

Zur Bewertung von Panschärfungsverfahren

Institut für Photogrammetrie und Fernerkundung Uwe Weidner

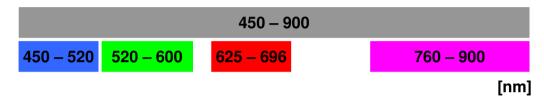
KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

www.kit.edu

Einleitung

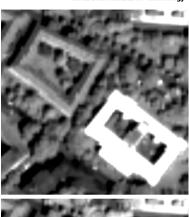
Karlsruhe Institute of Technology

- unterschiedliche geometrische Auflösung von multispektralen und panchromatischen Daten hochauflösender Erdbeobachtungssysteme
- Anforderung an spektrale Konsistenz
- IEEE GRSS Wettbewerb Alparone et al. (2007)
- Zhang (2008)
- unterschiedliche Bewertungskriterien
 - visuelle Bewertung
 - quantitative Bewertung
- Ergebnisse für Beispiele einfach zu realisierender Panschärfungsverfahren



Panschärfungsverfahren

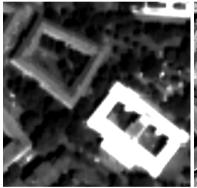
Karlsruhe Institute of Technology


Dateneigenschaften am Beispiel QuickBird

$$C_{pan} \propto \sum_{j}^{n} w_{j} C_{j} + e_{s}$$

Anforderungen bei Substitution

$$C_{pan} \propto C_{sub} + e_{sub}$$


Panschärfungsverfahren

Beispiel Hauptachsentransformation

$$C_{pan} + C_{sub} + e_{sub}$$

Panschärfungsverfahren

- Hauptachsentransformation
- Orthogonale Transformation

$$T_{OrthT} = \begin{pmatrix} t_1 & t_2 & t_3 & t_4 \\ t_4 & t_3 & -t_2 & -t_1 \\ t_3 & -t_4 & -t_1 & t_2 \\ t_2 & -t_1 & t_4 & -t_3 \end{pmatrix} \quad \text{mit} \quad t_i = \frac{w_i}{\sum_{j=0}^{4} w_j}$$

Lineare Filterung

$$C_{i.pansh} = C_i - \Delta$$

neare Filterung
$$C_{i.pansh} = C_i - \Delta \qquad \qquad C_{i.pansh} = C_i \frac{C_{wMSI} - \Delta}{C_{wMSI}}$$

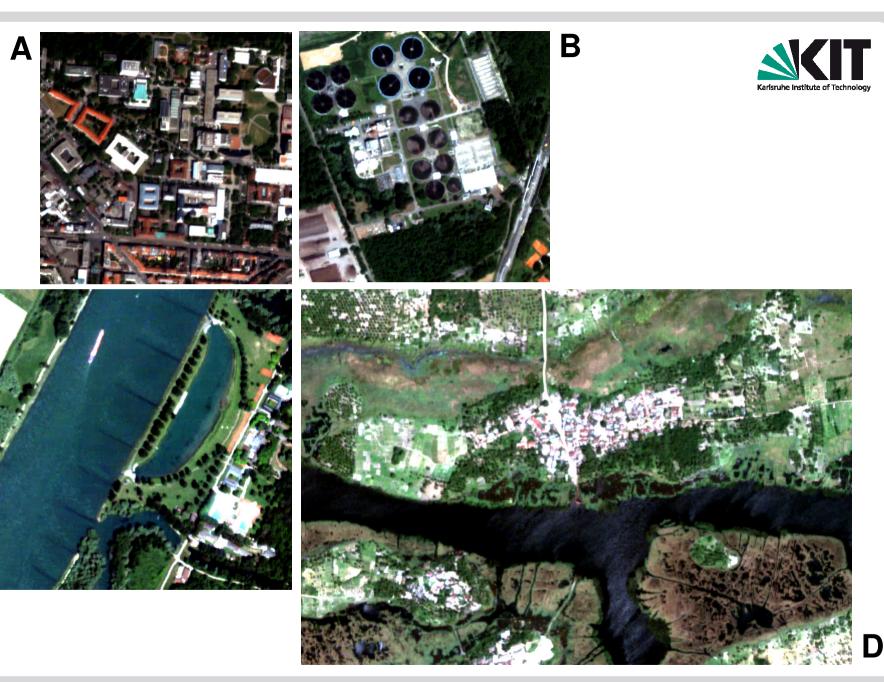
Bewertungsmaße

- Differenzen, RMSE, Korrelation, ...
- ERGAS
- Wang & Bovik (2001)

$$\rho_{WB} = \frac{4\sigma_{AB}\mu_A\mu_B}{(\sigma_A^2 + \sigma_B^2)(\mu_A^2 + \mu_B^2)}$$

$$\rho_{WB} = \frac{\sigma_{AB}}{\sigma_A\sigma_B} \cdot \frac{2\mu_A\mu_B}{\mu_A^2 + \mu_B^2} \cdot \frac{2\sigma_A\sigma_B}{\sigma_A^2 + \sigma_B^2}$$

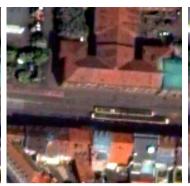
- Adaption für vier Kanäle Alparone et al. 2004 / 2007
- Adaption für beliebige Anzahl von Kanälen


$$\rho^* = \frac{4tr(\Sigma_{AB}) |\underline{\mu}_A| |\underline{\mu}_B|}{(tr(\Sigma_A) + tr(\Sigma_B))(|\underline{\mu}_A|^2 + |\underline{\mu}_B|^2)}$$

Forschungszentrum Karlsruhe

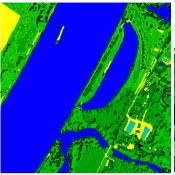
in der Helmholtz-Gemeinschaft





Institut für Photogrammetrie und Fernerkundung

7


	ρ*	ρ* (nicht-homogen)	ρ* (homogen)	SAM
Brovey	0,94	0,88	0,97	0,47
Hauptachsen- transformation	0,86	0,83	0,86	5,17
Orthogonale Transformation	0,94	0,89	0,97	1,47
Pansh Laplace	0,97	0,92	0,99	0,00

	Datensatz B		Datensatz C				Datensatz D	
	ρ*	SAM	ρ*	SAM	GG	K	ρ*	SAM
Brovey	0,96	0,68	0,98	0,46	0,825	0,77	0,96	0,68
Hauptachsen- transformation	0,76	10,98	0,94	3,94	0,897	0,86	0,92	2,21
Orthogonale Transformation	0,96	1,16	0,98	1,06	0,751	0,67	0,96	1,16
Pansh Laplace	0,98	0,00	0,99	0,00	0,904	0,87	0,98	0,00

Zusammenfassung & Ausblick

- Kenngröße für beliebige Anzahl von Kanälen
- Bewertung anhand von Ergebnissen nachfolgender Arbeitsschritte
- besondere Berücksichtigung von Kantenbereichen

