds instead of meshes (which also implies the normal computation), in order to have 
a flexible algorithm, usable for a variety of indoor mapping systems, which usually deliver point 
clouds as a raw data. Therefore, the proposed algorithm consists of: (1) a 3D data pre-processing 
step and (2) a segmentation and semantic interpretation step. For enabling comparison between 
different measurement systems, the input data consists of point clouds of the same floor of one 
office building. In order to describe the algorithm, an indoor dataset acquired with Google Tango 
tablet is considered.  

4.1 3D data pre-processing 

The pre-processing step is preparing the 3D data for the segmentation. The floor and the ceiling 
are firstly removed by applying a height filtering. Considering that the errors coming with the data, 
acquired with low cost sensors, are strongly influencing the later processing, a sparse outlier 
removal algorithm is applied. This algorithm is considering for every point the mean distances to 
݇ -nearest neighbours (in our case ݇ ൌ 20) and is computing their mean ߤ and standard deviation	ߪ. 
All the points having the mean distance outside the interval ߤ േ ߙ ∙  are considered outliers. The	ߪ
standard deviation multiplier threshold is set to be	ߙ ൌ 1 after multiple experiments which proved 
its applicability. Fig. 2 (a) and (b) are showing the effect of applying the outlier filtering. For 
making the further process more efficient, a downsampling method based on octree voxel grid 
filtering, is used. This filtering is replacing all the points bounded by one voxel with the 
corresponding centroid. The selected size for the voxel grid was chosen to be 5 cm, considering 
the overall noise of the point cloud. This way, the size of the point cloud is reduced with a factor 

RGB-IR camera   Flash   Fisheye camera   IR projector
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of 5. Some data irregularities are eliminated with the help of a resampling algorithm, which implies 
a Moving Least Squares surface reconstruction method, firstly introduced by LANCASTER & 

SALKAUSKAS (1981). This method smooths and recreates the missing parts of a point cloud by 
using a higher order polynomial interpolation between the neighbouring points. Through this, part 
of the registration errors is eliminated and also the curvature of flat surfaces is reduced by local 
plane fitting, like Fig. 2 (c) and (d) are showing.  
The 3D data pre-processing was implemented in C++ using the Point Cloud Library (PCL) (RUSU 

& COUSINS 2011). 

                      

 (a)                                           (b)                                 (c)                      (d) 

Fig. 2: (a) Original point cloud; (b) After sparse outlier removal; (c) Point cloud curvature after 
downsampling; (d) Point cloud curvature after Moving Least Square surface reconstruction [m] 

4.2 Segmentation and semantic interpretation  

Interpreting the 3D data semantically implies to distinguish between a large variety of indoor 
objects, such as walls, chairs, tables, cupboards, etc., and for this reason different algorithms are 
normally used, adapted to the object to be detected.  
In this current work and as a first step in modelling the 3D interior, walls are aimed to be detected. 
Therefore, similar to KHOSRAVANI (2016), the 3D points are filtered in a height range in order to 
remove the furniture and to obtain the wall structure. The height thresholds should be selected 
according to the typical height of the furniture, which is in our case less than 1.7 m, and the ceiling 
decorations, which are approximately 0.5 m under the ceiling. Therefore the 3D points between 
1.7 – 2.3 m were considered for further investigations. This filtering can be iteratively applied, for 
semantically interpreting different objects. After the walls are detected, the corresponding 3D 
points should be removed from the dataset and a new filtering range should be applied according 
to the new object aimed to be detected. For example, in a range of 0.5 m down from the previous 
maximum (2.3 m in this case) tall cupboards and bookshelves can be detected. 

 [m] 
0.0 -  

0.04 -  

0.12 -  

0.25 -  

0.33 -  

0.08 -  

0.19 -  
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After the filtering, the points extracted in a height range between 1.7 m and 2.3 m are clustered by 
applying a model-based segmentation algorithm. We propose an iterative RANSAC method, 
which detects 3D lines describing the walls (see Fig. 3). The lines are then passed through a 
clipping and filtering process in order to retain only the line segments describing the reality. This 
is realized by following steps: 
 Step 1: The filtered 3D point cloud and the 3D lines are transformed into a 2D map grid and 

2D lines, respectively, by projecting them onto a horizontal plane, parallel with the floor. Each 
cell value represents the number of points falling into that cell. The grid cell dimensions are 
established according to the point sampling distance and the accuracy conditions. 

 Step 2: Each projected 2D line is segmented by checking the corresponding grid values, in 
order to detect possible line breaks (segments of lines, which are not overlapping 3D point 
regions) and to save the continuous ones (Fig. 4 (a)). It is considered that the data may have 
interruptions, due to occlusions or low-reflectance surfaces, and for this reason, the continuous 
segments are accepted to have discontinuities less than 0.5 m. 

 Step 3: The resulted segments are filtered by removing the ones smaller than 1 m resulted from 
the clipping process, as it can be seen in Fig. 4 (b). 

 Step 4: The remaining segments are clustered according to their orientation and distance to the 
other segments (Fig. 4 (c)). 

 Step 5: One line segment is fitted for each cluster in order to have the individual walls 
represented by individual line segments, like it is shown in Fig. 4 (d). 

 Step 6: In order to divide the indoor space into rooms, the wall segments are intersected with 
the neighbouring ones and according to the specific situations they are extended or trimmed 
(Fig. 4 (e)). 

 

Fig. 3: 2D projection of the 3D point cloud (blue points) and the 3D lines resulting from the iterative 
RANSAC 
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        (a)                          (b)                          (c)                           (d)                        (e)          

Fig. 4: Line clipping and filtering process for obtaining the wall segments (random colours are 
associated to different lines): (a) line segmentation; (b) filtering small segments; (c) segment 
clusters; (d) line fitting; (e) segment intersections 

The proposed algorithm is very flexible, not being restricted to the Manhattan World constraints, 
and accurate enough to detect the main wall structures. However, some problems, addressed in 
section 5, appear due to the noisy and incomplete character of the data. By imposing topological 
constraints, the results could be further improved. 

5 Accuracy evaluation and comparison 

The algorithm presented in section 4 is designed for detecting wall structures in 3D point clouds 
coming from low cost sensors. A comparison between the 3D point clouds coming from different 
systems, i.e. the Tango tablet and the NavVis M3 trolley, reveals the challenges which were needed 
to be overcome and to which extend was this succeeded.  

5.1 Tango tablet versus NavVis M3 trolley for obtaining indoor models 

For automatically interpreting 3D indoor data, it is considered an indoor dataset acquired with 
Google Tango tablet and it is analysed and interpreted in parallel with data, of the same indoor 
space, coming from NavVis M3 trolley.  
Automatic point cloud registration was not subject of research of this work. However, a significant 
aspect is that the Tango data used for these investigations, representing the 4th floor of our office 
building, is composed of multiple small datasets, limited by the device overheating. Each 
individual dataset was captured by using simultaneous localization and mapping, integrated in the 
mode Area Learning provided by Google Tango (GOOGLE TANGO 2017). This enabled a relatively 
accurate capture of each individual indoor section. Nevertheless, their registration manually 
realized, depending on the overlapping regions, could have caused errors, resulting in double walls 
and object displacements. Even though, the NavVis M3 Trolley acquired also the data in different 
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sessions, for the individual rooms, the integrated graph-based SLAM algorithm (GRISETTI et al 
2010) made possible the automatic registration for all the datasets.  
Though both systems are delivering 3D data useful for a large variety of applications, Fig. 5 is 
showing their noise with respect to a reference dataset, coming from the laser scanner Leica 
HDS3000. In the Tango tablet case (Fig. 5 (a)), the computed absolute distances reveal noise, (up 
to 0.3 m) also for the flat surfaces of non-moving objects, like walls or tall cupboards, which is not 
the case for the M3 trolley. It can also be observed, that the non-reflecting surfaces, like windows, 
are causing for both datasets missing parts in the point clouds, affecting especially the further 
reconstruction of the exterior walls of the building. 

         
                        (a)                                                                     (b)                 

Fig. 5: Cloud to Cloud absolute distance in [m]: (a) between Tango and TLS point clouds; (b) between 
M3 trolley and TLS point clouds 

The distance range of the sensors is a property which influences the accuracy and completeness of 
the acquired 3D data and therefore also the quality of the interpreted structures. By having the 
range distance up to 4 m, the Tango tablet is limiting the obtained point cloud to this range, while 
the NavVis M3 Trolley allows an acquisition up to 30 m. Therefore, for automatically detecting 
the wall structures in rooms with very high ceiling, one must consider during the processing that 
considerable big parts of those structures can be missing. This aspect was handled by the proposed 
algorithm from section 4, by filtering out the points over 2.3 m.  

5.2 Quality evaluation of the interpreted wall structures  

After applying the proposed algorithm, the resulted wall structures from both datasets are 
compared with a reference dataset coming from the laser scanner Leica HDS3000, acquired a 
couple of years ago. In this way it was possible to realize the influence of data quality onto the 
resulted interpreted structures. In Fig. 6, it is shown the 2D projection of the corresponding 3D 
point cloud, as blue points, and the detected wall segments, as red lines. It is considered that a wall 
is detected only when the corresponding segment is complete, from one wall junction to the other. 
Thus, 44 from 55 segments (80%) were detected for the Tango tablet dataset, and 47 from 55 
segments (85.5%) for the M3 trolley. However, the main majority of the undetected wall segments 

0.0 - -
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0.3 - -
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are located on the building shell, being mainly made of windows. As it was previously shown in 
section 5.1., non-reflecting surfaces, like windows are affecting the reconstruction process. This 
issue can be overcome by adding some knowledge, like the ground plan of the building. 
Furthermore, some wall segments could be misplaced due to some object parts, different than 
walls, still remained after the pre-processing step.  
Both datasets made possible to automatically detect the main wall structures, but in some cases 
they were shifted from the reference position. For example, Fig. 7 shows a closer detail of Fig. 6, 
where, in the case of Tango dataset, the wall segments are shifted in centimetre range. This is 
visible only if they are compared with a reference dataset, coming from TLS. Thus, it is proved 
that the displacement is not influenced by the proposed algorithm, but of the noisy character of the 
data and possible remaining registration errors. 

    
Fig. 6: Detected wall segments from: (a)Tango tablet and Tango tablet point cloud; (b) Tango tablet 

and TLS point cloud; (c)M3 trolley and TLS point cloud; (b) M3 trolley point cloud and M3 trolley 
point cloud 

  
Fig. 7: Detail of detected wall segments from: (a)Tango tablet and Tango tablet point cloud; (b) Tango 

tablet and TLS point cloud; (c)M3 trolley and TLS point cloud; (b) M3 trolley point cloud and M3 
trolley point cloud 
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6 Conclusions 

We presented an evaluation of an IMMS system (NavVis M3 trolley) and a low-cost device 
(Google Tango tablet). Also, it was investigated their potential for delivering interpreted indoor 
structures. For doing that, we proposed a wall extraction algorithm, which proved to be robust and 
flexible, not being restricted to Manhattan World constraints. By comparing the results with a TLS 
reference dataset, it was proved that the main wall structures were detected, the missing ones being 
corresponding for surfaces which do not reflect IR light, like windows. Only few detected 
segments, coming from Tango tablet dataset have been displaced in centimetre range, due to 
possible registration errors. On the one side, there are applications which require accurate indoor 
models, like mapping indoors of industrial facilities and for this, a system like NavVis M3 trolley 
will be suitable. On the other side, for some other applications, like indoor navigation, a mobile 
device with Google Tango’s capabilities will successfully perform the task. Furthermore, a way to 
overcome these possible displacement problems is to use a formal grammar for modeling the 
indoor environment, which is a subject of further work. 
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