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Summary: High temporal revisit frequency over
vast geographic areas is necessary to properly use
satellite earth observation for monitoring agricul-
tural production. However, this often limits the
spatial resolution that can be used. The challenge of
discriminating pixels that correspond to a particu-
lar crop type, a prerequisite for crop specific moni-
toring remains daunting when the signal encoded
in pixels stems from several land uses (mixed pix-
els). Naturally, the concept of spatial scale arises
but the issue of selecting a proper class legend (the
categorical scale) should not be neglected. A frame-
work is presented that addresses these issues and
that can be used to quantitatively define pixel size
requirements for crop identification and to assess
the effect of categorical scale. The framework was
applied over two agricultural landscapes. It was
demonstrated that there was no unique spatial reso-
lution that provided the best classification result for
all classes at once at a given categorical scale. The
suitability of pixel populations characterized by
pixel size and purity differed for identifying spe-
cific crops within tested landscapes, and for one
crop there were large differences among the land-
scapes. In the context of agricultural crop growth
monitoring the framework described above can be
used to draw guidelines for selecting appropriate
imagery, e.g. suitable pixel sizes, and for selecting
class legends suitable for accurate crop classifica-
tion when the interest is only on pixels covering ar-
able land as a prerequisite for crop specific moni-
toring. The framework could be used to plot the
suitability (or accuracy) of pixels as a function of
their purity to provide a spatial assessment of clas-
sification performance.

Zusammenfassung: Einfluss der thematischen
und räumlichen Auflösung auf die überwachte,
fernerkundungsbasierte Feldfrucht-Klassifizie-
rung. Häufige und regelmäßige Aufnahmen über
großen Gebieten sind wichtige Voraussetzungen
für das Monitoring von Agrarproduktion basierend
auf Erdbeobachtungsdaten. Jedoch schränken die-
se Voraussetzungen oftmals die räumliche Auflö-
sung (Pixelgröße) ein, welche von bestehenden
Sensorsystemen genutzt werden kann. Die Unter-
scheidung unterschiedlicher Landnutzungstypen,
eine Voraussetzung für ein Feldfrucht spezifisches
Monitoring, mittels Klassifizierung wird er-
schwert, wenn das in einem Pixel kodierte Signal
von mehreren Landnutzungstypen stammt (Misch-
pixel-Problematik). Dies wirft Fragen bezüglich
der Wahl der optimalen Pixelgröße, aber auch der
thematischen Auflösung, also eines geeigneten
Klassenschlüssels auf. Um diese Fragen zu beant-
worten, wird eine Methode vorgestellt, um quanti-
tativ geeignete Charakteristika von Pixelpopulatio-
nen hinsichtlich deren Größe und Reinheit in Be-
zug auf die zu klassifizierende Klasse zu bestim-
men. Zudem wurde der Einfluss von verschiedenen
Klassenschlüsseln auf das Klassifizierungsergeb-
nis untersucht. Die Methode wurde in zwei land-
wirtschaftlich genutzten Gebieten getestet. Es wur-
de gezeigt, dass es keine spezifische „optimale“
Pixelgröße gibt, welche für alle Klassen und bei
einem bestimmten Klassenschlüssel gleicherma-
ßen das beste Klassifizierungsergebnis liefert. Die
Eignung von Pixelpopulationen charakterisiert
durch Pixelgröße und -reinheit unterschied sich in-
nerhalb einer bestimmten Landschaft für verschie-
dene Landnutzungsklassen bzw. für eine spezifi-
sche Klasse in verschiedenen Landschaften deut-
lich. Die vorgestellte Methode kann im Kontext
von satellitengestütztem Agrar-Monitoring genutzt
werden, um Empfehlungen für die Wahl von geeig-
neten Pixelgrößen und Sensoren sowie auch geeig-
neter Klassenschlüssel zu formulieren.
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errors in the class identification (ATKINSON &
APLIN 2004, CUSHNIE 1987, HSIEH et al. 2001),
and better classification accuracies may some-
times be attained using coarser pixel sizes
(MCCLOY & BØCHER 2007). The issue of pixel
size and its implications for image classifica-
tion have long been noted (HSIEH et al. 2001,
MARCEAU et al. 1994a, MCCLOY & BØCHER
2007, WOODCOCK & STRAHLER 1987) and the
selection of one single optimal scale has been
questioned (APLIN 2006, LEVIN 1992). Yet, the
effect of categorical scale in combination with
spatial scale has been analysed to a lesser ex-
tent. MARCEAU et al. (1994b) demonstrated for
different pixel sizes that the definition of the
categorical scale can considerably influence
classification accuracy. It was shown that the
range of pixel sizes for which maximum accu-
racy can be achieved is specific to certain land
cover categories (MCCLOY & BØCHER 2007).
JU et al. (2005) suggested a method to jointly
adapt spatial, e.g. pixel size, and categorical
scale in an object-based context. But the domi-
nant standard in remote sensing classification
studies often remained being a classification
at a single spatial and a fixed categorical scale,
i.e. with category labels from only one level
of a potential categorical hierarchy (JU et al.
2005).
But what type of remote sensing data with

respect to spatial resolution should be used as
classification input and what is the impact of
categorical scale on the definition of suitable
pixel sizes? To answer these questions, this
study builds upon a previous framework by
LÖW & DUVEILLER (2014), which was used to
quantitatively define pixel size requirements
for crop identification via image classification.
In this study, this framework will be extended
to assess the impact of categorical scale and
to explore trade-offs between pixel size and
pixel purity when addressing the question of
crop classification via image classification.
The analysis is restricted to pixels covering
arable land using a dedicated masking proce-
dure, based on high-resolution data and simu-
lating how much crop specific signal is encod-
ed in coarser pixels. This procedure restricts
the analysis to a subset of the region’s pixels to
better explore the effect of pixel purity on crop
classification, thereby allowing to draw guide-
lines for selecting suitable class legends and

1 Introduction

Crop type identification and discrimination
are essential for subsequent crop-specific ag-
ricultural production monitoring using satel-
lite earth observation (EO), e.g. when crop
maps are used as input for agricultural mod-
elling. However, the high temporal revisit fre-
quency and the large geographic swath that
are required to do a proper monitoring often
limit the spatial resolution that can be used.
An instrument that satisfies the criteria of
swath and revisit frequency is MODIS, but its
spatial resolution of 250/500 m is often coars-
er than desired for many agricultural land-
scapes. When such data is used as input for
crop classification, its coarse observation sup-
ports can lead to non-detection of certain land
use fragments, e.g. when individual fields of a
certain crop type are smaller than individual
pixels and the signal encoded in coarser pixels
stems from several land uses (mixed pixels).
The question of determining the optimal pixel
size for an application such as crop identifica-
tion is therefore inclined towards finding the
coarsest acceptable pixel sizes.
When discussing spatial scale, the issue of

the choice of a categorical scale, e.g. the num-
ber and type of classes used in classification,
or class legend, naturally arises and should
not be neglected (JU et al. 2005). In general it
would be desirable to have all land use types
in a landscape included in the class legend. In
reality, however, not all classes will be pres-
ent in all regions of an image at all scales and
there is indication in the literature that there
exist different ranges of “optimal” pixel siz-
es for different classes (APLIN 2006). When
selecting coarser pixels the spatial scale in-
creases relative to the patch sizes, e.g. size
of agricultural fields, in the underlying land-
scape and forces to use labels of coarser cat-
egorical scale, e.g. “arable land” instead of
land use types like “rice” or “wheat” (Ju et al.
2005). In such a situation classification qual-
ity can deteriorate when selecting pixel sizes
that are too coarse since this can result in ex-
cessive mixed pixels when the heterogeneity
of the land cover class in one pixel increases
(HSIEH et al. 2001, SMITH et al. 2003). Selecting
too small pixels can result in increased with-
in class variability. Such variation can lead to
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developed under the aegis of the former Soviet
Union during the second half of the 20th cen-
tury. Each test site is 30 km × 30 km.
The first site is located in the Khorezm re-

gion (KHO) in the north-western part of Uz-
bekistan. The agricultural landscape appears
heterogeneous due to a comparatively high
diversity of crops, e.g. cotton, rice, sorghum,
maize, winter wheat, and fruit trees. Cover
fraction (Cƒ, the fraction of the sites covered
by agricultural fields) is high (Tab. 1). Multiple
cropping is sometimes practiced, e.g. growing
sequentially two or more crops in the same
field within a single growing season, typically
starting with wheat and following with anoth-
er crop. In this study, such land use type will
be labelled: “wheat-other”.

pixel sizes, respectively. More specifically,
this study assesses the impact of the categori-
cal scale on crop classification accuracy in dif-
ferent agricultural landscapes, using satellite
images with different pixel sizes as classifica-
tion input. Second, the impact of the categori-
cal scale on the definition of suitable pixel siz-
es for crop classification, e.g. maximum and
minimum tolerable pixel sizes, is analysed.

2 Study Area

This study is based on two contrasting agro-
ecological landscapes in Central Asia. They
are located between the Amu-Darya and Syr-
Darya Rivers. They are characterized by vast
agricultural systems, which were extensively

Fig. 1: Subsets (6.5 km × 6.5 km) of the satellite imagery and crop masks illustrating the typical
cropping patterns within the two test sites Khorezm (KHO) in Uzbekistan and Kyzyl-Orda (KYZ) in
Kazakhstan. The imagery is displayed using a near-infrared-green-blue band combination of the
RapidEye sensor recorded in May.

Tab. 1: Characteristics of the four study sites. Total number of fields, field sizes and cover fractions
Cƒ are based on own calculations based on segmented image objects.

Study site Scene centre [Lat/Lon] Total number
of fields

Mean, median, and
standard deviation of

field size (ha)
Cƒ

KHO 60.69°E, 41.53°N 22,247 4.31, 3.21, 2.07 0.59

KYZ 64.55°E, 44.58°N 14,561 2.45, 2.14, 1.62 0.25
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et al. (2012). These masks were created using
supervised object-based image classification
applied to a set of high-resolution time series
of RapidEye images acquired over the grow-
ing seasons. The overall accuracies of the crop
masks were more than reasonable (> 93%) and
assumed to have a negligible error for the pur-
pose of this study. Sorghum andmaize in KHO
were merged into the class “sorghum/maize”
because they could not be distinguished from
each other (Fig. 1).

3.1 Simulating Coarser Images

The methodology employed here is based on
the same conceptual framework designed in a
previous study for determining pixel size re-
quirements for crop growth monitoring (DU-
VEILLER & DEFOURNY 2010) that was extended
by LÖW & DUVEILLER (2014) for an application
to crop classification. It relies on using high
spatial resolution images and corresponding
crop specific masks to generate various sets of
pixel populations over which a classification
step can be applied. The pixel populations are
characterized by increasingly coarser pixel
sizes and with a range of different crop spe-
cific purity thresholds. To simulate coarser
pixel sizes, a spatial response model is con-
volved over the original RapidEye images. It
consists of a point spread function (PSF) that
characterizes both optical (PSFopt) and detec-
tor (PSFdet) components of a generic sensor:

net opt detPSF PSF PSF= ∗ , (1)

2 2

2( , )
2 ( )opt
x yPSF x y exp
w σ

⎛ ⎞+= −⎜ ⎟∗ ∗⎝ ⎠
, (2)

( , ) ( ) ( ).det x yPSF rect x w rect y w= − ∗ − (3)

The second site is located in Kyzl-Orda
(KYZ) in southern Kazakhstan, and was cho-
sen to have an example with more regularly
shaped field structures. Only few crops are
dominating the agricultural landscape: rice
and alfalfa. Large and regular shaped agricul-
tural fields of approx. 2 ha – 3 ha each char-
acterize this landscape, where the same crop
is often grown on adjacent fields, that are ag-
gregated to blocks which together exceed the
area of between 500 m × 500 m and 1,000 m
× 1,000 m (25 ha – 100 ha). Due to this pat-
tern, the agricultural landscape in KYZ with
smaller fields (2.45 ha) appears more homo-
geneous than in KHO with larger mean field
sizes (4.31 ha).

3 Data and Methods

Images from the RapidEye mission with a
ground sampling distance (GSD) of 6.5 m,
were available for each site in 2011 (KYZ) and
2010 (KHO) (Fig. 2). These images have five
spectral bands: blue (440 nm – 510 nm), green
(520 nm – 590 nm), red (630 nm – 685 nm),
red edge (690 nm – 730 nm), and near infra-
red (NIR, 760 nm – 850 nm). Images were at-
mospherically corrected using the ATCOR-2
module (RICHTER 2011), and geometrically
corrected and co-registered with ground con-
trol points, resulting in RMSEs of < 6.5 m.
Crop specific masks are necessary to iden-

tify the target objects, i.e. agricultural fields
cultivated with a certain crop, in the scene,
and later for calculating the purity of coars-
er pixels with regard to specific crops. For the
study sites access to vector databases of the
agricultural fields including information on
crops was either non-existent or restricted.
Crop masks for the two sites were created ac-
cording to the methodology described in LÖW

Fig. 2: Acquisition dates of the datasets from the RapidEye instrument utilised in this study.
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3.2 Image Classification

The second step consists in applying super-
vised classification procedures to the pixel
populations selected in the previous step. The
implementation of BREIMAN’s RF (BREIMAN
2001) within the randomForest package (LIAW
2013) in the R programming environment was
used for the classification in this study. The
number of trees in the ensemble was set to a
relatively high value of 500 so that the out-of-
bag error (OOB) converges. OOB is calcula-
ted based on roughly 1/3 of the reference data,
which are withheld from tree construction and
used to calculate an error matrix and unbiased
estimate of accuracy (LIAW & WIENER 2002).
The remainder 2/3 of the reference data is used
to build each tree. The number of features at
each split node was set to the square root of the
total number of input features f where ƒ is
the number of predictor variables within the
corresponding input dataset. The NDVI and
EVI plus RapidEye bands were the input to the
classification, calculated for eight acquisition
dates (ƒ = 56). At each spatial scale and for
each pixel purity threshold (here from 0 to 1
in increments of 0.05), independent training
and testing datasets were generated follow-
ing an equalized random sampling design
to obtain approximately the same number of
pixels for each class. The target size of both
the training and testing sets was initially set
to 400 randomly selected pixels per class, the
minimum number per class required was set
to 20, e.g. when coarser pixels were selected.
RF was trained and applied to the entire time
series data at each spatial scale, and all classes
present in the corresponding study sites were
included in the legend. To enhance the reli-
ability of the experiments the random draws
of training and validation data were repeated
10 times, and the classification performance
estimates (see next section) were averaged
over the 10 independent model runs.

3.3 Characterizing Crop Identification
Performance

Pixel size and pixel purity can be considered
as two dimensions of a ν – π space. For each
selected pixel population in this ν – π space,

where x and y are the cross-track and in-track
coordinates, respectively, in the image space
with their origin at the centroid of the ground
instantaneous field of view (GIFOV), w the
width of the optics, and σ the standard devia-
tion of the Gaussian curve. Note that the width
of the detector in both in-track and cross-
track directions, respectively, is assumed to
be equal. rect is the rectangular function, a
uniform square pulse function with amplitude
one and width w. The simulation was done in
increments of 6.5 m, in order to simulate a
continuum of coarser images, with pixel sizes
ranging from 6.5 m – 747.5 m. More informa-
tion on the simulation of coarser data in this
framework can be found in DUVEILLER & DE-
FOURNY (2010).
As mentioned in the introduction this study

focuses on detecting and discriminating ag-
ricultural fields of specific crops within suc-
cessively coarser pixels. In order to select pix-
els covering arable land and to further assess
the effect of pixel purity on crop classification
accuracy, the convolution of the same spatial
response model over the high-resolution crop
masks was performed. This produced crop
specific “purity maps” at each scale, which
map the pixel purity with respect to the spatial
structures represented in the high resolution
crop masks (DUVEILLER & DEFOURNY 2010).
This allows controlling the degree at which
the footprints of coarser pixels coincide with
the target structures, e.g. fields belonging to
certain crops. At each spatial resolution, pix-
el populations can be selected based on thres-
holds on the pixel purity, here denoted π. A
threshold can be chosen to separate the aggre-
gated binary crop masks into two sets: target
pixels and non-target pixels. The threshold can
vary from 0, where all pixels in the images are
selected as target, to 1, where only completely
pure pixels, e.g. pixels lying completely within
agricultural fields are selected. The results are
the sets of selected target pixels, or “pixel pop-
ulations”, defined by their pixel size (ν) and by
the minimum acceptable purity threshold that
defines them (π).
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pixel) a “soft” output in form of a vector p(x) =
(p1, ..., pi, ..., pn) that contains the probabilities
that a pixel is classified into a class i, n being
the total number of classes (LÖW et al. 2013).
Each of the elements in p(x) can be interpret-
ed as a degree of belief or posterior probabil-
ity that a pixel actually belongs to i. From this
vector, the α-quadratic entropy (PAL & BEZDEK
1994) for a given pixel (x) can be calculated as
a measure of uncertainty, which is defined as:

12
1AQE( ) (1 )
(2 )

n
i i ix p p

n
∝ ∝

=− ∝= ∗ −
∗ ∑ (6)

Where pi is one element in p(x), n the num-
ber of classes, and α an exponent that deter-
mines the behaviour of AQE(x). The entropy
of the total classified pixel population can be
quantified with the median of all classified
pixels AQE(x), denoted AQE. This can also be
done at the per-class basis, by calculating the
median entropy of all pixels classified into a
class i, denoted AQEi.
The number of available reference pixels Ni

of a given class i represents the total available
size of pixel populations in the ν – π dimen-
sions that can be used for training and testing
the classifier. In supervised crop classification
a minimum number of pixels per crop class
can be desirable to assure the generalizability
of the classifier model to the unseen dataset,
and to reduce the influence of (random) vari-
ability in the training data on the classifica-
tion result.

3.3.2 Determining suitable pixel
populations

The final step to determine the suitable pixel
populations for crop classification is to isolate
the (ν, π) combinations for which the classi-
fication performance fulfils certain criteria.
This is accomplished by defining acceptable
thresholds for the variables defined above.
Such thresholds will be used to define a fron-
tier in this ν – π space dividing pixel popu-
lations that are above or below the accept-
able threshold for a given surface. As an ex-
ample, if an application requires a minimum
class-wise accuracy of 80%, the surface CAi
is sliced by a plane passing by the value CAi
=0.80 (see Fig. 3, left images). When the inter-

information regarding the classification per-
formance, e.g. overall accuracy, can be calcu-
lated. Similar to the method proposed by LÖW
& DUVEILLER (2014) variables describing crop
classification performance are calculated for
each pixel population:

3.3.1 Quantifying classification
performance

A set of confusion matrices (CONGALTON 1991)
was computed on the hard result of the test
sets defined along the π – v dimensions. The
overall accuracy parameter (ACC) is defined
as the total proportion of correctly classified
test pixels per total number of test pixels:

cnACC
n

= (4)

where n is the number of test samples, and nc
the number of correctly allocated test samples.
As class-wise accuracy metric the Fß-measure
of VAN RIJSBERGEN (1979) was employed. This
measure combines the precision pri (which
gives the proportion of samples, which truly
have class i among all samples that were clas-
sified as class i) and the recall tpi (the TPR
which gives the proportion of samples classi-
fied into class i among all samples which truly
have class i). The former determines the error
of omission (false exclusion), the latter the er-
ror of commission (false inclusion). The tra-
ditional Fß-measure equally weights precision
and recall (ß = 1) and is sometimes referred to
as F1 measure:

2
2(1 ) i i

i
i i

pr tpCA ß
ß pr tp

∗
= +

∗ +
(5)

Measures of classification uncertainty like
entropy assess the spatial variation of the clas-
sification quality on a per-case, e.g. per-pix-
el, basis, and can be used to supplement the
global summary provided by standard accu-
racy statements like overall accuracy (FOODY
2002). It can be characterized as a quantitative
measure of doubt when a final classification
decision is made. Beneath the final (“hard”)
class label, non-parametric algorithms such as
support vector machines or RF can generate
for each classified case x (agricultural field or
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suitability is defined by the number of fulfilled
criteria, e.g. highest suitability means that all
criteria were fulfilled. In this study, thresh-
olds were defined as follows: ACC/CAi > 0.75,
AQE/AQEi < 0.50, and Ni > 100.

3.3.3 Selecting categorical scale

Three levels of aggregation were created by
grouping or discarding certain crop classes,
hereafter called level I, II, and III (Fig. 4). The
rationale for defining the class legends in the
aggregation levels was (i) to group crop class-
es with similar spectral and temporal NDVI

section of CAi and the plane is projected onto
the 2-D space ν – π, it separates this domain
into the region where selected pixel popula-
tions have classification accuracy higher than
75% and the region where the accuracy of the
remaining population will be lower than 75%
(Fig. 3, right image). By drawing limits on the
different parameters, the parameter surfac-
es were sliced and the intersection points of
these slices in ν – π space were used to identi-
fy the position of the coarsest acceptable pixel
sizes (νmax) and the corresponding minimum
required pixel purities π respectively (Fig. 3,
right image). Accordingly, pixel population

Fig. 3: Left column: Schematic examples of parameters chosen for crop identification for the pixel
populations along the pixel size – pixel purity dimensions. Red dashed line indicates were pre-
defined thresholds slice the parameter surfaces and separate ν− π space into two domains: one
that fulfils a certain threshold and a second one that does not. Note that the pixel purity axis is
inverted for Ni and AQE. Right column: Suitability map with theoretical boundaries in ν− π space
used to define the requirements for pixel populations to be used for supervised classification.
Circle indicates the position of maximum tolerable pixel size νmax, black filled square the minimum
required pixel size νmin.
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4 Results and Discussion

As expected, the suitability of pixel popula-
tions for classifying crops varied in the ν – π
space and the suitability was enhanced when
selecting higher aggregation levels (Fig. 5) as
was demonstrated in previous studies (e.g.
MARCEAU et al. 1994b). Suitable pixel popu-
lations were restricted to rather small pixel
sizes at level I, with νmax = 162.5 m in KYZ,
similar to KHO (νmax = 149.5 m). In KYZ ag-
gregating crop classes in level II resulted in
enhancing the suitability of pixel populations
in the ν – π space, in particular coarser pixels
could be tolerated (νmax = 747.5 m at level III)
and the minimum purity requirements could
be relaxed for νmax (the corresponding π at lev-
el I was 0.60, and decreased to 0.45 for νmax
at level III). Likewise, in KHO aggregating
classes enhanced the suitability of pixel pop-
ulations for crop identification, but compared
with KYZ the use of coarser pixels was limit-
ed, most obvious because of the spatial pattern
of fields in the KHO landscape, e.g. more crop
classes in a more heterogeneous landscape
where the use of coarser pixels resulted in a
higher degree of pixel mixing, which result-
ed in having generally higher purity require-
ments than in KYZ. This could be explained
by the limited availability of purer reference
pixels in this landscape. Further, tolerating
some signal contamination may be beneficial

signatures and (ii) to discard classes that cover
only a small fraction of the landscape (Cƒ <
0.01) and that are spectrally too distinct from
other classes to bemerged. Crop rotation class-
es in KHO (“Wheat-Sorghum / Maize” and
”Wheat-rice”) were merged in level II due to
the similarity of the temporal NDVI profiles.
Further, minor classes (Cƒ < 0.01) were merged
to one class “mixed crops”, due to their spec-
tral similarity. Likewise, “Alfalfa 1y” and “Al-
falfa 3y” were merged in level II in KYZ due
to their spectral similarity, reducing the num-
ber of classes from five to three. Winter wheat
was discarded in level II due to its marginal
cover fraction in both sites (Cƒ < 0.01). Fallow
fields and mixed crops in KHO, which togeth-
er cover less than 2% of the landscape were
completely removed from the class legend in
level III, reducing the number of classes from
eleven to six. In this level a binary class legend
was established in KYZ, i.e. active, e.g. rice,
vs. unused, e.g. fallow, alfalfa, fields. The pix-
el population suitability was then determined
separately at each aggregation level, accord-
ing to the methodology described in the pre-
vious section. The pixel population suitability
was then determined separately at each aggre-
gation level, according to the methodology de-
scribed in the previous section.

Fig. 4: Class legends according to three levels of aggregation in the two study sites. Cover frac-
tions (Cƒ), i.e. the fraction of the sites covered by agricultural fields of a certain crop class, are
given in brackets.
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diverse crop classes in KYZ in level III (two
types of alfalfa fields and other fallow land to
one class “fallow”) the condition for best CAi
was pushed to 604.5 m, compared to 195.0 m
at level I. In this context, image segmentation
should be considered (BLASCHKE 2010, YAN &
ROY 2014). Image segmentation of high spa-
tial resolution images or time series results
in image-objects that minimize the variance
but that are not constrained by the rectangu-
lar nature of the pixels. Analysing the optimal
size of multi-date image objects for crop iden-
tification could be an interesting extension of
the proposed conceptual framework. Anoth-
er advantage of object-based image analysis
(OBIA) is that different segment sizes for spe-
cific land use types can be used and analyzed.
Image-objects could also be analysed with re-
spect to their homogeneity at different spatial
scales using a concept analogous to pixel pu-
rity. However, such questions are beyond the
scope of this current paper.
For fallow fields in KYZ the pixel sizes for

which maximum CAi was archived were in
the same order at level I and II (195.0 m and
208.0 m), but coarser pixel sizes were required
at level III (604.5 m), which could be attrib-
uted to the spatial aggregation pattern of fields

in the case of crop identification in KHO, e.g.
a larger sample size for classification train-
ing including mixed pixels may better repre-
sent the diversity of the spectral response of
the target class within this landscape (FOODY
1996).
For specific classes the required conditions

to achieve highest CAi varied among the three
aggregation levels (Fig. 6). The correspond-
ing pixel sizes tended to become coarser when
increasing the aggregation level. An explana-
tion why coarser pixel sizes generally achieve
higher accuracy could be the interplay of in-
creasing error-rates of smaller but purer pix-
els, which become more abundant when pixels
become smaller, caused by increasing within-
class variability (HSIEH et al. 2001) and de-
creasing error of mixed pixels, which become
less abundant when pixels become smaller.
The within-class variability might in partic-
ular become an important issue when such
heterogeneous crop classes like alfalfa and
other fallow fields are merged, e.g. in KYZ.
In such a situation it might be better to have
coarser pixels (MCCLOY & BØCHER 2007),
thereby reducing this variance and counter-
balancing the effect of pure-pixel heterogene-
ity within smaller pixels. After merging quite

Fig. 5: Suitability maps for three different class aggregation levels for all classes. Circles indicate
position of maximum achievable ACC in ν− π space.
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KHO was achieved with smaller pixels than
in KYZ.
The high ACC in KYZ when selecting level

II or III (Fig. 7) offers positive prospects for
using images from existing satellite missions
(Landsat 30 m, MODIS 250 m / 500 m, NPP-
VIIRS 747.5 m) used for crop mapping. Yet,
results also highlight the need to consider that
the class legend must be selected properly and
separately adapted in different agricultural
landscapes. The lowest ACC and CAi of rice

in this landscape, i.e. large blocks of fields
with the same crop class “fallow” in level III.
In KHO pixel populations suitable for classi-
fying rice and fallow fields were character-
ized by higher pixel purity requirements than
in KYZ. This can be explained by the spatial
pattern or field fields which are more spatial-
ly dispersed than in KYZ (Fig. 1), resulting in
mixed signal once the purity of the (coarser)
pixels becomes too low, e.g. π < 0.7. Likewise,
the maximum possible CAi for rice fields in

Fig. 6: Suitability maps for three different class aggregation levels and for class fallow (top rows)
and fallow (bottom rows). Ovals indicate position of maximum achievable CAi in ν− π space.
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given crop there were large differences among
the landscapes. Of course, the results are only
valid within the parameterization chosen for
this study, and the user might select other met-
rics more appropriate to the targeted applica-
tion which is not limited to crop discrimina-
tion. The parameters in this study were pur-
posefully selected because different metrics
evaluate different components of accuracy as
they are based on different statistical assump-
tions on the input data. Consequently, seeking
to optimize classifier algorithm performance
or defining suitable pixel sizes with only one
metric may have led to a non-optimal result
when viewed from another point of view or
quantified with a different metric that is sensi-
tive to different features concerning accuracy
(FOODY 2002, PROVOST & FAWCETT 1997).
Landscape heterogeneity, e.g. the size of

agricultural fields and the properties of their
neighbourhood, were shown to be important
factors determining classification accuracy.
When the crops were grown on larger fields,
or when the cover fraction was high, coarser
pixel sizes could be tolerated for crop identi-
fication. Crops grown on fields dispersed over

and fallow fields were achieved when select-
ing coarser pixels (745.5 m) at level I. The
smaller the pixel sizes the higher was ACC
at this level. Further, the higher the aggrega-
tion level the smaller was the absolute differ-
ences between ACC, e.g. at 0.043 at level III
but 0.791 and 0.103 in level I and II, respec-
tively. CAi of fallow fields in KYZ increased
when shifting from level II to III, whilst the
difference in CAi for rice was within 0.01, i.e.
for 32.5 m and 247.5 m. In KHO using coarser
pixels (247.5 m and 747.5 m) resulted in a clear
drop in CAi for rice fields, for which smaller
pixels gave better results due to the spatial pat-
tern of fields (see above).
Overall, the results indicate that there was

no unique spatial resolution for identifying
and discriminating all classes at once at a
given aggregation level, confirming previous
studies (MARCEAU et al. 1994b, LÖW & DU-
VEILLER 2014). Within a particular aggregation
level, some classes are better classified at fine
spatial resolutions, while others require coars-
er spatial resolutions. Further, the suitability
of pixel populations for identifying specific
crops differed within the landscapes, and for a

Fig. 7: Maximum achievable overall and class-wise accuracies (ACC and CAi) for selected pixel
sizes at different aggregation levels. Note that in KHO the class “fallow” was omitted in aggrega-
tion level III. At aggregation level I the number of reference pixels in KHO and KYZ dropped below
20 for at least one class at 747.5 m (Ni < 20), which forced the experiments to stop.
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ing classes that only covered small fractions
of the landscapes. The results show that there
was no unique spatial resolution that provided
the best classification result for all classes at
once at a given aggregation level. Classifica-
tion accuracy could be improved by aggregat-
ing certain crop classes. Further, the suitabili-
ty of pixel populations for crop discrimination
differed within the landscapes, and for a given
crop there were differences among the land-
scapes. The results imply that classifications
based on purer pixels were generally the most
suitable (and most accurate) for crop type dis-
crimination, but the number of such pure pix-
els might be limited in heterogeneous land-
scapes, where only a few pixels fall into larg-
er fields. Although crops within mixed pixels
could be more accurately distinguished when
aggregating crop classes, a meaningful evalu-
ation of classification accuracy still could only
be achieved when accommodating the effect
of pixel purity.
The results of this study suggest that it is

important to consider the field size distribu-
tion and pattern when shifting between re-
gions, and not every sensor might be equally
suitable for a given application like crop map-
ping in a large region with different spatial
pattern like in Central Asia or other regions
worldwide. Neglecting the effect of pixel pu-
rity and aggregation level might produce hap-
hazard results, which could negatively impact
spatial modelling when crop maps are taken
as input. In the context of agricultural crop
growth monitoring the framework described
above can be used to draw guidelines for se-
lecting appropriate imagery, e.g. suitable pixel
sizes, and for selecting appropriate class leg-
ends for accurate crop identification and crop
type discrimination over a given agricultural
landscape when the interest is only on a sub-
set of the landscape, e.g. pixels covering ar-
able land. In the context of the CAWa-project
this framework is recently being implemented
to define pixel size requirements and appro-
priate class legends for crop identification in
the irrigated landscapes in Fergana Valley and
Karakalpakstan (Uzbekistan). This is of rele-
vance because agricultural production moni-
toring (yield, evapotranspiration) in this pro-
ject is based on MODIS data, which delivers
the required swath and high revisit frequen-

the landscape like rice in KHO could only be
detected using smaller pixel sizes, and only
using relatively pure pixels. However, the crop
classes displayed differences in the specific
nature of these relationships, and the land-
scape heterogeneity with respect to the spatial
pattern also influenced the choice of pixel siz-
es. For instance, while the median field sizes
in KYZ and KHO are comparable, the farm-
er’s fields are more regular in shape, less vari-
able in size, and the same crops are found on
blocks of fields that together can aggregate to
more than 100 ha in size. Due to this spatial
aggregation pattern, it is easier to have coarser
pixels fall within target fields and thus con-
ferring higher acceptable pixel sizes for crop
identification, resulting in notably higher val-
ues for νmax in KYZ than in KHO.
The results confirm previous studies that

found large differences in accuracy depend-
ing on the degree of pixel mixing, e.g. FOODY
(1996). Therefore, this study suggests for a
more spatially explicit assessment of accu-
racy. The framework could be used to plot the
suitability (or accuracy) of each pixel cover-
ing arable land as a function of its purity. This
is similar to spatial assessments of classifica-
tion uncertainty (LÖW et al. 2013) and could
be of interest when coarser satellite sensors
like MODIS or Sentinel-3 are to be used for
crop mapping. For instance, one practical util-
ity of this framework could be “masking out”
unsuitable pixel populations, according to the
user’s specific needs, before applying them in
agricultural crop-specific growth modelling.
Further, knowledge on the spatial distribution
of map quality, e.g. defined as pixel suitability,
allows for a better interpretation of the results
of agricultural model outputs.

5 Conclusions

The overall methodology presented in this
study was used to assess the impact of cate-
gorical and spatial scale (pixel size) on crop
classification accuracy. Coarser satellite im-
ages were simulated, based on RapidEye data,
and classified using the RF algorithm. Dif-
ferent class legends (aggregation levels) were
tested, which were created based on merg-
ing spectrally similar classes or by discard-
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cy. Due to the need for crop specific masks at
the MODIS scale, knowledge about the con-
straints of such coarse image data for crop
identification is essential. The results of this
study provide an opportunity to discuss the ef-
fects of pixel size and purity and the classifi-
cation algorithm independent factors such as
parcel size, spatial distribution of crop types
and crop patterns on agricultural monitoring
related applications. In a world with increas-
ingly diverse geospatial data sources in terms
of combinations of spatial and temporal reso-
lutions, the tool can also help users to choose
the different data sources that meet the re-
quirements imposed by their applications.
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