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Summary: Leaf area index (LAI) is one of the 
most important indicators of agricultural variables 
because of its relation to biophysical and biochemi-
cal properties of agricultural crops. Variations in 
LAI can be related to changes in leaf scattering 
properties, and these variations in leaf scattering 
properties can lead to changes in canopy backscat-
tering behaviour. The objective of this study was to 
explore the potential of estimating LAI using mul-
ti-temporal dual polarimetric TerraSAR-X data in 
three different agricultural field crops, including 
winter wheat (Triticum aestivum L.), barley (Hor-
deum vulgare L.), and canola (Brassica napus L.). 
The relationship between LAI and the scattering 
coefficient (σ0) in TerraSAR-X was explored using 
three different approaches, including univariate re-
gression, i.e., simple linear and nonlinear regres-
sion, multivariate regression, i.e., stepwise regres-
sion, and a semi-empirical water cloud model (WCM). 
The multivariate stepwise regression showed its 
capability to retrieve the LAI without any external 
input data, such as soil moisture, based solely on 
the polarization channels, i.e., HH or VV, and po-
larization variables, e.g. HH/VV or HH+VV.  How-
ever, unlike the WCM, the stepwise method is not 
applicable with just one polarization channel. The 
results indicate that the leaf area index (LAI) was 
significantly and consistently correlated with σ0 
throughout the growth stages using the stepwise 
regression and WCM approaches, whereas simple 
linear and nonlinear regression yielded relatively 
poor results except with barley.

Zusammenfassung: Abschätzung des Blattflä-
chenindexes von Anbaukulturen mittels dual-pola-
rimetrischer TerraSAR-X Daten: Eine Fallstudie in 
Nordostdeutschland. Der Blattflächenindex (LAI) 
zählt wegen seiner Beziehung zu biophysikalischen 
und biochemischen Eigenschaften von Anbaufrüch-
ten zu den interessantesten Parametern im Kontext 
der Landwirtschaft. Unterschiede im LAI können 
zu Streuungseigenschaften der Blätter in Beziehung 
gesetzt werden. Die Variationen der Streuungsei-
genschaften von Blättern können zu Änderungen 
im Rückstreuverhalten der Vegetationsoberfläche 
führen. Gegenstand der vorliegenden Studie war es, 
das Potenzial einer LAI-Abschätzung mit Hilfe von 
multitemporalen, dual-polarimetrischen TerraSAR-
X-Daten zu ermitteln, und zwar für drei verschiede-
ne landwirtschaftliche Anbaufrüchte: Winterwei-
zen (Triticum aestivum L.), Gerste (Hordeum vulga-
re L.) und Raps (Brassica napus L.). Die Beziehung 
zwischen LAI und dem Streuungskoeffizienten (σ0) 
bei TerraSAR-X wurde mit Hilfe von drei verschie-
denen methodischen Ansätzen untersucht: mittels 
univariater Regression (einfache lineare und nicht-
lineare Regression), multivariater Regression (schritt-
weise Regression) und mit Hilfe eines semi-empiri-
schen Water/Cloud-Modells (WCM). Die multivari-
ate schrittweise Regression erwies ihr großes Po-
tenzial für eine LAI-Abschätzung ohne Hinzunah-
me weiterer Informationen wie etwa der Boden-
feuchte. Die Abschätzung erfolgte allein auf der 
Grundlage der Polarisationskanäle (HH und VV) und 
der Polarisationsvariablen (HH/VV und HH+VV). 
Im Gegensatz zum WCM ist die schrittweise Me-
thode jedoch bei Verwendung nur eines Polarisati-
onskanals nicht anwendbar. Die Ergebnisse zeigen, 
dass der Blattflächenindex über die ganze Vegetati-
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1 Introduction

Leaf area index (LAI) measures the amount 
of leaf material in an ecosystem. The meas-
urement of LAI is of fundamental importance 
to understanding vegetation photosynthesis, 
respiration, rain interception, and other pro-
cesses that link vegetation to different envi-
ronmental processes for different categories of 
vegetation, such as agricultural crops (cHen et 
al. 2009, Jiao et al. 2011). It is one of the key 
variables required in primary production and 
global climate studies (Myneni et al. 1997) 
and ecological research, such as global land 
surface phenology (Jones et al. 2011), because 
this variable correlates directly with canopy 
foliage content and crown structure (goWer & 
norMan 1991, Hosseini et al. 2015). LAI can 
be considered an indicator of plant growth and 
health (Hosseini et al. 2015). LAI directly af-
fects the interception and absorption of light 
by the canopy and influences heat balance and 
evaporation from the landscape, which is an 
important component of vegetation-atmos-
phere interaction models and crop yield mod-
els (Hosseini et al. 2015).

Optical satellite imagery faces the problem 
of illumination conditions that limit the acqui-
sition of high quality remote sensing data, and 
the availability of remote sensing images from 
satellite and aerial platforms is often severely 
limited by frequent cloud cover (Mulla 2013). 
Multispectral reflectance data have been used 
to create different vegetation indices (baret 
& guyot 1991). Sharp contrast in reflectance 
values between the red and NIR bands of the 
remote sensing data was the motivation for 
development of vegetation indices (Mulla 
2013). These indices demonstrate a correla-
tion between different vegetation parameters, 
such as LAI (baret & guyot 1991). However, 
these indices reach a saturation level asymp-

onsperiode hinweg signifikant und konsistent mit 
σ0 korreliert, wenn mit schrittweiser Regression 
und WCM gearbeitet wird. Dagegen erzielten die 

Ansätze mit einfacher linearer und nicht-linearer 
Regression, außer für Gerste, vergleichsweise 
schwache Ergebnisse.

totically with increasing LAI values, and the 
sensitivity of these indices to LAI become in-
creasingly weak beyond a particular threshold 
value (carlson & riPley 1997), which is typi-
cally between 2 and 4 (aHMadian et al. 2016a, 
Mulla 2013, tHenKabail et al. 2000), depend-
ing on different factors, such as vegetation, 
crop type, and experimental and environmen-
tal factors (baret & guyot 1991). In this situ-
ation, the use of radar sensors becomes a fea-
sible means for acquiring remote sensing data 
in a given period of time. The past decade has 
seen a significant growth in research activities 
focused on developing approaches using radar 
remote sensing to study vegetation character-
istics and parameters for ecological, agronomy 
and meteorological application. Several stud-
ies have examined the sensitivity between ra-
dar data and LAI at different frequencies and 
polarizations. Applicability of X-band sensors 
to LAI estimation was assessed by Fontanelli 
et al. (2013) using COSMO-SkyMed and Ter-
raSAR-X data. These scientists observed a rel-
atively high sensitivity of backscatter to LAI 
at both HH and VV polarizations for wheat.

Previous research on SAR sensitivity to 
LAI has been mostly empirical and semi-
empirical. Simple statistical models (linear 
and non-linear) developed and inverted to es-
timate LAI as the most commonly used em-
pirically based approach (Fontanelli et al. 
2013) and water cloud model as a semi-em-
pirical approach. Empirical models are gener-
ally derived from experimental measurements 
to establish useful empirical relationships for 
inversion of vegetation characteristics from 
backscattering observations. The empirical 
model usually is divided into two categories: 
first are univariate models and the second are 
multivariate models, e.g. stepwise regression. 
The most common technique used as a semi-
empirical approach is the “water cloud mod-
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el” (atteMa & ulaby 1978). This model de-
scribes the dependence between the radar sig-
nal and the vegetated surface parameters. In 
water-cloud models, the vegetation has been 
considered as a cloud containing water drop-
lets randomly distributed within the canopy 
and the total backscattering signal from the 
surface is the sum of the backscattering sig-
nals from the soil multiplied by two-way at-
tenuation and the direct reflected signal from 
the vegetation.

The results of previous studies reveal that the 
backscattering from crops is a complex com-
bination of different mechanisms (LIN et al. 
2009). The backscattering coefficient changes 
during different growing stages of crops (ca-
ble et al. 2014b, KiM et al. 2013), and the afore-
mentioned mechanisms, include direct back-
scatter from the underlying ground, e.g. soil, 
direct backscatter from the plant components 
(leaves, stems, fruit), double-bounce back-
scatter between the soil surface and crop can-
opy, and, in some cases, ground-vegetation-
ground and multiple scattering mechanisms 
(adaMs et al. 2014, cable et al. 2014a). It was 
also demonstrated that when seeds are still be-
low the surface, the main contributor to a ra-
dar signal is single-bounce backscatter due to 
soil moisture and surface roughness (Van zyl 
2009). As crops emerge and the canopy devel-
ops, the characteristics of scattering from ag-
ricultural fields change and the co-polarized 
backscatter intensities tend to increase. The 
increase in co-polarized backscatter is due to 
a combination of single bounce backscatter di-
rectly off leaves or stems, etc., and soil-vege-
tation double-bounce backscatter (cable et al. 
2014a). Consequently, this study evaluated the 
sensitivity of combinations of several polari-
metric parameters, e.g. HH+VV or HH/VV, 
to LAI. The research presented here exam-
ines the potential of multi-temporal dual po-
larimetric TerraSAR-X data (X-band) for LAI 
estimation over wheat and barley (narrow-leaf 
crops) and canola (broad leaf crop) canopies 
using simple linear and nonlinear, stepwise 
regression (empirical approaches) and semi-
empirical WCM methods and compares the 
capability of each method to retrieve and es-
timate the LAI of aforementioned crops. For 
the validation of the models, the root-mean-
square error (RMSE) and correlation coeffi-

cient, i.e. R2, were reported for the simple lin-
ear and nonlinear approach, the leave one out 
cross validation (LOOCV) method was used 
to report the RMSE, the correlation between 
the observed and predicted responses (cross-
validated R2) and Adjusted R2, the mean-abso-
lute error (MAE), the coefficient of variation 
(CV), and p-value of the stepwise approach. 
Moreover R2, RMSE and MAE were also re-
ported for the WCM approach.

2 Test Site and Study Area

The study area is located in North East Ger-
many, in the Durable Environmental Mul-
tidisciplinary Monitoring Information Net-
work (DEMMIN). The DEMMIN project, 
established in 1999, is managed by the Neu-
strelitz “Thematic Processor Development 
and Validation DEMMIN” team in the Ger-
man Remote Sensing Data Center’s National 
Ground Segment department (gerigHausen et 
al. 2007). This reference site is approximately 
50 by 50 km2 and extends from 53°45’40.42”N, 
13°27’49.45”E to 54°2’54.29”N, 12°52’17.98”E. 
Within this test site, a study area including 
three winter wheat, barley and canola fields 
was chosen to carry out the ground truth data 
collection. The sizes of the fields were approx-
imately 225 ha, 117 ha, and 25 ha for winter 
wheat, barley, and canola, respectively. For 
more information, please refer to DLR (2016).

3 Materials and Methods

3.1 Field Data

The ground truth data collection was carried 
out for 20 weeks from 17 April until 28 Au-
gust 2013 at weekly intervals during the crop 
growing season. During the field campaign, 
almost all growing stages of the winter wheat, 
barley, and canola were recorded. During each 
sampling expedition, two random centers in 
each field were chosen, and five sampling lo-
cations were established with five (50 cm × 
50 cm) squares around each center (Fig. 1). 
The squares were used to collect the soil sam-
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ples, i.e., approximately 10 samples were col-
lected in each crop field during each field trip. 
LAI was measured using a handheld LAI-
2200 plant canopy analyzer (LI-COR) close to 
the squares (Fig. 2). The 270° view cap was 
used to hide the operator from the sensor. Nor-
mally, LAI can be computed using two read-
ings, the above (A) and below (B) canopy 
readings. To evaluate the number of below (B) 
readings necessary to decide with 95% confi-
dence that the true LAI mean is within ± 10% 
of the measured LAI, the operator took an LAI 
reading based on 6 below (B) readings that in-
cluded both the thinnest and densest parts of 
the canopy. Next, the standard error of the LAI 

(SEL) was divided by the LAI (SEL/LAI), and 
a table provided by LI-COR was used to deter-
mine the number of B readings necessary for 
all further readings. After collecting the LAI 
values in the field, post-processing of data was 
performed in the lab using the software from 
LI-COR, i.e. FV2200 (aHMadian et al. 2016a).

The GPS coordinates of the measurements 
were recorded with a handheld Trimble, i.e., 
GeoExplorer 2008 series or GeoXH handheld, 
GPS device for mapping of the data in a Geo-
graphic Information System (GIS). The accu-
racy is between 2 m – 5 m.

Gravimetric (GSM) and volumetric (VSM) 
soil moisture was measured, and using a 

Fig. 1: a) Study area including barley (A), winter wheat (B), and canola (C) in the Durable Environ-
mental Multidisciplinary Monitoring Information Network (DEMMIN). The background data were 
taken from GeoBasis (M-V) (DOP40), GeoBasis (M-V) (ATKIS), and GeoBasis (DE). b) The study 
area was shown by dual polarimetric TerraSAR-X using PDR index and colour slicing (3) on 21 
June 2013. As an example of ground truth data collection, the light-orange squares show the loca-
tions of the soil samples, and the blue squares show the squares.
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hand sledge and five 5.6 cm diameter cylin-
der/rings (corresponding to five squares) were 
used for laboratory analysis. All soil samples 
were weighed, i.e., weight of wet soil, and then 
dried in an oven for approximately 24 hours at 
105 °C to obtain constant weight. Bulk density 
(BD) was calculated using the oven dry weight 
and the inner volume of the cylinder/ring.

(1) and (2) show the formulas for computing 
the GSM, and VSM. The soil moisture content 
was determined by averaging the weight of 
samples as the ratio of the water mass present 
in the soil to the dry weight of the soil sample 
using (1), and by volume as the ratio of water 
volume to the total volume of the soil sample 
for volumetric soil moisture using (2) (Fig. 3).

GSM (g/g) = (W1(g) – W2(g))/W2(g) (1)

VSM (g/cm3) = GSM (g/g) × BD (g/cm3) (2)

where W1 is the weight of wet soil in grams, 
and W2 is the weight of oven dry soil in grams.

3.2 Satellite Images

To study the LAI variation during the whole 
growing season, TerraSAR-X (TSX) satellite 
images were used for the acquisition of high-

resolution SAR images in Stripmap mode 
(SM) during the year 2013. The specifications 
of the aforementioned images as well as the 
related growing stages of each crop are sum-
marized in Tab. 1. The Feekes scale was used 
to identify the phenological development stag-
es of winter wheat and barley (large 1954). 
The BBCH-scale was also used to describe 
the phenological development of canola plants 
(lancasHire et al.1991).

In this study, Multi Look Ground Range 
Detected product operated in SM with co-po-
larized channels, i.e., HH and VV, was used 
(all images). This product, i.e., Multi Look 
Ground Range Detected, is a detected multi 
look product with reduced speckle and ap-
proximately square resolution cells. The im-
age coordinates are oriented along the flight 
direction and along the ground range. The 
pixel spacing is equidistant in azimuth and in 
ground range. A simple polynomial slant to 
ground projection is performed in range using 
a WGS84 ellipsoid and an average, constant 
terrain height parameter (rotH et al. 2005). 
The spatial resolution of all images is approxi-
mately 6 m × 6 m.

Initially, all the images were georeferenced 
using SRTM 1-arc-sec (Shuttle Radar Topo-
graphy Mission). Since all the delivered im-
ages were already multilooked, a time series 
of images was built and co-registered in order 
to perform De Grandi multi-temporal filter-
ing (de grandi et al. 1997). All images were 

Fig. 2: LAI of agricultural crops using ground truth data collection during the complete growing 
season.
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geocoded and afterward radiometrically cali-
brated in order to retrieve the sigma nought 
(σ0) using the SARScape 5.1 module of ENVI 
5.1. Sigma nought (σ0), expressed in decibels 
(dB), is the conventional measure of the radar 
backscattering coefficient. This parameter is 
defined as a normalized dimensionless num-
ber that compares the strength of the signal 
observed to that "expected" from an area of 
one square meter (raney 1998).

3.3 Analysis

Three different approaches were considered in 
this study to estimate the LAI of different ag-
ricultural crops during the whole growing sea-
son. Using ground truth data collection, and 
the closest acquisitions of TSX images, a lin-
ear or nonlinear relationship was constructed 
between the ground truth data, i.e. LAI, and 
the corresponding pixel values, i.e., polariza-
tion channels and variables, from TSX imag-
es, i.e., the same GPS coordinates of the meas-
urements and TSX pixels. A linear and nonlin-
ear regression model was used to simplify the 
complex relationship between radar backscat-
tering and vegetation characteristics, i.e. LAI. 
The polarization variables, e.g. HH+VV and 
HH/VV, were retrieved from the satellite data 

based on a pixel to pixel calculation. The dis-
advantages of these simple regression models 
are the dependence of model parameters and 
the little information provided on the physics 
of the scattering events involved (ricHards 
1990). It is also worth noting that the follow-
ing index was also used as a polarization var-
iable to assess the biophysical parameters of 
the crops, i.e. LAI (singH 2006):

Polarization discrimination ratio 

=  
(σ0VV-σ0HH)

  ___  (σ0HH+σ0HH)      (3)

The correlation coefficient (R2) and the 
root-mean-square error (RMSE) were report-
ed for the linear and nonlinear regressions.

For the second approach, stepwise regres-
sion was used to identify the optimal set of po-
larization channels (HH, VV) and polarization 
variables, e.g. HH/VV, for providing accurate 
estimates of LAI for the aforementioned agri-
cultural crops. In stepwise regression models, 
the sigma nought of HH and VV polarization 
and polarization variables were set as the in-
dependent variables, while canopy character-
istics, i.e. LAI, of the agricultural crops were 
set as the dependent variables. For the step-
wise method, in addition to R2 and RMSE val-
ues, adjusted R2, p-value and F-stat were also 

Fig. 3: Volumetric soil moisture (VSM) (g/cm3) of agricultural crops using ground truth data collec-
tion during the complete growing season.
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For the third approach, The Water Cloud 
Model (WCM) that was developed by atteMa 
& ulaby (1978) was used to assess the rela-
tionships between the polarization channels, 
i.e., HH and VV, and the LAI of each crop. In 
this model, total backscatter σ0 is expressed as 
the incoherent sum of backscatter from veg-
etation σ0veg and backscatter from the under-
lying surface σ0soil, which is attenuated by the 
vegetation layer through the two-way attenu-
ation factor τ2.

reported for assessment of the goodness of fit. 
In this study, forward stepwise regression was 
used to build the models. This technique starts 
with no model terms then adds the most statis-
tically significant term, i.e., polarization chan-
nels or variables. This significant term is the 
one with the highest F statistic or the lowest 
p-value at each step until there are no terms 
left (Matlab Statistics Toolbox User’s Guide). 
In other words, inclusion of other parameters 
would not contribute positively to the success 
of the model.
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0 2 2
1

2 2cos (1 exp ) ( ( )) exp
cos cos
BV BVAV C D VSMσ θ

θ θ
   = − + + ⋅ −      

(8)

0 0 2 0
veg soilσ σ τ σ= +               (4)

20
1

2cos (1 exp )
cosveg
BVAVσ θ

θ
 = − −  

            (5)

22 2exp
cos
BVτ

θ
 = −  

                 (6)

In these equations, Parameter A relates to 
the radar backscatter from a vegetation cano-
py, parameter B relates to canopy attenuation 
(alastair et al. 2003), and θ is the incidence 

angle. V1 and V2 are descriptors of the cano-
py, and backscatter (σ0) is expressed in power 
units.

The backscatter from the soil surface σ0 soil 
can be expressed as follows:

0 ( )soil C D VSMσ = +              (7)

Parameters C and D are dependent on soil 
moisture, and VSM is the volumetric soil 
moisture, (8) is obtained by grouping these 
terms (4) – (7):

Because an important part of the scatter-
ing and attenuation is controlled by the leaves, 
some studies propose using the LAI as the 
canopy descriptor (Hosseini et al. 2015, inoue 
et al. 2014a, KuMar et al. 2015). Furthermore, 
some studies propose V1=1 and V2= LAI (Van 
leeuWen & cleVers 1994, ulaby et al. 1984), 
therefore, (9) can be written as:

0cos cos
2 ( ) cos

ALAI Ln
B C D VSM A
θ σ θ

θ
−= −

+ −
       (9)

All parameters of the model, i.e., A, B, C, 
D, are calculated using the non-linear least-
squares method. The “brute-force” algorithm 
was chosen to evaluate residual sum of squares 
(RSS) for the parameter values. In this algo-
rithm, one can introduce a two-row data frame 
as the upper and lower values, and the algo-
rithm assumes the lower value as the start val-
ue, creates a grid between these two values of 
each parameter, runs an optimization starting 
at each point on the grid and returns the best 
value. This model is calibrated for each crop 
type and polarization, and different param-
eters are obtained for each crop-polarization.

To determine how well the models are cre-
ated, a validation procedure was also per-
formed. In this part, the LOOCV approach 
was used in order to validate the models 
(stone 1974). LOOCV has been shown to be 

superior to split-sample validation, particu-
larly for smaller sample sizes (goutte 1997). 
This approach omits a single observation from 
the dataset, and then predicts its response us-
ing the regression model created with the re-
maining observations. This procedure is then 
repeated, in turn, for each observation in the 
dataset (daVidson et al. 2006). In other words, 
we fit a model to a subset, i.e., original data 
minus omitted single observation, of the to-
tal measured data, and then we evaluate how 
well the model predicts the remaining data. To 
evaluate the ability of each model to predict 
the biophysical characteristics of the crops, 
the root-mean-square error (RMSE), the cor-
relation between the observed and predicted 
responses (cross-validated R2), adjusted R2, 
the mean-absolute error (MAE), p-value and 
the coefficient of variation (CV) were also re-
ported. All of these terms are commonly used 
measures of model uncertainty. The RMSE is 
often used to quantify model precision, while 
R is often used to assess model accuracy 
(olden & JacKson 2000). Furthermore, MAE 
is less sensitive to extreme data values (Will-
Mott 1982). CV gives an indication of the dif-
ference compared to the mean of the observed 
variable (Kross et al. 2015).
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Furthermore, in order to study the multicol-
linearity between the predictors, i.e., polariza-
tion variables, multicollinearity analysis was 
performed, and the polarization variables, i.e. 
predictors, which had high correlation with 
the most significant term of stepwise regres-
sion were omitted from the analysis. The col-
linearity between the predictors is less than 
0.3 (r < 0.3) in all equations of Tab. 3. This 
analysis should be performed when the inde-
pendent variables are not independent from 
each other.

As can be observed from Tab. 3, the per-
formance of polarization variables employed 
for selecting the coefficients for use in predic-
tive models varied between vegetation types. 
As observed from Tab. 3, stepwise regression 
successfully predicted the amount of LAI of 
different agricultural crops, and a strong cor-
relation was observed between LAI and the 
polarization variables using this approach for 
all three crops. The amount of error is an 
important factor for the practical use of any 
given model. Therefore, the LOOCV method 
was employed to ensure the normality of re-
siduals and to improve the statistical models 
for predicting the LAI of crops. As observed 
from Tab. 4, some values of R2 and adjusted 
R2 of cross validation are higher than those of 
the original dataset, and the others are lower. 
Nonetheless, the results show values that are 
close to those of the original models.

Following the first two approaches, the Wa-
ter Cloud Model (WCM) was parameterized 
using LAI, volumetric soil moisture and TSX 
dual polarimetric data. Estimating LAI from 
the backscatter using the water-cloud model 
was also successful, and a strong relationship, 
i.e. R2, between estimated and derived LAI 
was observed. The results of the inversion are 
provided in Fig. 4.

Tab. 5 shows the relation between the esti-
mated and the observed LAI values using the 
WCM for all three crops. The R2, RMSE and 
MAE statistics as well as the coefficients, i.e., 
a, b, c, d, are provided in the Tab. 5. An obvi-
ous underestimation was observed for the LAI 
> 7 of winter wheat. This is in agreement with 
findings of MORAN et al. (1998), who showed 
that there is an underestimation at the higher 
values and overestimation of LAI of barley be-
tween 3.5 and 4 m2/m2 (Fig. 4).

4 Results

The polarization channels and variables val-
ues of the images collected during the whole 
growing season were correlated with LAI data 
of the corresponding field measurement cam-
paigns (closest in time). As the first approach 
in the relationships between radar backscat-
tering and the LAI, simple linear and non-
linear degree of determination R2 and RMSE 
were calculated. Tab. 2 presents the results of 
the correlation analysis between LAI of crops 
and the remotely sensed parameters extracted 
from TerraSAR-X satellite images. All coeffi-
cients in the aforementioned Table are signifi-
cant, with p-values less than 0.01. A high cor-
relation between LAI values and radar back-
scatter, especially in the HH/VV polarization 
variable was observed on the barley field (R2 
= 0.9437), whereas this polarization variable 
shows moderate correlation (R2 = 0.4946) for 
winter wheat (narrow leaves)); on the other 
hand, for canola, the maximum determina-
tion coefficient is 0.5331 for HH polarization. 
Overall, the LAIs were not strongly correlated 
with polarization channels and variables, es-
pecially for the winter wheat. The results in-
cluded some weak or negligible relationships, 
as well as strong relationships, especially for 
barley. However, both low and high correla-
tion between the variables of dual polarimet-
ric TSX data and LAI are presented here to 
clearly show the inherent limitations and po-
tential for accurate assessment of LAI (inoue 
et al. 2014a) of different crops using simple 
linear and nonlinear regression.

For the second approach, stepwise regres-
sion was used to establish a minimum and op-
timal set of polarization channels and varia-
bles to estimate the LAI of crops. To meet the 
assumption of the stepwise regression for the 
validation models, four diagnostic plots were 
studied, including the residuals versus the fit-
ted values plot, Quantile-Quantile normal plot, 
scale-location plot, and the standardized re-
siduals against leverage plot. Recall that a 
least-squares regression assumes that the er-
rors (residuals) are normally distributed, that 
they are centered on the regression line, and 
that their variance does not change as a func-
tion of x, i.e., homoscedasticity. All assump-
tions of the regression appeared to be upheld. 
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the timely monitoring of different agricul-
tural crops such as wheat, barley, and canola 
growth.

When the LAI is low (LAI < 2), the prevail-
ing phenomenon is the attenuation of the soil 
contribution by the vegetation (Jiao et al. 2011, 
PréVot et al. 1993). In contrast, when the LAI 
is high (LAI > 4), the soil contribution is neg-
ligible, and the backscattering is dominated 
by the vegetation contribution (PréVot et al. 
1993). Jiao et al. (2011) reported a loss in sen-
sitivity at LAI values more than 3.0 m2/m2 for 
combinations incorporating one or more co-
polarizations. In the results presented here, no 
saturation occurs, even for higher LAI values 
(Fig. 4). This behaviour is similar to that re-
ported by PréVot et al. (1993) and ulaby et al. 
(1984). PréVot et al. (1993) showed that for a 
given soil moisture, the function relating the 
backscattering coefficient in X-band to LAI 
is approximately monotonic when LAI > 2. 
Thus, even if one is only interested in LAI es-
timation, a unique radar configuration can be 

The accuracy is relatively the same for HH 
and VV but a slightly higher correlation of VV 
polarization was observed for the barley and 
canola. This is because the trend in the radar 
backscattering is generally similar in VV as in 
HH polarization. For X band TSX and afore-
mentioned crops, the correlation coefficients 
(R2 values) between the observed and estimat-
ed LAI were approximately 0.7 using WCM.

5 Discussion

Our analysis using high-resolution satellite 
images taken by TSX has determined clear 
and consistent relationships between X-band 
sigma naught and canopy LAI variables us-
ing different statistical approaches. Although 
a correlation coefficient and accuracy of LAI 
retrieval can be affected by the underlying 
mechanisms, the reasonable interpretation of 
our consistent results strongly suggests the 
potential capability of X-band TSX SAR for 

Tab. 2: Summary of the correlation coefficients between the X-band σ 0 of TSX and LAI of winter 
wheat, barley, canola using simple linear and nonlinear regression. “ ”, * and ** represent the lin-
ear, power and exponential relationships, respectively.

Index Stat Info
LAI

Winter Wheat Barley Canola

HH
R2 0.0770 0.0668 0.5331

RMSE 0.8483 0.9729 0.6732

HH/VV
R2 0.4946* 0.9437 0.1486**

RMSE 0.6277* 0.2391 0.9091**

HH-VV
R2 0.2916* 0.00728* 0.1571

RMSE 0.7432* 1.003* 0.9046

HH+VV
R2 0.06742 0.1352* 0.5156

RMSE 0.8527 0.9366* 0.6857

PDR
R2 0.2679* 0.002678* 0.1586

RMSE 0.7555* 1.006* 0.9038

VV
R2 0.1194 0.2816* 0.4704

RMSE 0.8286 0.8536* 0.7171

VV/HH
R2 0.2674** 0.2674** 0.1473**

RMSE 0.7558** 0.7558** 0.9098**

VV*HH
R2 0.2645* 0.0652 0.0408*

RMSE 0.7572* 0.9738 0.965*
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adequate if the optimum set of satellite data 
acquired is especially for narrow leaf crops. 
Although information on crop growth must 
be temporally frequent in order to adequately 
characterize crop productivity, as it was ob-
served for the retrieval of barley using simple 
regression by the HH/VV variable, the opti-
mum choice of satellite data during the whole 
growing season can be sufficient for accurate 
estimation of LAI. The estimation of LAI for 
barley is correct since its precision given by 
the RMSE is 0.23 m2/m2 using the HH/VV 
variable. The relatively good accuracy ob-
tained is most likely related to the optimal 
choice of satellite data in a specific growth 
stage, as mentioned before, and the choice 

of suitable radar data acquisition likely ac-
counts for these encouraging results. Further 
validation of this point is needed, and more 
research is necessary to investigate this as-
sumption in detail. The HH/VV polarization 
ratio at a steep incidence angle, i.e., ~ 27° and 
~ 31°, was strongly correlated with wheat LAI 
(satalino et al. 2006), and the same polari-
zation ratio has been correlated with the LAI 
of rice (cHen et al. 2009) and with corn (Jiao 
et al. 2011). The results with barley confirm 
the results mentioned above, but winter wheat 
shows moderate correlation with the ratio.

The linear co-polarizations are less sensi-
tive to volume scattering from within a veg-
etation canopy (Jiao et al. 2011). This low-

Transfer Function R2 RMSE Adj-R2 F-stat p-value
LAI – Winter Wheat = (5.016 × HHdVV) + (0.546 × HHpVV)

+ (–1.08 × HH) + 0.664 0.64 0.543 0.62 43.9372 < 0.05

LAI – Barley = (5.263 × HHdVV) + (0321 × HHmVV) + 0.675 0.949 0.229 0.947 514.87 < 0.05
LAI – Canola = (0.72145 × HH) + (–0.1855 × HHmVV)

+ (–0.0086256 × VVmulHH) + 9.932 0.7866 0.4639 0.7742 63.8733 < 0.05

Models R2 Adj-R2 RMSE MAE CV p-value
LAI-Winter 

Wheat 0.6305 0.6159 0.5968 0.4589 28.8454 <0.05

LAI-Barley 0.944 0.941 0.2485 0. 2063 3.5821 <0.05
LAI-Canola 0.7629 0.7489 0.4841 0.3745 13.1209 <0.05

A B C D R2 RMSE MAE
HH-LAI-Wheat -0.14 -0.3 -0.13 0.11 0.7289 0.6709 0.5375
VV-LAI-Wheat -0.14 -0.29 -0.13 0.11 0.6947 0.6863 0.5472
HH-LAI-Barley -1.06 -0.33 -0.87 -0.2 0.7496 0.7084 0.5807
VV-DB-Barley -1.56 -0.33 -1.28 -0.3 0.7516 0.7084 0.5910
HH-DB-Canola -1.39 -0.07 -0.1 -1.3 0.7552 0.6107 0.4697
VV-DB-Canola -0.5 -0.11 -0.06 -0.53 0.7861 0.5703 0.4581

Tab. 3: Transfer functions and statistical information of the calibration of LAI of winter wheat, bar-
ley, and canola. HHdVV, HHpVV, VVmHH, and VVmulHH correspond to σ 0HH/σ 0VV, σ0HH+σ0VV, 
σ0VV-σ0HH, σ0HH×σ0VV, respectively.

Tab. 4: Statistical information of validation of LAI models of winter wheat, barley, and canola using 
leave-one-out approach.

Tab. 5: Parameter values and statistics retrieved in the water cloud model for this study. Param-
eters (A, B, C, D) were calculated using (9).
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metric TSX data suffer from a lack of HV po-
larization channels, which are related to vol-
ume scattering (cable et al. 2014a). Therefore, 
a multiple variable stepwise regression ap-
proach, i.e., polarization channels and polari-
zation variables, was used to more accurately 
estimate the LAI of agricultural crops without 
any input variables, e.g. soil moisture, since 
theoretical and semi-empirical models need 
some input variables to calibrate the model. 
The stepwise models can be built using at least 
two polarization channels. With such an ap-
proach, a priori knowledge of soil moisture is 
not required in order to estimate LAI. These 
results demonstrate that combinations of po-
larization channels and variables using a step-
wise approach produce better LAI estimations 
when compared to simple linear and nonlinear 
regression, except for barley. This approach 
was superior to WCM in terms of RMSE, as 
shown above.

Stepwise regression analysis which uses po-
larization variables is expected to be a more 
robust approach than a simple linear or non-
linear regression analysis. Multiple crop vari-
ables are required to fully explain variations 
in backscatter, as explained by Mcnairn et 
al. (2002). The same concepts were applied 
here. The coefficients provided in Tab. 3 sug-
gest that multiple polarization channels are 
required to better explain variations in crop 
variables such LAI. As can be observed from 
Tab. 3, different polarization channels and 

er sensitivity was reflected in weaker corre-
lations with LAI for HH and VV, as well as 
the co-polarization variable for the wheat and 
canola. The backscatter signal from vegetated 
surfaces is affected by many factors, includ-
ing the physical structure of the plants and 
canopy volume (biomass, leaf size, stem den-
sity, LAI, etc.), the surface volumetric mois-
ture of the soil below the canopy (inoue et al. 
2014b), as well as sensor configurations, such 
as frequency, polarization, and incidence an-
gle, strongly affect backscattering coefficients 
(inoue et al. 2002, loPez-sancHez & ballest-
er-berMan 2009). Direct scattering from the 
canopy and the soil, double-bounce backscat-
ter between the soil surface and crop canopy, 
as well as multiple interactions between the 
vegetation components and the soil, contrib-
ute all to the magnitude and scattering charac-
teristics of the SAR response. Therefore, sim-
ple linear or nonlinear expressions based only 
on intensity values fail to adequately express 
and explain the interaction of microwaves 
with a complex vegetation-over-soil target. 
More sophisticated models, such as dual po-
larimetric decomposition techniques (Jagd-
Huber et al. 2013a, JagdHuber et al. 2013b), 
seem to be necessary to quantify this concept 
to separate ground scattering from vegetation 
scattering and studying different vegetation 
polarimetric mechanisms, e.g. single bounce 
and/or double bounce, using multi-temporal 
dual polarimetric TSX data. Our dual polari-

Fig. 4: Relationship between measured and predicted the LAI of winter wheat, barley, and canola 
using the WCM model. The VV and HH indicate simulated σ 0 values in VV and HH polarization, 
respectively.
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with respect to the satellite overpasses can 
reduce the uncertainties in the estimation of 
crop-related parameters, i.e. LAI. The acqui-
sition times for the ascending and descending 
orbits of TSX are different (18:00 hrs ascend-
ing pass (± 0.25 hrs), 06:00 hrs descending 
pass (± 0.25 hrs)). The presence of dew drops 
in the morning may act to change the dielectric 
constant of soil and vegetation and, may have 
directly introduced errors into the soil and veg-
etation parameters retrieval. However, these 
error sources are not severe (He et al. 2014).

Each of these approaches has its advan-
tages and disadvantages; the stepwise regres-
sion approach does not need the soil moisture 
as an input variable, but since this approach 
is empirical, it is site- and study-specific and 
requires further research to assess robustness 
for LAI estimation. The stepwise regression 
approach cannot be used with just one polar-
ization channel. WCM can be implemented 
with single polarimetric data, but it requires 
information about soil moisture.

6 Conclusion

In this study, the applicability of X-band TSX 
(SAR) for estimating leaf area index (LAI) 
was assessed for three major crops: wheat, 
barley and canola. The comprehensive anal-
ysis of the relationship of X-band multi-tem-
poral dual polarimetric TSX in HH and VV 
with the LAI variable shows the response of 
SAR signatures to wheat, barley, and canola 
canopies. Although the X-band is not the best 
frequency for monitoring soil and vegetation 
parameters due to the weak penetration of 
the canopy and soil, a rather high sensitivity 
of the polarization channels and variables of 
TSX sensors to wheat, barley, and canola LAI 
was observed during this research work using 
different statistical approaches. We observed 
that the coefficients of determination of the 
stepwise and WCM approaches between the 
polarization channels/variables and LAI were 
higher than 0.64.

The LAI of barley had a significantly high 
correlation with the HH/VV variable, and 
these relationships were consistent through-
out all the growth stages. This relationship 
was expressed by simple linearity with high 

variables such as HH-VV and HH+VV have 
been presented in the models discussed above. 
However, the effect of the VV×HH variable is 
not fully understood and should be investigat-
ed in more detail in the future. It is also worth 
mentioning that we were not able to study any 
phase-relation between HH and VV since we 
were using the MGD data based on intensi-
ty only (MGD = Multi Look Ground Range 
Detected). This means that it was not possi-
ble to process the single bounce or the dou-
ble bounce, or any other polarimetric feature 
using this format (MGD). The authors predict 
that the correlation will be even better once 
one can include true polarimetric indices/
information, e.g., entropy/alpha decomposi-
tion features or Pauli elements. However, this 
would require processing the single look slant 
range complex (SSC) data of TSX.

In the past, many different formulations 
of the WCM have been proposed (graHaM 
& Harris 2003a). Since there is no gener-
al agreement upon the precise setup of the 
WCM, we used the LAI parameter as the in-
dicators. Because an important part of the 
scattering and attenuation is determined by 
the leaves, many studies propose the LAI as a 
vegetation indicator, e.g. lieVens & VerHoest 
(2011) and PréVot et al. (1993). There is no 
general theoretical background defining the 
best set of canopy descriptors and predicting 
the values of the A and B parameters (PréVot 
et al. 1993). For the possibility of inversion, 
the model should involve as few variables as 
possible, and its mathematical form must per-
mit inversion (PréVot et al. 1993). The water-
cloud model adequately simulated LAI as the 
canopy developed demonstrating the poten-
tial of dual polarimetric X band SAR data for 
monitoring indicators of crop productivity.

The errors in estimating the LAI parame-
ter of the above crops can be attributed to two 
different facts: first the complexity of the veg-
etation structure is difficult to summarize in 
a bulk vegetation parameter as needed for the 
WCM (PréVot et al. 1993), second for estima-
tion of LAI, rough estimates of the soil mois-
ture content on a 4 – 5 day basis are sufficient 
to carry out the retrievals of LAI and obtain 
useful information on crop growth (Wigneron 
et al. 1999). However, the authors believe that 
simultaneous timing of ground-truth sampling 
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2343–2371, http://doi.org/10.3390/rs6032343.

cable, J., KoVacs, J., sHang, J. & Jiao, X., 2014b: 
Multi-temporal polarimetric RADARSAT-2 for 
land cover monitoring in northeastern Ontario, 
Canada. – Remote Sensing 6 (3): 2372–2392, 
http://doi.org/10.3390/rs6032372.

carlson, t.n. & riPley, d.a., 1997: On the relation 
between NDVI, fractional vegetation cover, and 
leaf area index. – Remote Sensing of Environ-
ment 62 (3): 241–252, http://doi.org/10.1016/
S0034-4257(97)00104-1.

cHen, J., lin, H., Huang, c. & Fang, c., 2009: The 
relationship between the leaf area index (LAI) of 
rice and the C- band SAR vertical/horizontal 
(VV/HH) polarization ratio. – International 
Journal of Remote Sensing 30 (8): 2149–2154, 
http://doi.org/10.1080/01431160802609700.

daVidson, a., Wang, s. & WilMsHurst, J., 2006: 
Remote sensing of grassland–shrubland vegeta-
tion water content in the shortwave domain. – 
International Journal of Applied Earth Observa-
tion and Geoinformation 8 (4): 225–236, http://
doi.org/10.1016/j.jag.2005.10.002.

de grandi, g.F., leysen, M., lee, J.s. & scHuler, 
d., 1997: Radar reflectivity estimation using 
multiple SAR scenes of the same target: tech-
nique and applications. – 1997 IEEE Interna-
tional Geoscience and Remote Sensing Sympo-
sium (IGARSS), Remote Sensing – A Scientific 
Vision for Sustainable Development 2: 1047–
1050, 3.–8. August 1997, http://doi.org/10.1109/
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coefficients of determination. This was most 
likely due to optimum use of satellite images. 
Simple linear and nonlinear regressions were 
not able to estimate the LAI of winter wheat 
or canola accurately. In addition to the posi-
tive results, some of the negative results would 
be useful for basic studies on backscattering 
processes and for operational applications of 
SAR sensors in the future. On the other hand, 
stepwise and WCM approaches showed their 
capability for the estimation of winter wheat 
and canola. The stepwise approach showed 
its superiority in terms of RMSE. The WCM 
model was calibrated for the HH, and VV po-
larizations. These calibrated models were then 
used to estimate LAI. The root-mean-square 
error (RMSE), mean-absolute error (MAE) 
and correlation coefficient (R2) statistics were 
used to evaluate the model’s accuracy.

The results from both the model calibration 
and validation confirmed that when using X-
band TSX data, the strongest correlations and 
lowest errors of estimation were found when 
these two approaches were used. This was 
true for both winter wheat and canola.
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