
37. Wissenschaftlich-Technische Jahrestagung der DGPF in Würzburg – Publikationen der DGPF, Band 26, 2017 

110 

Investigation of the Potential of Hyperspectral EnMAP Data 
for Land Cover and Land Use Classification 

S. KELLER1, A. C. BRAUN2, S. HINZ1 & M. WEINMANN1 

Abstract: In this paper, we focus on the classification of hyperspectral data that is expected 
to be acquired with the Environmental Mapping and Analysis Program (EnMAP) mission, a 
hyperspectral satellite mission supposed to be launched into space in the near future. More 
specifically, we consider the dataset presented with the EnMAP Contest, a benchmark that 
has recently been initiated with the objective of classifying different land cover and land use 
classes based on EnMAP-like hyperspectral data. We address the EnMAP Contest by 
presenting a framework that involves (1) standard approaches for dimensionality reduction 
and feature selection and (2) classifiers relying on different learning principles. The 
classification results derived for different configurations of our framework clearly reveal the 
potential of respective techniques and provide the basis for further improvements in different 
research directions. 
 

1 Introduction 

The automated analysis of hyperspectral imagery has become a topic of major interest in remote 
sensing as such data is valuable for the classification of land cover and land use (PLAZA et al. 
2009; CAMPS-VALLS et al. 2014). However, most of the currently available benchmark datasets 
for evaluating the performance of respective classification approaches consist of (partially) 
labeled airborne hyperspectral imagery acquired during low-altitude flights. This allows an 
analysis of areas with a rather limited extent while a large-scale or even nationwide coverage 
would often be desirable. Recent attempts towards a large-scale coverage with hyperspectral data 
have resulted in a conceptual transfer towards the use of satellite remote sensing which is 
addressed by the Environmental Mapping and Analysis Program (EnMAP). EnMAP represents a 
hyperspectral satellite mission supposed to be launched into space in the near future (KAUFMANN 

et al. 2008). In order to already obtain first impressions about expected future hyperspectral 
EnMAP data products before the mission is launched, simulated EnMAP-like hyperspectral data 
with 244 spectral bands covering the range from 420 nm to 2450 nm has been released and can 
be used for numerous investigations (GUANTER et al. 2009; SEGL et al. 2010). 
In this paper, we focus on the classification of simulated EnMAP-like hyperspectral data (Fig. 1). 
We present a framework which involves (1) standard approaches for dimensionality reduction 
and feature selection and (2) several classifiers relying on different learning principles (instance-
based learning, probabilistic learning and ensemble learning). To evaluate the performance of 
this framework, we consider nine different configurations of the framework and present the 
respective classification results for a recently published benchmark dataset with 20 different land 
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cover and land use classes (five water classes, five forest/meadow classes, five agriculture 
classes, three urban/industrial classes, and two pasture/fallow classes) in tables and figures. 
These results correspond to an overall accuracy in the range of about 77-84 % and a kappa value 
in the range of about 76-83 %, whereby the best classification results are obtained with the 
classifier relying on ensemble learning. The derived results clearly reveal the potential of 
EnMAP-like hyperspectral data, and they provide a basis for further investigations in different 
research directions. 
This paper represents an extension of our previous work (KELLER et al. 2016), where we 
investigated the impact of dimensionality reduction and feature selection on the classification of 
hyperspectral EnMAP data. In addition to the quantitative classification results obtained for the 
subset of labeled pixels, we now also focus on the qualitative results obtained for the whole 
scene. We provide an in-depth analysis of the results obtained for nine different configurations of 
our framework by considering global evaluation metrics (overall accuracy, Cohen’s kappa 
coefficient, average completeness, average correctness and average quality) as well as class-wise 
evaluation metrics (completeness, correctness and quality) and the whole classified scene 
corresponding to the given simulated EnMAP-like hyperspectral data. 
After briefly summarizing related work in Section 2, we explain the single components of our 
proposed framework for the classification of hyperspectral EnMAP-like data in Section 3. 
Subsequently, in Section 4, we describe the benchmark dataset used in the scope of our 
experiments in detail, and we present the respective results derived with our framework and 
discuss these results with respect to different criteria. Finally, we provide concluding remarks 
and suggestions for future work in Section 5. 
 

    
Fig. 1: The EnMAP Contest (BRAUN et al. 2015): simulated hyperspectral data covering 244 spectral 

bands is available for each pixel of the scene (left; image courtesy of Dr. K. Segl). Some pixels 
within the simulated EnMAP dataset have been labeled (center). The objective is to assign 
respective class labels to all pixels (right). 

2 Related Work 

The simplest approach for classifying hyperspectral imagery certainly consists in a per-pixel 
consideration of the reflectance values of all spectral bands and a subsequent pixel-wise 
classification based on well-known standard classification approaches which are meanwhile 
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available in a variety of software packages, e.g. kernel-based methods (CAMPS-VALLS & 

BRUZZONE 2005), Support Vector Machines (MELGANI & BRUZZONE 2004; CHI et al. 2008), or 
Random Forests (HAM et al. 2005; JOELSSON et al. 2005). In particular, Support Vector Machines 
have been widely used for classifying hyperspectral data and related but more sophisticated 
classification approaches represented by Import Vector Machines and Relevance Vector 
Machines have also been used for this task (BRAUN et al. 2011; BRAUN et al. 2012). 
Despite the classifier, the data representation plays an important role. When classifying 
hyperspectral data, it should generally be taken into account that the reflectance values of some 
spectral bands are strongly correlated and that typically not all spectral bands are relevant to the 
classification task. In particular for high-dimensional data representations as given for 
hyperspectral data, the Hughes phenomenon (HUGHES 1968) can often be observed.  According 
to this phenomenon, an increase of the number of features over a certain threshold results in a 
decrease in classification accuracy, given a constant number of training examples (MELGANI & 

BRUZZONE 2004). Hence, it seems desirable to transfer the given high-dimensional data into a 
new, more compact representation which encodes almost the same information with respect to 
the classification task. On the one hand, this can be done via dimensionality reduction (VAN DER 

MAATEN et al. 2009) which focuses on the mapping of feature vectors from the original feature 
space onto a specific subspace spanned by meta-features. For this purpose, variants of the well-
known Principal Component Analysis or the Independent Component Analysis are commonly 
applied (LICCIARDI et al. 2012; WANG & CHANG 2006; VILLA et al. 2011). On the other hand, it 
is possible to apply feature selection (GUYON & ELISSEEFF 2003; SAEYS et al. 2007) which aims 
at only retaining the relevant features for classification and thus only considers reflectance values 
of specific spectral bands. Respective methods for instance allow assessing the importance of 
single spectral bands for land cover classification (LE BRIS et al. 2014) as well as different band 
selection and band fusion processes (CHEHATA et al. 2014). These studies demonstrate that 
approaches for both dimensionality reduction as well as feature selection are appropriate to cope 
with the high degree of redundancy contained in hyperspectral datasets and that the consideration 
of only a relatively small subspace of the data is still sufficient to derive reasonable classification 
results. 
More recent trends in the classification of hyperspectral imagery mainly address the 
consideration of spatial context, i.e. the spatial structure within the local image neighborhood of 
a pixel is considered in addition to the reflectance values of the spectral bands characterizing that 
pixel. This is commonly referred to as spectral-spatial classification. Respective approaches are 
for instance given by a probabilistic pixel-wise classification that is followed by either a Markov 
Random Field regularization (TARABALKA et al. 2010) or a hierarchical optimization 
(TARABALKA & TILTON 2011). Furthermore, it has been proposed to involve segmentation 
approaches to support classification, e.g. by using the results of a pixel-wise classification in 
combination with watershed segments (TARABALKA et al. 2008) which allows a majority voting 
within watershed segments to account for spatial information. Instead of relying on a segment-
based consideration of the results of a pixel-wise classification, spatial context can also be 
assessed by sampling spectral information within the local surrounding of a pixel, e.g. within 
adaptive pixel neighborhoods (FAUVEL et al. 2008) or within superpixels (FANG et al. 2015). 
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3 Methodology 

In the scope of this paper, we present a framework for classifying hyperspectral data (Fig. 2). 
This framework includes three different options for the data representation per pixel (Section 
3.1) as well as three different options for supervised classification (Section 3.2). 
 

 
Fig. 2: The proposed framework allowing for three different options for the data representation and 

three different options for supervised classification. 

 

3.1 Data Representation 

In our framework, we focus on different options for deriving feature vectors which serve as input 
to the subsequent classification procedure. We assume that each pixel is described with a high 
number of spectral bands and that the spectral information of each spectral band is represented 
by a reflectance value between 0 % and 100 %. In the following, we focus on three options to 
derive the feature vectors that serve as input to the subsequent classification procedure. 

3.1.1 Original Data Representation 

The straightforward approach consists in using the given representation of the data as input to the 
classification procedure, where we simply concatenate the reflectance values for all spectral 
bands to obtain the respective feature vectors. 

3.1.2 Dimensionality Reduction: Principal Component Analysis 

For dimensionality reduction, we focus on using a standard Principal Component Analysis 
(PCA) in the scope of this paper and assume that this is appropriate, even though the PCA is not 
necessarily the best approach for dimensionality reduction (CHERIYADAT & BRUCE 2003). The 
main idea of the PCA consists in transforming a set of feature vectors from a high-dimensional 
feature space (which is spanned by possibly correlated features) to a new feature space which is 
spanned by linearly uncorrelated meta-features, the principal components, which account for the 
data variability along the respective dimension. Ranking the meta-features with respect to the 
respectively covered variability allows us to consider the few meta-features that are most 
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relevant with respect to data variability, while other meta-features are almost irrelevant with 
respect to data variability. In the scope of our work, we use the most relevant meta-features that 
cover 99.9 % of the variability of the given training data to define the new feature vectors, and 
we assume that we do not have a significant loss of relevant information with respect to the 
classification task when discarding all other, less relevant meta-features.  

3.1.3 Feature Selection: Correlation-based Feature Selection 

For feature selection, we focus on using Correlation-based Feature Selection (CFS) (HALL 
1999) which takes into account (1) the correlation between features and classes to identify 
relevant features and (2) the correlation among features to identify and discard redundant 
features. More specifically, CFS exploits the average correlation ̅ߩி஼ between features and 
classes as well as the average correlation ̅ߩிி among classes to evaluate the relevance ܴ of a 
feature subset comprising ݊ features according to 

ܴ ൌ
ி஼ߩ̅݊

ඥ݊ ൅ ݊ሺ݊ െ 1ሻ̅ߩிி
 

where the correlation metric is given by the symmetrical uncertainty (HALL 1999). Deriving a 
suitable feature subset thus corresponds to maximizing the relevance ܴ over the feature subset 
space. Beginning with an initial feature subset either a feature is added to the feature subset or a 
feature is removed from the feature subset until the relevance ܴ converges to a stable maximum. 
The new feature vectors thus correspond to a selection of a few dimensions of the original data 
representation. 

3.2 Supervised Classification  

For classification, we integrate three classifiers relying on different learning principles into our 
framework. This allows us to draw more general conclusions about the impact of dimensionality 
reduction and feature selection on the classification of hyperspectral EnMAP data.  

3.2.1 Nearest Neighbor Classifier 

The Nearest Neighbor (NN) classifier relies on the principle of instance-based learning. For each 
feature vector belonging to a sample in the test set, this classifier performs a comparison to the 
feature vectors belonging to the samples in the training data and selects the class label associated 
with the most similar feature vector in the training data. Accordingly, the induction process is 
delayed to the prediction stage, i.e. there is no training stage and the prediction stage might 
correspond to a higher computational effort due to the required comparisons of vectors (here 
with respect to the Euclidean distance).  

3.2.2 Linear Discriminant Analysis Classifier  

The Linear Discriminant Analysis (LDA) classifier relies on the principle of probabilistic 
learning. In the training stage, it is assumed that the instances of different classes exhibit a 
Gaussian distribution in the feature space. Accordingly, the training of the LDA classifier 
consists in fitting a multivariate Gaussian distribution to the given training data, whereby the 
parameters of a Gaussian distribution have to be estimated for each class. Due to a lack of 
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knowledge about the behavior of single classes in the feature space, the same covariance matrix 
is assumed for each class so that only the means vary for the different classes. In the prediction 
stage, the class probabilities are evaluated for each feature vector belonging to a sample in the 
test set and the label of the class with the maximum probability is selected.  

3.2.3 Random Forest Classifier  

The Random Forest (RF) classifier (BREIMAN 2001) relies on the principle of ensemble learning. 
In the training stage, an ensemble of randomly trained decision trees is generated via bagging 
(BREIMAN 1996). Thereby, subsets of the training data are randomly drawn with replacement and 
an individual decision tree is trained for each subset. In the prediction stage, for each feature 
vector belonging to a sample in the test set, each decision tree casts a vote for one of the defined 
classes and the majority vote is selected to obtain the most probable class label.  

4 Experimental Results 

In the following, we first introduce the used benchmark dataset (Section 4.1). Subsequently, we 
present the derived results (Section 4.2) and we also provide a short discussion with respect to 
different aspects (Section 4.3). 

4.1 Dataset 

To evaluate the performance of our framework, we use the dataset presented in the scope of the 
recent EnMAP contest (BRAUN et al. 2015). This dataset is based on the simulated EnMAP 
Alpine Foreland dataset (GUANTER et al. 2009; SEGL et al. 2010), but it additionally contains a 
subset of pixels that are labeled and thus allow a benchmarking of different approaches for the 
classification of hyperspectral data.  
Like the simulated EnMAP Alpine Foreland dataset, the considered dataset covers an area of 
about 30 km  30 km around the Ammersee in Bavaria, Germany. It is represented by an image 
of 1000  1000 pixels (i.e. the ground sampling distance is 30 m), where each pixel is associated 
with values on 244 simulated spectral bands covering the spectral range of 420-2450 nm with a 
varying spectral sampling of 6.5-10 nm. A near natural color visualization of the considered 
image is provided in Fig. 1 (left) and reveals a diversity of water, vegetation, agricultural, and 
urban/industrial classes.  
The additional labeling has been performed for a subset of pixels as shown in Fig. 1 (center) and 
with respect to 20 different land cover and land use classes, whereby the manual annotation has 
been done by considering visual differences in the image (considering several band 
combinations) as well as the individual spectra of selected pixels. More specifically, the labeling 
takes into account five water classes, five forest/meadow classes, five agriculture classes, three 
urban/industrial classes, and two pasture/fallow classes. The average spectra of these classes are 
shown in Fig. 3, and it can be observed that some of the classes reveal a spectrally very similar 
behavior, which makes classification more challenging. With the annotation, a split of the 
labeled pixels into training data and test data is already provided, whereby the training data 
comprises hyperspectral data for 2,617 labeled pixels and the test data contains hyperspectral 
data for 1,124 labeled pixels. 
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Fig. 3: Average spectra for the 20 land cover and land use classes considered in the scope of the 
EnMAP contest (BRAUN et al. 2015): water classes (top left), forest/meadow classes (top right), 
agriculture classes (bottom left) and other classes (bottom right) 

 

4.2 Results 

To judge about the performance of different configurations of our framework for classifying 
hyperspectral EnMAP data, we first consider the general evaluation metrics represented by 
overall accuracy OA, Cohen's kappa coefficient ߢ, average completeness CMPതതതതതത, average 
correctness CORതതതതതത and average quality Qഥ. 
In total, we consider nine different configurations of our framework, resulting from all 
conceivable combinations that are possible when considering three options for classification (1: 
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NN classifier; 2: LDA classifier; 3: RF classifier) and three options for the data provided to the 
respective classifier (1: use of the values of all 244 spectral bands per pixel; 2: use of meta-
features derived via PCA-based dimensionality reduction; 3: use of the values of those spectral 
bands that are selected via CFS). The derived classification results are visualized in Fig. 4. 
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Fig. 4: Classification results obtained for the NN classifier (top row), the LDA classifier (center row) and 
the RF classifier (bottom row) when using all spectral bands (left column), PCA-based 
dimensionality reduction (center column) and feature selection via CFS (right column): the color 
encoding of the different classes is explained in Fig. 3. 
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The corresponding values for the general evaluation metrics are provided in Tab. 1 and reveal an 
overall accuracy in the range of about 77-84 % for the nine different configurations of our 
framework. The kappa value is in the range of about 76-83 % for the considered configurations. 
The table also contains the average values of completeness, correctness and quality across all 20 
classes. 
 

 
Tab. 1: Classification results obtained for nine different configurations of our framework 

Classifier DR/FS OA [%] ߢ [%] CMPതതതതതത [%] CORതതതതതത [%] Qഥ [%] 

NN - 80.07 78.98 80.68 80.04 69.94 

NN PCA 80.96 79.92 81.52 80.99 71.08 

NN CFS 79.89 78.80 80.29 79.95 69.81 

LDA - 78.65 77.48 79.21 78.37 68.18 

LDA PCA 77.40 76.17 77.47 77.11 65.98 

LDA CFS 79.45 78.34 80.32 78.33 68.18 

RF - 83.19 82.27 83.69 83.19 73.70 

RF PCA 82.74 81.80 83.31 82.72 73.30 

RF CFS 82.65 81.71 83.25 82.55 72.94 

 
Whereas the general evaluation metrics allow statements about the complete classification 
results, the class-wise evaluation metrics of completeness, correctness and quality can be used to 
assess statistics about the behavior of single classes. With a focus on distinguishing between 20 
different land cover and land use classes, we provide the minimum and maximum values of the 
three class-wise evaluation metrics for all nine configurations of our framework in Tab. 2. It can 
be observed that the maximum is always reached at 100 % which indicates that some classes are 
not too hard to distinguish, even when using different configurations of our framework. 
 

 
Tab. 2: Classification results obtained for nine different configurations of our framework 

Classifier DR/FS CMP୫୧୬ [%] CMP୫ୟ୶ [%] COR୫୧୬ [%] COR୫ୟ୶ [%] Q୫୧୬ [%] Q୫ୟ୶ [%] 

NN - 40.00 100.00 48.00 100.00 27.91 100.00 

NN PCA 45.00 100.00 56.25 100.00 33.33 100.00 

NN CFS 45.00 100.00 45.76 100.00 29.35 100.00 

LDA - 30.00 100.00 42.86 100.00 21.43 100.00 

LDA PCA 16.67 100.00 43.48 100.00 13.70 100.00 

LDA CFS 20.00 100.00 50.00 100.00 16.67 100.00 

RF - 45.00 100.00 58.18 100.00 38.03 100.00 

RF PCA 48.33 100.00 60.00 100.00 36.71 100.00 

RF CFS 48.33 100.00 54.72 100.00 34.52 100.00 
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4.3 Discussion 

As expected, the RF classifier provides the highest quality of the derived classification results. 
This might be due to the fact that it provides a better generalization capability in case of strongly 
correlated features. When transforming the original feature vectors via PCA and keeping only the 
most relevant meta-features that cover 99.9 % of the variability of the given training data, it can 
be observed that only eight meta-features and therefore a significantly more compact data 
representation are used, while the quality of the derived classification results is similar with a 
slight decrease in most cases, but also a slight increase for one case.  When using CFS for feature 
selection, the reflectance values of particular spectral bands are selected. A closer look at the 
selected bands reveals that reflectance values of 33 spectral bands are considered for 
classification instead of reflectance values of all 244 spectral bands. Thereby, referring to Fig. 3, 
15 spectral bands are considered within the interval [1,50], ten within the interval [51,100], four 
within the interval [101,150], one within the interval [151,200] and tree within the interval 
[201,244]. Again, the quality of the derived classification results is similar with a slight decrease 
in most cases and a slight increase for one case. 

5 Conclusions 

In this paper, we have investigated the potential of hyperspectral EnMAP data for land cover and 
land use classification. We have presented a framework that involves (1) standard approaches for 
dimensionality reduction and feature selection and (2) classifiers relying on different learning 
principles. For nine different configurations of our framework, we have presented the results of a 
performance evaluation on the benchmark dataset presented in the scope of the recent EnMAP 
contest, a simulated hyperspectral dataset with 20 different land cover and land use classes. The 
derived results clearly reveal that a variety of land cover and land use classes can be 
distinguished based on hyperspectral EnMAP data. Furthermore, we have demonstrated that the 
transfer of the original, high-dimensional data representation corresponding to 244 spectral bands 
to a significantly more compact data representation allows to derive classification results of 
similar and partially even better quality. 
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