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Towards Integrated 3D Reconstruction 
and Semantic Interpretation of Urban Scenes 
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Abstract: We describe recent progress made towards automated extraction of semantically 
annotated 3D city models from aerial imagery. The idea of semantic 3D reconstruction is to 
reconstruct the 3D geometry of an observed scene while at the same time also interpreting the 
scene in terms of semantic object classes (such as buildings, vegetation etc.) - similar to a 
human operator, who also interprets the image content while making measurements. The 
advantage of jointly reasoning about shape and object class is that one can exploit class-
specific a-priori knowledge about the geometry: on the one hand the type of object provides 
information about its shape, e.g. walls are likely to be vertical, whereas streets are not; on the 
other hand, 3D geometry is also an important cue for classification, e.g. in our example 
vertical surfaces are more likely to be walls than streets. Recent work has developed 
computational models that allow one to jointly infer geometry and class. For simple priors, 
such as preferred surface orientations, these models even have favourable mathematical 
properties like convexity of the optimisation. However, they rely on a dense, volumetric 
discretisation of 3D space, therefore the computation is memory-hungry and slow. We have 
developed an adaptive, hierarchical formulation of semantic 3D reconstruction, which makes 
it possible to process scenes of much larger, realistic size. The intuition is that both high 
spatial resolution and high numerical precision are only required in regions that are likely to 
contain a surface. Technically, our scheme amounts to repeatedly solving a constrained, 
convex optimisation problem, while iteratively removing low-confidence constraints. In our 
experiments the adaptive reconstruction incurs no loss in accuracy, but offers up to 98% lower 
memory consumption and up to 95% shorter computation time. 

1 Introduction 

Photogrammetric mapping encompasses two visual tasks: to geometrically reconstruct the 
observed scene in 3D, and to semantically interpret the data. These two tasks are not independent 
of each other, and human operators naturally solve them in conjunction, utilising their a-priori 
knowledge about the shape of different types of objects like buildings, water surfaces etc. On the 
contrary, computer systems for automated photogrammetric analysis treat the two tasks in isolation 
and sequentially. Either geometry is reconstructed as a generic surface model, which can then serve 
as input to extract objects like buildings, the ground (DTM) etc. Or the images are first interpreted 
to detect objects, which can then be individually reconstructed. 
In which order should one go about these two steps? Arguably one should address them jointly, 
because a-priori knowledge about the world acts in both ways. A building probably has vertical 
walls; but conversely, a concrete-grey structure is much more likely to be a building wall if it is 
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vertical. However, treating both the 3D geometry and the semantic class labels as unknowns and 
inferring them together is technically challenging. Only recently models have emerged that capture 
the problem in a principled manner (HÄNE et al. 2013, SAVINOV et al. 2015), but they are 
computationally expensive and therefore limited to small regions of interest and/or few images.  
Here, we describe a way to make semantic 3D reconstruction a lot more efficient, such that it scales 
up to larger regions and image sets. The application we are interested in is the generation of 
interpreted 3D city models from (nadir and oblique) aerial images. We follow the pioneering work 
of (HÄNE et al. 2013), where semantic reconstruction is formulated as a multi-class labelling 
problem on a voxel grid. Like in volumetric surface reconstruction (CURLESS & LEVOY 1996) 
the 3D space is discretised into voxels. But rather than only being labelled as freespace or solid, 
voxels can take on multiple labels like freespace, building, ground, vegetation, etc.  
Our work builds on the elementary insight that instead of a regular voxel grid the labelling can be 
done with variable volumetric resolution. Large parts of the volume – in particular freespace, but 
also the inside of buildings, areas under the ground, etc. – only need to be modelled at coarse 
resolution. A fine discretisation and high numerical precision are only required near the boundary 
surfaces. We start from a coarse voxel grid and adaptively refine the reconstruction only near 
(predicted) label transitions. On the one hand this reduces memory consumption, so that at a given 
target resolution one can reconstruct larger scenes. On the other hand, it also speeds up the 
computation, because after every refinement an approximate solution is already available from the 
previous level, like in a multi-scale pyramid. In our experiments we observe up to 40× lower 
memory footprint and 22× shorter runtime, without any loss of quality.  

2 Related Work 

Automated 3D city reconstruction is a classical problem of photogrammetry. For purely geometric 
surface reconstruction, volumetric representations are rare and explicit surface representations are 
preferred. In this context (LAFARGE & MALLET 2012) have already proposed to first estimate 
semantic labels for 3D points and use those to support geometric reconstruction (but not vice 
versa). Early attempts to merge geometric and semantic reconstruction into a one-shot process 
started with depth maps (LADICKÝ et al. 2010), later work moved to volumetric representations 
(HÄNE et al. 2013; BAO et al. 2013; KUNDU et al. 2014; SAVINOV et al. 2015; VINEET et al. 2015) 
or, rarely, meshes (CABEZAS et al. 2015). All these works are variants of the same conceptual idea, 
to do the semantic labelling in 3D, such that it is inherently consistent across images, while at the 
same time enforcing class-specific priors rather than isotropic smoothing. (HÄNE et al. 2013) 
employ a non-metric regulariser, developed within the linear programming relaxation of a multi-
label Markov random field (ZACH et al. 2014) in 3D voxel space. (KUNDU et al. 2014) is perhaps 
the closest work to ours. They also employ the octree data structure to save memory, but fix the 
local resolution at the beginning, based on an initial guess of the geometry (whereas we adaptively 
refine it). Also, like all other works mentioned above it uses only street-level imagery and models 
only scene parts visible from the streets, whereas we use aerial images and reconstruct the entire 
scene.  
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Before semantic (multi-label) 3D reconstruction, volumetric representations were already used for 
generic surface modelling (CURLESS & LEVOY 1996), where a distance field or indicator function 
is defined on the voxels. From that representation one can extract an explicit surface by finding 
the zero level set (e.g., LORENSEN & CLINE 1987; KAZHDAN et al. 2007).  Many volumetric 
techniques work with regular voxels (CREMERS & KOLEV 2011; KOLEV et al. 2012, KOSTRIKOV et 
al. 2014). The data term, corresponding to a voxel’s probability of lying behind the surface, is 
typically a signed distance generated from image correspondences (e.g., ZACH et al. 2007, ZACH 
2008). Some authors even model a pixel’s visibility along the complete ray (LIU & COOPER 2010, 
SAVINOV et al. 2015), which however leads to higher-order potentials over all voxels intersected 
by each ray, such that these methods do not scale to larger datasets. Instead of the regular voxels 
(LABATUT et al. 2007; JANCOSEK & PAJDLA 2011) tessellate the space by Delaunay 
tetrahedralisation of the initial multi-view point cloud. Tetrahedrons are labelled as empty or 
occupied, and triangles on the interface between the two labels form the object surface.  
Algorithms for surface reconstruction from point clouds, like the Poisson method (KAZHDAN et al. 
2006), also use octrees; and in some cases also multi-grid solvers (BOLITHO et al. 2007). This is 
similar in spirit to our adaptive multi-scale approach, but the least-squares nature of Poisson 
reconstruction is susceptible to outliers. Our model allows for robust error functions, at the cost of 
a more complicated optimisation. Also, our octree structure is not determined once and for all by 
the input data, but refined adaptively. A different view on our model is to see it as a coarse-to-fine 
reconstruction on a volumetric pyramid (ZACH et al. 2007; ZACH 2008), in which the refinement 
is applied selectively (e.g., HORNUNG & KOBBELT 2006).  

3 Method 

To simplify the technical description, we first describe the basic model with a regular voxel grid, 
and then extend it to the irregular, adaptive scheme. Throughout, the description stays on a 
conceptual level, for mathematical details the interested reader is referred to (BLAHÁ et al. 2016).  

3.1 Basic Model 

Let the region of interest Ω be discretised into regular, equally sized voxels ݏ ∈ Ω. In this discrete 
representation, joint geometric and semantic reconstruction can be cast as a labelling problem: at 
each voxel, determine the most likely semantic class label. By including a class freespace, one at 
the same time estimates also which voxels do not belong to any object, and thus implicitly 
reconstructs the 3D surfaces that separate objects from freespace. At each voxel an indicator vector 
௜ݔ ∈ ሾ0,1ሿ is stored, which is 1 for the assigned class and 0 for all other classes. The trick of (HÄNE 
et al. 2013) is to additionally store pseudo-marginals ݔ௜௝ for each pair of classes and each grid 
direction, such that class transitions and their orientations are made explicit. Finding the best 
labelling then amounts to minimising the energy function 
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subject to appropriate constraints which ensure that the variables are non-negative, that they sum 
to 1 appropriately, and that the ݔ௜ and ݔ௜௝ are consistent. The ݅ߩ are conventional data terms that 
encode the likelihood of different labels at voxel s. The convex and 1-homogeneous functions ݆߮݅ 
encode the individual a-priori likelihoods of different class transitions, taking into account the 
orientation ሺݔ௜௝ െ ௝௜ሻݔ ∈ ሾെ1,1ሿଷ	of the boundary surface. The energy can be seen as a generalised 
form of the standard Markov Random Field energy (in its linear programming relaxation). 
The data term ݅ߩ combines depth values and semantic class probabilities observed in the images. 
It favours configurations where the transition from freespace to another class occurs at the 
predicted depth along a pixel’s viewing ray, and penalises deviations from that depth with a 
truncated linear penalty. At the same time, ݅ߩ maps the class likelihoods from the images into the 
3D volume, by applying them at a voxel along the ray, slightly behind the predicted surface. The 
data cost in a voxel is computed by summing over all rays that pass through it. We point out that 
truncating the data cost means that we require the volume to be empty only in a limited interval in 
front of the predicted depth, rather than along the entire ray. This is clearly an approximation, but 
has the advantage that the data evidence can be encoded as a single unary term per voxel. In 
contrast, taking into account the full length of the viewing rays would lead to a higher-order 
potential that links all voxels along the ray, for each single pixel (LIU & COOPER 2010; KUNDU et 
al. 2014; SAVINOV et al. 2015). An efficient treatment of such potentials remains future work. 
The class-specific priors ݆߮݅ penalise class transitions, but other than Potts-type smoothing they 
account for the type of transition and the corresponding surface orientation. The prior is modelled 
as a sum of two terms, an isotropic part that encodes the likelihood (frequency) of the transition 
from class i to class j; and an anisotropic part that increases the penalty if the transition occurs in 
an improbable direction (e.g., an overhanging building wall). A convenient way to encode such a 
non-metric (w.r.t. the label space) and direction-dependent regulariser is through the indicator 
function of an appropriately chosen convex set, the so-called Wulff shape (ZACH et al. 2014).  

3.2 Adaptive Multi-scale Extension 

The basic model described so far links semantic interpretation and shape reconstruction in a 
principled manner, but it needs a lot of memory and processing power. Instead of exhaustively 
storing variables for the finest grid resolution, we reduce the set of unknowns by storing voxels 
(and their indicator variables) at an adaptive resolution: finer close to the surface boundaries, 
coarse further away from them. Any voxel stores only one set of pseudo-marginals ݔ௜௝, regardless 
of its size, so that computational resources are saved for non-expanded voxels. For the new, 
adaptive discretisation Ω௟	of the space, we seek an energy ܧ௟	that approximates the original energy 
 .as tight as possible (in which all voxels have the finest resolution) ܧ
It turns out that one can see the energy ܧ௟ over the reduced set of unknowns (induced by the 
adaptive discretisation) as a constrained version of the original energy	ܧ, subject to additional 
equality constraints. To ensure that ܧ௟ and the constrained ܧ are identical, the regularisation ݆߮݅ 
must change as a function of voxel size, respectively refinement level. Intuitively speaking, one 
has to compensate for the fact that, as the refinement proceeds, transition penalties are increasingly 
“concentrated” in a smaller fraction of the overall volume and on fewer surfaces of the boundary 
voxels. The transition cost Φ௟

௜௝ at a certain refinement level is a weighted sum of the “virtual costs” 
that would apply at the highest voxel resolution. The overall energy now reads 



Dreiländertagung der DGPF, der OVG und der SGPF in Bern, Schweiz – Publikationen der DGPF, Band 25, 2016 

48 

ሻݔ௟ሺܧ ൌ ෍ ቌ ෍ ݔ௦௜ߩ
݅

௖௟௔௦௦௘௦	௜

൅ ෍ Φ௟
௜௝൫ݔ௦

௜௝ െ ௦ݔ
௝௜൯

௖௟௔௦௦_௣௔௜௥௦	௜,௝

ቍ .
௦∈ஐ೗

 

It sums the data costs over the voxels ݏ ∈ Ω௟ of the current refinement stage, and applies the 
corresponding level-dependent transition penalties Φ௟

௜௝. Non-negativity and normalisation 
constraints remain the same, consistency constraints must take into account that a voxel now may, 
at any of its faces, meet a single voxel of the same size, multiple smaller voxels, or part of a bigger 
voxel. For technical details and equations please see (BLAHA et al. 2016).  
In our algorithm the scene is initially reconstructed on a very coarse grid and adaptively subdivided 
only close to the (putative) class boundaries. The refined variable set for the new, smaller voxels 
is initialised from the intermediate solution at the previous level. The alternation between energy 
minimisation and refinement is repeated, until the smallest voxels have reached the final target 
resolution. Note, due to the implicit representation the surface topology can change, e.g., a narrow 
street might open between two previously connected buildings. 
The last missing piece is a criterion to decide which voxels to refine for the next round of energy 
minimisation. We simply refine all voxels that, at the current resolution, would be assigned to a 
different class than any of their neighbours. Moreover, we limit the resolution difference between 
adjacent voxels to at most 1, so splitting a voxel may trigger additional splits. In every iteration of 
the adaptive refinement, the energy function is, by construction, convex and can be minimised 
with standard tools. We convert it to primal-dual form with the help of Lagrange multipliers for 
the constraints and use the numerical scheme of (CHAMBOLLE & POCK 2011). 

4 Experiments 

As test dataset we use a block of 510 oblique and nadir images (102 exposures, Maltese cross 
configuration) from the city of Enschede, Netherlands. After orientation, per-image evidence for 
the depth is generated with semi-global matching (HIRSCHMÜLLER 2008), and class likelihoods are 
estimated with a MultiBoost classifier (BENBOUZID et al. 2012), using both RGB intensities and 
local shape features (CHEHATA et al. 2009). Figure 1 illustrates these pre-processing steps. 
We impose two types of class-specific priors (Wulff shapes). One prefers horizontal surfaces with 
upward-pointing normal, and gradually increases the cost as the normal vector is tilted. This prior 
describes the boundaries ground–freespace, ground–building, ground–vegetation, building–roof, 
roof–freespace. The second prior has a strong preference for vertical transitions building–
freespace and building–vegetation. The strength of the priors (tolerance to deviations from the 
preferred orientation) is set individually per label pair. 
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Fig. 1: Input data: Image orientations (top), depth maps (bottom left) and class likelihoods (bottom 

right, illustration shows the most likely labels per pixel). 

In a first experiment, we compare the adaptive model to a fixed voxel grid with the same target 
resolution. Unfortunately, no 3D ground truth was available. As a pragmatic compromise, we 
evaluate semantic correctness in image space: Semantic segmentations are hand-labelled for two 
representative images. Both reconstructions are back-projected into those images and 
quantitatively compared on a per-pixel basis. Overall the differences between adaptive and non-
adaptive reconstruction are tiny (<0.7 percent points) and mostly due to aliasing, see Figure 2. We 
conclude that the hierarchical scheme does not incur any loss of accuracy. In this context we point 
out a remaining systematic error of the current model (with or without adaptive refinement). The 
approximate data term demands that behind a surface a few voxels are occupied along each ray, 
which leads to fattening at thin surfaces and silhouette edges. The effect is best visible at the 
transition from building to roof. It could be mitigated by correctly modelling visibility along entire 
rays (SAVINOV et al. 2015), with much higher memory consumption. 

 
Fig. 2: Comparison of classification accuracy in 2D. 

The benefits of joint reconstruction are bigger in the other direction, when semantic knowledge 
improves the surface geometry in regions where matching fails, see examples in Figure 3. 
Unfortunately, we do not have reference data to quantify this improvement. 
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Fig. 3: Reconstruction with and without class-specific priors. Left to right: example image; semantic 
reconstruction; semantic reconstruction back-projected to the image; and generic volumetric 
surface reconstruction with the same input (Zach 2008). 

We go on to measure how much memory and computation time can be saved with the adaptive 
scheme. All experiments are run on a machine with 64 GB of RAM and a hexa-core Intel i7 CPU. 
Due to the huge memory consumption of the baseline (non-adaptive) method we have to limit this 
comparison to small sub-regions of the data. To ensure the comparison is fair we only voxelise a 
tight bounding box around the data. The tight box is a lot smaller for Enschede, because the terrain 
is flat. In mountainous cities the savings would be even higher. The top level of the octree has 
voxel size 13.5 m3, the final resolution after five refinements is 0.4 m3. In all tests the adaptive 
scheme saves ca. 95%, see Table 1. For the two smaller scenes 3 and 4 we have run another 
refinement down to 0.2 m3 voxel size. At that resolution we can no longer run the baseline, since 
it would require > 108 GB of memory, ca. 35× more than the adaptive scheme. Figure 4 illustrates 
the evolution of the adaptive refinement. At the top, one can see how the accuracy and detail of 
the reconstruction gradually improves. The bottom row displays the voxel size in a vertical slice, 
colour-coded from blue (13.5 m3) to yellow (0.2 m3). 

Table 1: Adaptive vs. non-adaptive volumetric reconstruction on two different test scenes. 

 runtime # 0.4m [sec] memory @ 0.4m [GB] memory @ 0.2m [GB] 
scene 1 scene 2 scene 1 scene 2 scene 1 scene 2 

voxel grid 91’982 92’893 13.6 13.6 108.5 108.5
octree 5’488 4’984 0.7 0.7 3.3 2.7
ratio 16.8 18.6 19.4 19.4 32.9 40.2

 

Finally, we come to the target of reconstructing a large urban area and process all the 510 images 
at once to cover the city centre of Enschede (ca. 3 km2) with target voxel size 0.8 m3 (1/2048 of 
the bounding volume), see Figures 5 and 6. For this reconstruction the adaptive scheme uses a 
modest 28 GB of memory and runs 40 hours on one PC. To process the same dataset without 
adaptive computation (2048×2048×128 voxels), one would need 434 GB of memory.  
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Fig. 4: Evolution of adaptive reconstruction over five refinement steps. 

 
Fig. 5: Semantic reconstruction of Enschede city centre. 

5 Conclusion 

We have described an adaptive multi-resolution framework to jointly infer the 3D geometry and a 
semantic segmentation of a scene from multi-view imagery, taking into account interactions 
between surface geometry and object type. The framework greatly improves the computational 
efficiency of integrated geometric/semantic 3D reconstruction, such that one can process scenes 
of realistic size and resolution. In future work we will investigate how to transfer the idea of 
adaptive spatial refinement to irregular space tessellations like the recently popular Delaunay 
tetrahedralisation, which by construction already adapt to the point distribution of the dataset.  
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Fig. 6:  Visual comparison to aerial images with the same viewpoint. 
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