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(CVA) (MALILA 1980). From a technical per-
spective, remote sensing change detection is 
���� ������	
��������������
����������� ����
or more images. Generally, these changes can 
be measured in terms of intensity, frequency, 
spatial and temporal extent, spatial and tem-
poral stability, rates and speed. Estimating 
change with remote sensing data of only one 

1 Introduction

Change detection is a key remote sensing ap-
plication. Many state-of-the-art methods were 
developed as early as in the 1970s and 1980s, 
e.g., image differencing (WEISMILLER et al. 
������� �����
�����	
������ 
���������� ������
(JENSEN et al. 1987), or change vector analysis 

Summary: Traditional change detection refers to 
bi-temporal approaches. With the recent open ac-
cess policy of several data providers, the use of 
multi- to hyper-temporal data for change detection 
and monitoring applications becomes feasible. 
Dense time series with several hundreds of Land-
sat-like satellite images are rarely used to date. This 
�������!�����	�������������������������������
�-
es with respect to forest monitoring on a local study 
area on Vancouver Island (Canada). Each of the ap-
proaches has advantages and disadvantages that 
make it particularly powerful for certain purposes. 
The more datasets are involved the more complex 
the analysis becomes. At the same time, complex 
processes such as forest structural development can 
only be resolved with multi- to hyper-temporal 
datasets. Dense time series are an adequate means 
to account for the dominant temporal dimensions of 
forest development and change including pheno-
logical or seasonal variation, structural or long-
term trends, as well as abrupt changes and changes 
in forest dynamics. Exploration of dense time se-
����� ��� ���� "��� ��� �	
����� ���� �� ��
����#� ��#��
temporal resolution sensors such as Sentinel-2.

Zusammenfassung: Bi-temporale Veränderungs-
detektion, Veränderungstrajektorien und Zeitrei-
henanalyse sowie deren Anwendung im Waldmoni-
toring. Traditionelle Veränderungsdetektion be-
zieht sich meist auf bi-temporale Ansätze. Durch 
die derzeitige offene Datenpolitik verschiedener 
Datenanbieter wird die Anwendung von multi- und 
hyper-temporalen Datensätzen für die Verände-
rungsdetektion und das Monitoring zunehmend 
praktikabel. Dichte Zeitreihen von mehreren Hun-
dert Landsat-ähnlichen Satellitendaten werden ak-
tuell nur wenig genutzt. Diese Studie zeigt beispiel-
haft die Möglichkeiten dreier verschiedener Ansät-
ze in Bezug auf das Waldmonitoring an einem Un-
tersuchungsgebiet auf Vancouver Island (Kanada). 
Jeder der drei Ansätze hat Vor- und Nachteile, die 
sie besonders leistungsstark für bestimmte Anwen-
dungen machen. Je mehr Daten in die Analyse ein-
bezogen werden, desto komplexer wird die Analy-
se. Gleichzeitig können komplexe Prozesse wie die 
Waldstrukturentwicklung nur mit multi- und hy-
per-temporalen Daten entschlüsselt werden. Dichte 
Zeitreihen sind ein geeignetes Mittel, um die domi-
nanten zeitlichen Dimensionen der Waldentwick-
lung und -veränderung zu erfassen, darunter phä-
nologische oder saisonale Schwankungen, struktu-
relle oder Langzeittrends sowie abrupte Verände-
rungen und Veränderungen in der Walddynamik. 
Die Analyse dichter Zeitreihen ist essenziell für 
���� �	%������� &�����%� %�"*���#��� +���������� ����
������%�����
����;�<=���#�����+��������>?



130 Photogrammetrie � Fernerkundung � Geoinformation 2/2015

use and management. Dominant tree species 
in the southern part of Vancouver Island are 
western hemlock (Tsuga heterophylla), west-
ern redcedar (Thuja plicata��� ;�������� 	��
(Abies amabilis��� @��#����	�� �Pseudotsuga 
menziesii), yellow-cedar (Chamaecyparis 
nootkatensis), lodgepole pine (Pinus contor-
ta���#�����	���Abies grandis), and Sitka spruce 
(Picea sitchensis) (POJAR et al. 1991). Red al-
der (Alnus rubra) is a widespread species on 
logged or otherwise disturbed sites (POJAR et 
al. 1991).

The area has a strong climatic gradient, 
pronounced topography, and complex ecosys-
tem dynamics. Rainfall varies between about 
700 mm per year in Victoria and more than 
3500 mm per year at the west coast of Vancou-
ver Island (GOVERNMENT OF CANADA 2011). Pre-
cipitation falls mainly as rain predominantly in 
autumn and winter. The study site (Fig. 1) was 
chosen in the overlapping part of two world 
reference system (WRS-2) tiles with path/row 
indices p048r026 and p047r026. The study 
site has an area of 1000 × 1000 pixels (i.e., 30 × 
30 km2) with elevation ranging from about sea 
level to heights of about 1.135 m. In the pre-
sent study, we processed all available Landsat 
images taken between 1984 and end of 2012 
available from the USGS Global Visualization 
Viewer (http://glovis.usgs.gov/). They amount 
in 1.550 scenes including cloudy images as 
well as Landsat ETM+ SLC-off data. In the 
eighties and nineties, winter acquisitions were 
rarely taken. With the start of Landsat 7 in 
1999 and Landsat 5 working simultaneously 

acquisition requires detailed knowledge of the 
study site so that the features on the image can 
be related to processes on the ground. For long 
time, remote sensing analysts were mainly in-
terested in what is known as conversion, i.e., 
the replacement of one land use class by anoth-
er (COPPIN et al. 2004). Changes due to pheno-
logical changes of vegetation were frequently 
undesired, and it was seen as a prerequisite to 
avoid such changes by carefully selecting the 
images used for change detection. According 
to SINGH Ś� ���X��� ��	������� 
���#�� ����
�����
is “the process of identifying differences in 
the state of an object or phenomenon by ob-
serving it at different times”. Many compre-
hensive change detection reviews have been 
published (e.g., COPPIN et al. 2004, LU et al. 
2004, SINGH���X������������������<�
���#�����
long history of bi-temporal methods. Recent 
reviews include time series analysis (HECHEL-
TJEN et al. 2014) but do not refer to forestry. 
Forest managers and climate modellers are not 
only interested in forest loss due to land use 
change. They also need detailed information 
about structural changes of the land cover in-
cluding forest management, e.g., harvesting, 
replantation, and natural processes, e.g., forest 
growth, biomass accumulation, insect infes-
��������	����������
�Y���?�[���������#�������
Landsat archive in 2008 triggered the use of 
multi- to hyper-temporal datasets rather than 
bi-temporal data. However, to date there is no 
study examining potential and limits of each 
category. In the present paper, we compare bi-
temporal change detection, change trajectory 
analysis and time series analysis and their im-
plications for forest monitoring. We focus on a 
�������������������
�	
���Y����#����������-
advantages that complement the current un-
derstanding of change detection rather than 
rating each category according to achieved 
accuracies.

2 Data and Study Site

The study site is located on southern Vancou-
ver Island, British Columbia, Canada (Fig. 1). 
Most of the area is composed of forested land. 
The Vancouver Island forests are a major re-
source for the Canadian timber and paper in-
dustry. Thus, there is a long history of forest 

Fig. 1: Study site (black solid quadrangle) in 
the overlapping part of two neighbouring WRS-
2 tiles (black dashed line).
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Atmospheric correction was applied to 
all images using the Landsat Ecosystem 
Disturbance Adaptive Processing System  
(LEDAPS) atmospheric correction tool 
(MASEK et al. 2006, VERMOTE et al. 1997).

Cloud cover is a severe problem when us-
ing optical data. This becomes even more evi-
dent when using time series of many images. 
For bi-temporal change detection and trajec-
tory analysis cloud free images have been se-
lected. The dataset used for time series anal-
ysis disregards the choice of cloud-free im-
ages. Instead, we made use of all cloud-free 
pixels. All pixels that are not contaminated by 
clouds, cloud shadows or snow are referred 
to as “clear”. Clear land pixels are clear pix-
els that do not show water bodies. Masking of 
clouds, cloud shadow, snow and water is es-
sential. A sophisticated method was presented 
by ZHU & WOODCOCK (2012) with the object-
based function of mask (Fmask) algorithm. 
It provides masks for clouds, cloud shadows, 
snow, and water. Recent advances extended 
the Fmask algorithm to reduce errors based on 
multi-temporal analysis of Landsat data (ZHU 
et al. 2012, ZHU & WOODCOCK 2014). In this 
study, we applied Fmask with standard con-
	#�������� ��� ���� ���#��� ���� ����� ���� ������ 
tant mask to exclude contaminated pixels 
from time series analysis. Accordingly, each 
pixel has an individual time series. The num-
ber of observations varies over the image.

3.2 Bi-temporal Forest Change 
Detection

Relatively few of the numerous change detec-
tion methods that have been developed go be-
yond the discrimination of changed and un-
changed features (HECHELTJEN et al. 2014). 
Valu able information is added when additional 
information about the nature of change is pro-
vided. Change vector analysis (CVA) (MALI-
LA 1980) is a widely used and robust method 
which produces two quantities of change in-
formation: 1) change magnitude which repre-
sents the intensity of change; and, 2) change 
direction which provides information about 
the spectral behaviour of the change vector. 
BOVOLO & BRUZZONE (2007) provided a com-
prehensive theoretical framework for CVA.

the number of acquisitions was increased up 
to eight per month. The Scan Line Corrector 
(SLC) of Landsat 7 ETM+ failed in May 2003 
resulting in data gaps whose extent increases 
towards the far edges of each scan resulting in 
a loss of about 22% per scene whilst the pre-
cise location of the missing scan lines varies 
from scene to scene (CHEN et al. 2011). From 
late 2011, no Landsat 5 TM data are avail- 
able for the study area. Thus, only Landsat 7 
ETM+ SLC-Off images are available for 2012. 
One additional cloud free image from Land-
sat 8 OLI from July 2013 was processed as a 
reference image at the end of the observation 
period. All Landsat data have been processed 
consistently in order to allow for automated 
time series analysis. The datasets used for the 
bi-temporal change detection and trajectory 
analysis have been selected from the cloud and 
gap free datasets.

3 Methods

3.1 Pre-processing

Pre-processing included geometric and radio-
metric processing as well as cloud detection. 
The latter becomes relevant when all data of a 
time series are to be analyzed (ZHU & WOOD-
COCK 2014) or compositing techniques are cho-
sen to create cloud free composites (GRIFFITHS 
et al. 2013).

The majority of the established change de-
tection methods require high geometric reg-
istration accuracy at subpixel level as image 
misregistration may cause image object prop-
erties to be evaluated at incorrect locations. 
[����
���������������������	
�����������������
changes as well as the failure to identify genu-
ine changes due to even slight dislocations of 
image objects (TOWNSHEND et al. 1992). Very 
good geometric quality is reported for Land-
sat data processed with the Landsat Product 
Generation System (LPGS) which processes 
all Landsat scenes to Standard Terrain Cor-
rection Level 1T if the required ground con-
trol and elevation data are available. We re-
moved all images exceeding 80% cloud cover 
to assure good geometric quality. The result-
ant number of images is lowered from 1.550 
to 778.
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[��� 	���� 
���#�� ����
����� ���� ���� ����Y���
by unsupervised clustering using the expec-
tation maximization (EM) algorithm (BAZI et 
al. 2007). The map indicates vegetation loss-
es, vegetation increases and unchanged veg-
etation. The study site does not cover urban 
areas. Thus, all occuring changes can be at-
tributed to forest gain or loss.

3.3 Forest Change Trajectories

Trajectory analysis and time series analysis 
�������������
���������	����������������������
terms is often confused. Time series in remote 
sensing simply describe a dataset consisting of 
a sequence of images taken from the same area 
at different times. Time series analysis, how-
ever, is related to the composition of a time 
series. Time series decomposition into trend, 
seasonal and remainder (noise) components is 
a common technique to characterize time se-
ries and describe their temporal behaviour. An 
example is the seasonal-trend decomposition 
procedure (STL) based on a locally weighted 
regression smoother (LOESS) (CLEVELAND 
et al. 1990). A well-established method for 
time series analysis of remote sensing data is 
breaks for additive season and trend (BFAST) 
(VERBESSELT et al. 2010a, VERBESSELT et al. 
2010b) which allows for the detection of long-
term trends and of abrupt breaks in the trend 
and seasonal components. Whereas many re-
cent studies use time series they do not apply 
time series analysis in terms of decomposi-
tion (e.g., GRIFFITHS et al. 2012, KENNEDY et al. 
2007). Since most of these approachs aim at 
	����#����������������������Y��#������������
the data (LAWRENCE & RIPPLE 1999, KENNEDY 
et al. 2007, KENNEDY et al. 2010) they can be 
seen as a combination of time series analysis 
and trajectory analysis. As all of these studies 
focus on annual or less data, seasonal patterns 
cannot be explored.

Trajectory analysis in the present study is 
understood as analyzing multi-temporal data-
sets that have one observation per year or less. 
In the present case study, the trajectory is a 
compostition of multiple bi-temporal change 
detection results. Trends have to be interpret-
ed from the derived map rather than calcu-
lated from observed physical properties such 

CVA performs change detection by differ-
encing the spectral vectors of identical pix-
els in two co-registered multispectral images. 
The difference vector of all spectral bands can 
be described by its magnitude and its direc-
tion. Change magnitude is expressed as the 
Euclidean distance in the multidimensional 
feature space, calculated from the differences 
in each spectral band (1), (2):
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Change direction indicates the spectral di-
rection of change rather than providing from/
to classes, e.g., increase or decrease in a given 
image band over time. It can be calculated in 
several ways. We adopt the methodology de-
scribed by BOVOLO et al. (2010), who extended 
the polar domain approach (ALLEN & KUPFER 
2000) to represent higher dimensional feature 
spaces in two dimensions (3):
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where � is the direction expressed as multi- 
dimensional angle.

To show the performance of the bi-tempo-
ral approach we used data taken virtually at 
the same day of the year but six years apart. 
The data are from 2004-07-24 and 2010-07-
25. Both datasets are from the identical WRS-
2 tile and from Landsat 5. Image noise that 
remains after atmospheric correction or re-
sults from sensor degradation was reduced 
by relative radiometric normalization using 
the iteratively re-weighted multivariate alter-
ation detection (IR-MAD, CANTY & NIELSEN 
2008). The T-point thresholding (COUDRAY et 
al. 2010) was applied to the magnitude com-
ponent to separate change from no-change. 
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changes (e.g., GRIFFITHS et al. 2012). The com-
bined analysis of trends, seasonal cycles, and 
abrupt changes is rarely applied (VERBESSELT 
et al. 2010a, VERBESSELT et al. 2010b). A prob-
lem with Landsat data may be its irregular 
time spacing since many time series methods 
require regular time spacing.

Interpolation is a commonly applied tech-
��^������������������������������	���#�����VER-
BESSELT et al. 2006). The average gap length 
in our time series varies between less than 20 
days and more than 70 days in less favoured 
areas. The real gap length varies between 1 
day (cross-sensor Landsat 5/7 and adjacent 
tiles) and more than 1000 days in the high al-
titude regions and along shorelines. As the 
time series contain outliers in spite of mask-
��#� 
������ ���� ������#� �����Y�������� 	����-
ing was applied to reduce noise. An adequate 
state-of the art method is the Savitzky-Go-
����	������#��SAVITZKY & GOLAY 1964) which 
is also used in other time series approaches 
(JÖNSSON & EKLUNDH 2004). As indicated pre-
Y�������#���������	��������������������!��
�-
ed in understanding additional process di-
mensions such as seasonal pattern and their 
changes over time, long-term trend direction 
and intensity, timing and intensity of abrupt 
changes, and subtle changes that might be lost 
when looking only on trends. These processes 
are usually not directly related to spectral re-
sponses. Some indices, however, are suitable 
to characterize at least some of the processes 
to a certain degree although additional infor-
mation is often required for better characteri-
zation, e.g., lidar to quantify biomass accumu-
lation (DUNCANSON et al. 2010). The selection 
of appropriate spectral indices is essential to 
understand forest development. An index that 
is closely related to the structure of conifer-
ous forests is the normalized difference mois-
ture index (NDMI) (HARDISKY et al. 1983). It 
is calculated from near-infrared (NIR) and 
shortwave-infrared (SWIR) bands as follows 
(4). The numbers in brackets indicate the re-
spective Landsat TM/ETM+ bands:

NIR(4) SWIR(5)NDMI
NIR(4) SWIR(5)

−=
+

 (4).

As the SWIR band is sensitive to foliage 
water content and the fraction of dead leaf ma-

as the normalized difference vegetation index 
(NDVI) or other spectral indices. 

We take advantage of the CVA approach 
and perform bi-temporal change detection on 
consecutive image pairs instead of individual-
ly classifying them. LUNETTA et al. (2004) used 
CVA to assess land cover changes in a forested 
area in North Carolina in a similar approach. 
[����� 	����#�� ����
���� ����� �� ����������� �����
�� _� `� {� ������ ��� ��^������ ��� �������� ������
cover change. Higher temporal resolution is 
recommended, however. For the 29-year ob-
servation period in our study we chose a time 
�����Y���� �� ������ ������ �����?� [��� 	���� �����
step is only two years (Tab. 1). Consequently, 
a dataset with 11 time steps was created. Ten 
individual bi-temporal change detection tasks 
have been performed as described in section 
3.2. The individual results were subsequent-
ly combined in a way that allows to visualize 
the time span where the most intense changes 
have happened. These can be attributed to for-
est clearings.

3.4 Time Series Analysis for Forest 
Monitoring

Recent advances in medium and high resolu-
tion remote sensing focus on time series, i.e., 
trend analysis (DUBOVYK et al. 2013) or time 
series reconstruction by segmented regres-
sion modeling (KENNEDY et al. 2010). Most 
of these methods focus on trends or abrupt 

Tab. 1: Data used for change trajectories.

Dates Path/Row Sensor

1984-07-17 048/026 Landsat 5 TM

1986-08-08 048/026 Landsat 5 TM

1989-10-03 048/026 Landsat 5 TM

1992-08-17 047/026 Landsat 5 TM

1995-09-02 048/026 Landsat 5 TM

1998-09-26 048/026 Landsat 5 TM

2001-09-10 048/026 Landsat 7 ETM+

2004-07-24 048/026 Landsat 5 TM

2007-09-12 047/026 Landsat 5 TM

2010-07-25 048/026 Landsat 5 TM

2013-07-26 047/026 Landsat 8 OLI
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e) Determination of the minimum in the Web-
ster measure as the indicator of the break 
date

f) Performing the statistical non-parametric 
Kolmogorov-Smirnov test

g) Calculation of change properties, e.g., tim-
ing of change, intensity of change, recov-
ery rates after change event

From dense time series of forests several 
features can be calculated that describe the 
temporal behaviour of the index including 
date, duration and intensity of abrupt changes, 
shifts in seasonality, trends before and after 
major change events, date, duration and inten-
sity of secondary changes, long-term anoma-
lies, and regrowth rates.

3.5 Accuracy Assessment

The validation of change detection results is 
particularly challenging due to the very com-
mon lack of reference data for all time steps. 
Frequently, available ground information is of 
different date than the image data. The detec-
tion of clearcuts in Landsat images by means of 
visual interpretation is feasible because their 
size is often several hectares, and the spectral 
change signal is usually very clear. However, 
analysts often apply minimum mapping units 
�����������	���������#���������������
���#����-
�������
�������������	
�������Y��������Y���-
ally. Our validation procedure is based on the 
time series analysis. Studies exploring annual 
time series refer to the year of disturbance on-
�����������	������������������
�������������
��
(GRIFFITHS et al. 2012). We derived reference 
data from the dense Landsat time series itself 
since this dataset provides most comprehen-
sive temporal information. Bi-temporal data-
sets (as well as annual time series) allow indi-
cating a period of change rather than an exact 
����?� |�� �������� ������	��� ������� �������#�
on the time series results to select 30 pixels 
per disturbance year plus 30 pixels from the 
undisturbed pixels. For each of the resulting 
900 locations we extracted the NDMI time se-
ries, plotted and manually checked them. For 
some of the reference points the labels had 
to be revised. This was mainly because the 
changes happened in late fall of the previous 
year rather than in spring of the next year. For 

terial, NDMI is promising in forest monitor-
ing (GOODWIN et al. 2008). The pre-processing 
of the dense time series did not include radi-
ometric normalization because IR-MAD ob-
scures seasonal variation. Whereas this is ap-
preciated in many bi-temporal studies where 
seasonal variation is considered as noise, it is 
important to keep the seasonal variation pat-
tern in time series because of its additional in-
formation content.

As our main focus is on abrupt changes 
and recovery we used a robust method to de-
tect breaks in the Landsat time series and es-
timate recovery trends subsequently. The in-
���������������	�������}@~������������������
analyzed for discontinuities by applying the 
Webster measure (WEBSTER 1973). This meas-
ure is calculated with a pixel-based temporal 
moving window that is divided in two parts. 
For each part the mean is calculated, and the 
difference of the left hand and right hand 
means is plotted. The timing of change is as-
sumed at the point with the biggest differ-
ence, i.e., the minimum value. The size of the 
��Y��#��������������	�������������������
365 days. Hence, the time period considered 
in the moving window is always one full year, 
ensuring that seasonality is leveled out. This 
means that in a time series without change the 
Webster measure will be zero. To ensure the 
presence of real changes rather than outliers 
in the time series and at the same time pre-
Y�����#�	!�������������������������
����������-
ametric Kolmogorov-Smirnov test was per-
formed. Once the break point is detected sev-
eral properties of the time series may be ana-
lyzed, e.g., magnitude of change or recovery 
rate following the disturbance. The recovery 
trends are not linear but for ease of interpreta-
tion we calculated linear trends for the peri-
ods directly following the clearcut event. The 
time series based change detection method 
������� ���� ���"<��� ���������� ��� THONFELD 
et al. (2014):
a) Construction of individual NDMI time se-

ries for each pixel
b) Linear interpolation between all observa-

tions to create equally-spaced time series
c) Filtering the time series using Savitzky-Go-

����	���������������_�{��
d) Application of Webster discontinuity meas-

�����������	������������������



Frank Thonfeld et al., Bi-temporal Change Detection 135

propriate thresholds is challenging. The accu-
racy of clearcut detection, i.e., ignoring recov-
ery, was 93.4%.

Results of the change trajectory analysis 
are shown in Fig. 3. The major changes, i.e., 
clearcuts, are displayed with the colours indi-
cating the time span where the harvest hap-
�����?� ;� ���
�	
� ����� �� ���� ���Y���� �Y�����
cannot be derived. The detected change patch-
es retrace the clearcuts well. Some groups of 
trees left standing inside the clearcuts show 
up as well as small-scale change patches that 
have been rendered to install new forest roads. 
In the southern part of the study site, some 
mapped elongated clearcut patches are a result 
of topographic effects rather than real chang-
es. It can be seen in Tab. 1 that it was not pos-
sible to establish a time series of annual data. 
Some off-season data had to be used. The 
�������� 
��	��� ����� ��������� ����� �������

each of the 900 locations we checked if change 
and no-change pixels were detected correctly. 
For the trajectory and the time series we also 
�Y���������������������
���#���������
�	���
correctly. The reference dataset was adjusted 
to the bi-temporal study and the trajectory, re-
spectively. If there was a clearcut before the 
time covered by two observations, it was la-
beled as regrowth in the reference map.

4 Results and Discussion

The results of the bi-temporal change detec-
tion based on CVA are shown in Fig. 2. It can 
be seen that the two major changes, i.e., for-
est loss due to clearcut harvesting (red) and 
forest recovery due to the establishment of 
new forest cohorts (blue), are well displayed 
in the direction component (Fig. 2d). Change 
intensity, i.e., magnitude, is shown in Fig. 2c 
in grey levels with bright colours indicat-
ing strong changes and dark areas indicating 
small or no changes. Since forest regrowth is 
rather slow compared to forest clearcut har-
vest, the change magnitude is higher for for-
est loss where the spectral signature has com-
pletely changed. Detectability of regrowth 
depends on the time-lag between the two im-
ages and the growth rate of the forest. The for-
ests of the study site grow rather slowly. The 
�Y������ �

���
�� �� ���� 	���� ���� ����
����#�
clearcuts, recovery, and unchanged areas was 
only 51.9%. The main reason is that recovery 
is a long-term process that causes only gen-
tle spectral changes compared to the strong 
changes of clearcuts. Thus, the selection of ap-

Fig. 2: Subset of the study site (6 × 6 km2), a) Landsat from 2004-07-24, b) Landsat from 2010-07-
25 (RGB = 7-4-2), c) masked change magnitude, and d) masked change directions.

Fig. 3: Time span of clearcut events as result 
of change trajectory analysis.
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��	��� �

�������?� �������� ���� ���
���� ����� ��
change, even the month of the clearcut can 
be derived (Fig. 4a, b). As the forest harvest 
within a clearcut area takes several weeks un-
til all trees, branches, and woody debris are 
removed, there is some bias in this informa-
tion. However, start, end and duration of the 
clearcut can be derived, e.g., break duration 
in Fig. 4c. A combined map of clearcut events 
detected during the observation period and 
trends is shown in Fig. 4d. The trends refer to 
those areas that have been harvested before 
the start of the observation period and regrow 
since that time. White areas refer to mature 
and old-growth forests or to non-forest areas. 
Years of change were detected with an accura-
cy of 93.1%. The overall accuracy of correctly 
������	���
���#��������{?��?

be preferred over off-seasonal data. Assess-
ing the regrowth rates is rather challenging 
with the data used for this experiment where-
as clearcuts can be well detected even after a 
time lag of one or two years. The overall ac-
curacy was 69.6%. However, the visual in-
spection of the dense time series revealed that 
there was often more than one change event 
in a time series. The trajectory analysis did 
������

������������	���������#�
���#����#���?�
However, that one is sometimes not the most 
pronounced in a time series. In other words, 
changes are often well detected but at wrong 
dates. The analysis if change was correctly 
seen as change, and thereby ignoring the cor-
rectness of the date, revealed an overall accu-
racy of 91.4%.

Results of the time series analysis are 
shown in Fig. 4. The break date can be iden-

Fig. 4: Results of time series analysis: a) year of clearcut, b) month of clearcut, c) break duration, 
and d) combined break date and trend map.
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Tab. 2: Comparison of bi-temporal change detection, multi-temporal change detection, and time 
series analysis.

Bi-temporal change 
detection

Multi-temporal change 
detection (including 

trajectories of annual 
observations)

Time series analysis 
(more than one 

observation per year)

Suitable to 
detect abrupt 
changes?

yes yes yes

Suitable to 
detect long-
term trends?

no, trends cannot be 
clearly separated from 
noise or phenological 
differences

yes yes

Suitable to 
detect sea-
sonal varia-
tion, e.g. 
phenology?

no no, inter-annual changes that 
fall below a certain threshold 
are considered noise, those 
above are seen as abrupt 
change

yes

Date of 
change de-
tectable?

no, it is only known that 
the change happened 
between two observations

a rather coarse indication of 
the date of abrupt changes can 
be estimated

changes can be detected 
with good temporal preci-
sion

Major pre-
processing 
steps 

co-registration; atmos-
pheric correction or ra-
diometric normalization; 
(manual) scene selection

geometric & radiometric 
processing (atmospheric cor-
rection, radiometric normali-
zation); cloud detection; scene 
selection; compositing 

geometric & radiometric 
processing (atmospheric 
correction); cloud detec-
tion

Requirements cloudfree scenes; ideally 
equal phenological condi-
tions & equal sun position

cloudfree pixels; each obser-
vation must be chosen with 
respect to rainfall, phenology, 
and sun illumination

cloudfree observations

Option to 
label 
changes?

yes, several methods 
exists (HECHELTJEN et al. 
2014)

����������������������
�����	-
cations are compared; usually, 
the change itself can be re-
lated to a certain class

yes (ZHU & WOODCOCK 
2014); usually, the change 
itself can be related to a 
certain class

Advantages small data volume; many 
algorithms (see COPPIN et 
al. 2004, HECHELTJEN et al. 
2014)

moderate data volume; good 
balance of outcome and effort; 
trends and abrupt changes 
detectable

seasonal effects, inter- & 
intra-annual dynamics 
detectable; all observa-
tions used; no scene selec-
tion or compositing re-
quired; almost gapless 
process characterization; 
option of time series de-
composition; no threshold-
ing required

Limitations processes and their spa-
tio-temporal characteris-
tics are not detectable; 
thresholding required to 
separate change from 
no-change

data selection and/or compos-
iting required; areas of fre-
quent cloud coverage; sea-
sonal variation & dynamics 
are not detectable; data avail-
ability in some regions

big data volume; compre-
hensive preprocessing 
requires automation; data 
availability in some re-
gions

Application various, e.g., emergency 
����������<��������
������
urban expansion

various, e.g., forest cover 
change, mining

various, e.g., forest cover 
change, continuous map 
update

Examples of 
methods

��;��������������	
������
Comparison

LandTrendr BFAST, time series ap-
proach used here
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means information loss. To date only a very 
small portion of the Landsat archive has been 
explored (WULDER et al. 2012). Exploring all 
datasets may improve our understanding of 
processes on the ground rather than disregard-
ing the vaste majority of datasets.

The trajectory analysis presented here is 
suitable to detect major changes, i.e., timber 
extraction and forest regrowth. The detection 
of insect infestation and other subtle changes 
�����	
�����������
���������������Y����������
time series because they are often too weak 
to exceed the noise level that is included in 
these time series. Consequently, subtle chang-
������������������	�����������?�[���^�����	-
cation of the forest recovery is also challeng-
ing because the timing of each acquisition has 
enormous impact on the shape of the recovery 

��Y�?� ����#�� �����
������� �� 
�����	��� ��-
ages are thus of limited use in forest studies. 
Trends can be derived from trajectories (cf. 
column 3 of Tab. 2) with appropriate methods 
such as Landsat-based detection of trends in 
disturbance and recovery (LandTrendr) (KEN-
NEDY et al. 2010). This time series segmenta-
tion techniques calculates trend curves based 
on any spectral index. It is very powerful in 
detecting strong changes. The accuracy of the 
recovery trends, however, is hard to estimate. 
Divergence from idealized time series models 
is considered noise. Compositing techniques 
are an appropriate means to reduce spurious 
changes that result from imperfect data. Noise 
is reduced as well. Seasonal dynamics, inter-
annual variation and non-linear dynamics, 
however, are neither displayed in annual time 
series nor in trajectories of categorized data.

A more comprehensive way towards bet-
ter understanding of ecosystem processes, 
landscape dynamics, and their relationship 
to driving forces is using all available infor-
mation. This can be achieved by using Mod-
erate Resolution Imaging Spectroradiometer 
(MODIS)-like standardised products such as 
the 16-day-NDVI product (ROY et al. 2010), 
the multitemporal multispectral modeling of 
land cover classes based on all observations 
(ZHU & WOODCOCK 2014) or the time series 
analysis approach used here. Future satellite 
missions such as Sentinel-2 will deliver data at 
high temporal resolution. Comprehensive eco-
system process understanding requires the ef-

Some of the most relevant characteristics 
of the three approaches demonstrated in this 
study are listed in Tab. 2. The information 
content that can be derived with bi-temporal 
datasets, trajectories of triennial data, and 
dense time series with gaps in the range of 
few days to several weeks increases with the 
number of available observations (cf. rows 1-3 
in Tab. 2). Secondary changes, information on 
seasonal variation and changes therein are not 
displayed in Fig. 4. However, this information 
can be derived from the dense time series as 
well.

Although bi-temporal change detection (cf. 
column 2 of Tab. 2) is very powerful in for-
est change detection it is rarely used in oper-
ational monitoring projects. Methods such as 
the land-cover change mapper (LCM) (CAS-
TILLA �����?�>����������	
�����������������^�����
knowledge of the study site for the interpre-
tation of changes. The bi-temporal example 
shown here based on CVA provides additional 
information about the nature of change. The 
link to processes, however, is challenging. 
;��� ^�����	
������ ������ ����� ��������� ��-
ages that do not only account for illumination 
differences but also for phenological differ-
ences and weather impacts such as rainfall, 
drought, and wind. Even annual data do not 
guarantee identical phenological conditions. 
Radiometric normalization may reduce noise 
but does not eliminate illumination differenc-
es that occur when off-season data are used. 
[�������������	����#��������"���������
��-
parable conditions becomes even more criti-
cal when time series are used. Although the 
summers on Vancouver Island are relatively 
dry, the time suitable for cloud free acquisi-
tions is rather limited. Recently, compositing 
techniques have been developed (GRIFFITHS 
et al. 2013) to avoid the laborious and some-
time misleading task of seeking cloud free im-
�#��?� [����� ��
���^���� ���� ��� 	����#� 
�����
����� ��!���� ����� ���� ��� 
����� ��� �� �����	����
reference date as possible. Off-year acquisi-
tions are preferred over off-seasonal images 
(WULDER et al. 2004). Compositing is prom-
����#������������������������	
�������������
several tiles have to be combined to seemless 
image mosaics. In a way compositing can be 
seen as a data reduction which may also be re-
garded as a disadvantage. Data reduction also 
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�����������	
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��6 (1): 3–73.

COPPIN, P., JONCKHEERE, I., NACKAERTS, K., MUYS, B. 
& LAMBIN, E., 2004: Digital change detection 
methods in ecosystem monitoring: a review. – 
International Journal of Remote Sensing 25 (9): 
1565–1596.

COUDRAY, N., BUESSLER, J.-L. & URBAN, J.-P., 2010: 
Robust threshold estimation for images with 
unimodal histograms. – Pattern Recognition 
Letters 31 (9): 1010–1019.

DUBOVYK, O., MENZ, G., CONRAD, C., KAN, E., 
MACHWITZ, M. & KHAMZINA, A., 2013: Spatio-
temporal analyses of cropland degradation in the 
irrigated lowlands of Uzbekistan using remote-
sensing and logistic regression modeling. – En-
vironmental Monitoring and Assessment 185 
(6): 4775–4790.

DUNCANSON, L.I., NIEMANN, K.O. & WULDER, M.A., 
2010: Integration of GLAS and Landsat TM data 
for aboveground biomass estimation. – Canadi-
an Journal of Remote Sensing 36 (2): 129–141.
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������!�������������������������Y����������
possible – including multi-sensor approaches.

5 Conclusion

The study presented here revealed that each of 
the three different change detection strategies 
has advantages and disadvantages that make 
it suitable for different applications in forest 
management. The most comprehensive infor-
mation can be derived from dense time series. 
The superiority in information detail is at the 
expense of high computational efforts. With 
the launch of recent, e.g., Landsat 8, and up-
coming, e.g., Sentinel-2, sensors the process-
ing of dense time series is likely to become 
more feasible also in regions that have been 
less covered to date. When processes are in the 
scope of a study, remote sensing based time 
series are a good means for improved under-
standing. Forest monitoring and forest change 
detection requires high spatial and temporal 
resolution for comprehensive structural char-
acterization and process understanding which 
can be achieved with dense time series. The 
use of dense time series does not only deliv-
er more information about ongoing processes; 
changes can also be detected with higher tem-
poral precision and higher accuracy.
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