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Summary: The lower member of the so called
Manyara Beds is a distinct lacustrine sedimentary
layer which indicates, with an elevation of more
than 140 m above today’s lake level, a high stand of
the paleolake Manyara in the Monduli District in
northern Tanzania. The Manyara Beds are rich in
Pleistocene vertebrate fossils. In this study we fo-
cus on the delineation of this specific stratigraphic
layer in order to yield new insights into paleonto-
logical settings, landscape evolution and to plan
paleontological fieldwork. We compare the perfor-
mance of a support vector classifier with a linear as
well as a Gaussian kernel, with boosted regression
tree approaches to identify the lithostratigraphic
layers of the Manyara Beds. For the identification
of the lacustrine sediments, multispectral informa-
tion of ASTER satellite imagery and topographic
indices derived from a digital elevation model were
utilized as input feature sets. Acceptable classifica-
tion accuracies were obtained with all methods.
Thus, the Manyara Beds can be delineated and new
sites with paleolake sediments were detected. The
highest overall accuracy with 92% was provided by
the support vector machine approach with a linear
kernel for a binary classification problem. For a
multi-class classification problem with three target
classes the support vector classifier achieved 80%
accuracy with a linear, as well as a Gaussian kernel.

Zusammenfassung: Vergleich von SVM und Boos-
ted Regression Trees zur Abgrenzung von lakustri-
nen Sedimenten anhand von multispektralen
ASTER Daten und topographischen Parametern im
Einzugsgebiet des Manyara Sees. Die aus vor-
nehmlich lakustrinen Sedimenten bestehende älte-
re Gruppe der stratigraphischen Einheit der Man-
yara Beds beschreibt mit einer Höhe von mehr als
140 m über dem heutigen Seespiegel einen Hoch-
stand des Paläosees Manyara im Monduli Distrikt
im nördlichen Tansania. Die Manyara Beds sind
reich an pleistozänen Wirbeltierfossilien. Die vor-
liegende Arbeit beschäftigt sich mit der räumlichen
Abgrenzung dieser stratigraphischen Einheit um
mehr über die paläontologischen Ablagerungsbe-
dingungen und die Landschaftsgeschichte zu er-
fahren, sowie die Planung von paläontologischen
Geländearbeiten zu unterstützen. Wir vergleichen
anhand der lithostratigraphischen Einheit der Man-
yara Beds die Leistungsfähigkeit eines Support
Vector (Stützvektoren) Klassifizierungsansatzes,
mit einem linearen und einem Gaußschen Kernel,
und mit Klassifizierungsbäumen (Boosted Regres-
sion Trees). Um die lakustrinen Sedimente zu un-
terscheiden, wurden multispektrale Informationen
einer ASTER Satellitenaufnahme und topographi-
sche Parameter von einem digitalen Höhenmodell
als Eingangsvariablen genutzt. Mit allen Klassifi-
zierungsmethoden wurden zufriedenstellende Ge-
nauigkeiten erzielt. Somit konnte das Auftreten der
Manyara Beds räumlich abgegrenzt und bisher
nicht dokumentierte Flächen mit lakustrinen Sedi-
menten erfasst werden. Die höchste Klassifizie-
rungsgenauigkeit von 92% wurde von der Support
Vector Machine Klassifizierung mit einem linearen
Kernel für eine binäre Klassifizierung erreicht. Für
eine Aufgabenstellung mit Support Vector Machi-
nes für drei Zielklassen wurde eine Genauigkeit
von 80% sowohl mit einem linearen, als auch mit
einem Gaußschen Kernel erreicht.
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MATHER 2003, CHAN & PAELINCKX 2008). The
mapping of lithological units and the distri-
bution of soil with multispectral data and ter-
rain attributes as well as classification meth-
ods were reviewed byMULDER et al. (2011). In
this study we compare the accuracy of SVM
and BRT classifier in identifying the Manyara
Beds in a small scaled, heterogeneous envi-
ronment. PAL & FOODY (2010) showed that an
increase of input features may lead to a decline
of classification accuracy. Therefore, we apply
a feature selection to choose a subset of differ-
ent ASTER spectral bands, multispectral in-
dices and topographical indices. From this se-
lected set of features, we expect also improved
model interpretability, as well as an enhanced
generalisation of the resulting models.

2 Regional setting and data
preparation

2.1 Study Area

The Lake Manyara catchment in northern
Tanzania is an endorheic basin and part of the
eastern branch of the East African Rift Sys-
tem (Fig. 1). Today Lake Manyara is a shal-
low soda lake (954 m a.s.l.) with a maximum
depth of 1.18 m (DEUS et al. 2013). The basin
is an asymmetrically shaped half graben, with
a 200 m to 600 m high escarpment along the
western shoulder. The eastern shoulder of the
Rift is lower in elevation and consists of tec-
tonic blocks that are dipping towards the west.
The North-eastern parts of the catchment area
are dominated by the volcano Essimingor. Pa-
leo-shorelines can be found especially on the
Eastern part of the rift tracing different paleo-
lake levels up to 80 m above today’s lake level.
The latter forms also the lowest possible out-
let into the Engaruka and Lake Natron basin
(KELLER et al. 1975, BACHOFER et al. 2014). The
maximum age of the paleo-shorelines was es-
tablished with radiocarbon dating (Th/U se-
ries) to 140,000 a BP (CASANOVA & HILLAIRE-
MARCEL 1992). Besides the springs at the base
of the escarpment, Lake Manyara is main-
ly fed with seasonal drainages of the Taran-
gire and Makuyuni rivers. Today a bimodal
precipitation pattern with an average annual
rainfall of about 700 mm can be observed for

1 Introduction

Lacustrine sediments and paleo-shorelines of
different Quaternary lake-level high stands
can be observed in the north, south and east
of the Lake Manyara basin of northern Tanza-
nia. The study area is located in the Gregory
Rift in Central North Tanzania. The basin is
of paleontological and archeological interest
documented by several investigations in re-
cent years (e.g. SCHLÜTER et al. 1992, KAISER et
al. 2010, PRENDERGAST et al. 2013). One of the
richest stratigraphic units in vertebrate fos-
sils and artifacts in the region are the Manyara
Beds, which indicate a high level of the pa-
leolake Manyara at more than 140 m above to-
day’s lake level. The identification of the Man-
yara Beds contributes to the understanding of
landscape evolution and the spatial distribu-
tion of potential paleontological sites. Thus,
the study also serves for the planning of fu-
ture fieldwork in the study area.
Remote sensing images are used in differ-

ent studies to derive information on the ex-
tent of paleolakes and other paleo-landscape
forms. ELSHEIKH et al. (2011) and ELMAHDY
(2012) used remote sensing, GIS and geophys-
ical methods to delineate a paleolake in north-
ern Darfur. GHONEIM et al. (2012) used an in-
tegrated approach with optical and microwave
data to map a paleo-drainage system. The use
of remote sensing in combination with topo-
graphic analysis for the delineation of paleo-
lakes has been successfully applied by GABER
et al. (2009) on the Sinai Peninsula.
MOUNTRAKIS et al. (2011) review the appli-

cation of support vector machines (SVM) in
the classification of remotely sensed images.
SVM and boosted regression tree analysis
(BRT) were more and more used in the last de-
cade and yield high accuracies (FOODY & AJAY
2004, ESCH et al. 2009, WANG et al. 2011, GÓ-
MEZ et al. 2012, GESSNER et al. 2013). SVM and
BRT analyses are capable of handling multiple
input features, outliers, non linear tasks and
redundant data (FOODY & AJAY 2004, ELITH
et al. 2008). HAHN & GLOAGUEN (2008) used
SVM to classify soil types and soil texture
from ASTER multispectral data and topo-
graphic parameters in the Erzgebirge in Ger-
many. BRT methods have been assessed with
remote sensing data for land use issues (PAL &
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al. 2010, FROST et al. 2012). The Manyara Beds
consist of a lacustrine grayish lower mem-
ber (mudstones, siltstones, diatomites, marls
and tuff) which was deposited between 1.03
and 0.633 Ma, and a fluvial and terrestrial up-
per member which is composed of up to 13 m
thick reddish brown upper member (siltstones,
mudstones, conglomerates and breccias) de-
posited between 0.633 and 0.44 (0.27) Ma.
The transition between both members is in
most sections marked by a distinct tephra lay-
er (FROST et al. 2012). Sections of the Manyara
Beds are best exposed in the surroundings of
the town Makuyuni, where Holocene soils
and caliche overlay the sediments and where
various gully systems erode into the savanna
landscape. Laboratory analysis of representa-
tive samples of alluvial material of the Low-

the study area. The resulting semiarid vegeta-
tion cover is sparse and dominated by bushed
grassland (BACHOFER et al. 2014).

2.2 The Manyara Beds

The lacustrine and fluvial stratigraphic units,
known as theManyara Beds in the east of Lake
Manyara, reach up to approximately 140 m
above today’s lake surface. They describe the
maximum extent of the lake (SCHWARTZ et al.
2012). The Manyara Beds are rich in Pleis-
tocene vertebrate fossils. In the Lake Man-
yara area, especially close to the village of
Makuyuni, two hominin-bearing sites (0.63
and 0.78 Ma), vertebrate fossils and handaxes
from different periods were found (KAISER et

Fig. 1: The study area and the regional setting of Lake Manyara.
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control points (GCP) measurements and high
resolution WorldView-2 imagery. A mean lo-
cational residual error of 61.4 m could be es-
timated which is close to the residual error
calculated by HEWSON et al. (2005). The GCPs
and a Landsat ETM+ (L1T) panchromatic
scene with 15 m ground resolution were used
to improve the geometric accuracy using an
automatic point matching algorithm. For our
GCPs the Landsat scene showed a total RMSE
of 16.5 m. The ASTER scene could be aligned
with an RMSE of 0.9. However, the TIR bands
were excluded from the analysis because of
their low spatial resolution and some artifacts
which were visible in the L1B and also in the
surface emissivity product (AST05). To pre-
serve the spectral information of the VNIR
bands, the SWIR bands were resampled to the
respective ground resolution of 15 m.

2.4 Spectral Indices

Multispectral indices derived from ASTER
spectral bands are used in a broad range of
studies with a main emphasis on vegetation,
soil and lithology (MULDER et al. 2011, POUR
& HASHIM 2011). The spectral rationing of se-
lective band absorption features of different
materials at distinct wavelengths is utilized to
emphasize the presence or absence of distinct
mineral compositions or vegetation. From an
extensive literature review a broad range of
indices were collected and processed for this
analysis (Tab. 2). Not all minerals, for which
the indices were developed, are abundant in
the study area. In addition, many of the indi-
ces carry redundant information because of
the use of similar input bands and band com-
binations.

er Manyara Beds (LMB) and Upper Manyara
Beds (UMB) were taken from the slopes of the
Makuyuni river valley. They show heteroge-
neous texture, but distinct higher carbonate
content in LMB and Fe2+ content in UMB. Or-
ganic carbon is dependent on the topograph-
ic position and adjacent soils and vegetation
cover. Hence, the Manyara Beds show specif-
ic spectral and positional properties. Conse-
quently, a successful delineation of the Man-
yara Beds with spectral bands, multispectral
indices and topographical indices seem pos-
sible.

2.3 ASTER Multispectral Data

The Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER) was
launched with NASA’s TERRA spacecraft in
December 1999 (YAMAGUCHI et al. 1998). Its
subsystems cover three bands in the visible-
near infrared (VNIR), six bands in the short-
wave infrared (SWIR) and five bands in the
thermal infrared (TIR) wavelength regions
(Tab. 1). The ground resolution is 15 m, 30 m
and 90 m respectively (FUJISADA 1995). YAMA-
GUCHI et al. (1998) stated that the VNIR spec-
tral information was designed for use in map-
ping vegetation and iron oxides in soil and
rocks, while the SWIR wavelengths were de-
signed for soil and mineral mapping.
A cloud free ASTER L1B scene was ob-

tained at August 23, 2006, 8:07 UTC during
dry season. Because the SWIR bands of the
L1B data is not corrected for a cross-detec-
tor leakage, crosstalk correction was applied
following IWASAKI et al. (2002) using the cor-
rection software product from Earth Remote
Sensing Data Applications Centre (ERSDAC).
The average geometric accuracy of the

ASTER scene was validated by own ground

Tab. 1: ASTER spectral bands with the minimum lower and maximum upper band edges.

VNIR Green 0.52–0.60 μm SWIR 3 2.185–2.225 μm

VNIR Red 0.63–0.69 μm SWIR 4 2.235–2.285 μm

VNIR Near Infrared 0.76–0.86 μm SWIR 5 2.295–2.365 μm

SWIR 1 1.600–1.700 μm SWIR 6 2.360–2.430 μm

SWIR 2 2.145–2.185 μm TIR 1 - 5 8.125–11.65 μm
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Tab. 2: Spectral indices of ASTER VNIR and SWIR bands.

Index and literature reference Formula Index and literature reference Formula
AlOH Group (CUDAHY 2012) (5/7) AKP (ROWAN & MARS 2003) (4+6)/5
Alteration/Laterite
(BIERWIRTH 2002) (4/5) Amphibole (BIERWIRTH 2002) (6/8)
Alunite (POUR & HASHIM 2011) (7/5)*(7/8) Calcite (POUR & HASHIM 2011) (6/8)*(9/8)
CCE (ROWAN & MARS 2003) (7+9)/8 Dolomite (ROWAN & MARS 2003) (6+8)/7
Clay 1 (ROWAN & MARS 2003) (5+7)/6 MgOH Group (CUDAHY 2012) (6+9)/(7+8)
Clay 2 (BIERWITH 2002) (5*7)/(6*6) MgOH 1 (HEWSON et al. 2005) (6+9)/8
Kaolinitic (HEWSON et al. 2005) (7/5) MgOH 2 (CUDAHY 2012) (7/8)
Kaolin Group (CUDAHY 2012) (6/5) Ferric Iron³ (ROWAN & MARS 2003) (2/1)
Kaolinite (POUR & HASHIM 2011) (4/5)*(8/6) Ferrous Iron 1 (ROWAN et al. 2005) (1/2)
Muscovite (HEWSON et al. 2005) (7/6) Ferrous Iron 2 (ROWAN & MARS 2003) (5/3)+(1/2)
OH 1 (POUR & HASHIM 2011) (7/6)*(4/6) Ferric Oxide (CUDAHY 2012) (4/3)
OH 2 (NINOMIYA et al. 2005) (4*7/6)/6 Gossan (VOLESKY et al. 2003) (4/2)
OH 3 (NINOMIYA et al. 2005) (4*7/5)/5 Opaque Index (CUDAHY 2012) (1/4)
PHI (HEWSON et al. 2005) (5/6) Ferrous Iron/Silicates (CUDAHY 2012) (5/4)
RBD6 (ROWAN et al. 2005) (4+7)/(6*2) Burn Index (HUDAK et al. 2004) (3-5)/(3+6)
RBD8 (ROWAN et al. 2005) (7+9)/(8*2) VI (TUCKER 1979) (3/2)
NDVI (ROUSE et al. 1974) (3-2)/3+2) Salinity (AL-KHAIER 2003) (4-5)/(4+5)
STVI (POUR & HASHIM 2011) (3/2)*(1/2)

Tab. 3: Topographic indices.

Slope (TRAVIS et al. 1975) Aspect (TRAVIS et al. 1975)
Slope height (BOEHNER & CONRAD 2008) Valley Depth (BOEHNER & CONRAD 2008)
Standardized Height (BOEHNER & CONRAD 2008) Normalized Height (BOEHNER & CONRAD 2008)

Mid Slope Position (BOEHNER & CONRAD 2008) Downslope Distance Gradient (HJERDT et al.
2004)

Plan Curvature
(ZEVENBERGEN & THORNE 1987, DIKAU 1988)

Profile Curvature
(ZEVENBERGEN & THORNE 1987, DIKAU 1988)

Negative Openness (YOKOYAMA et al. 2002) Positive Openness (YOKOYAMA et al. 2002)
Morphometric Protection I.
(YOKOYAMA et al. 2002) Terrain Ruggedness Index (RILEY et al. 1999)

Multiresolution Index of Valley Bottom Flatness
(GALLANT & DOWLING 2003)

Multiresolution Index of Ridge Top Flatness
(GALLANT & DOWLING 2003)

Relative Slope Position (CONRAD 2005) Geomorphones (JASIEWICZ & STEPINSKI 2013)
Stream Power Index (MOORE et al. 1991) LS Factor (MOORE et al. 1991)
Terrain Classification Index for Lowlands
(BOCK et al. 2007)

Topographic Position Index
(GUISAN et al. 1999, JENNESS 2006)

Topographic Wetness Index
(BEVEN & KIRKBY 1979)

Vertical Distance to Channel Network
(CONRAD 2005)

Elevation (height above sea level; a.s.l)
(DLR 2012)
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bution of the Manyara Beds with a minimum
size of at least the VNIR resolution (15 m2) for
the UMBs and at least 30 m2 for LMBs and
“other landcover”. The relatively small area
for the UMBs was defined because they gen-
erally appeared as small sections or outcrops
of red tuffs on the valley slopes.

3 Methodology

3.1 Support Vector Machines

The concept of support vector machines
(SVM) based supervised classification origi-
nates from machine learning methodology
and was introduced by VAPNIK (1995, 1999).
Due to different characteristics, the SVM al-
gorithm has become very popular for pat-
tern recognition and classification (FOODY
& MATHUR 2004). While most remote sens-
ing classification methods are mainly based
on statistical properties of pixel and objects,
SVMs maximizes the boundaries between in-
tended classes. The problem of linear separat-
ing classes in an n-dimensional feature space,
resulting from multiple independent input fea-
tures is solved by applying kernel functions.
By maximizing the margin between classes,
an optimal separating hyperplane is strived
for (BURGES 1998, HEARST 1998). Only a small
selection of feature values in the training data,
which are close to the margin, are needed to
define the hyperplane. These features are re-
ferred to as support vectors. Too many outli-
ers within the training dataset would result in
an over-fitting of the hyperplane. The cost pa-
rameter C determines a penalty for the sup-
port vectors which excludes outliers and re-
sults in a so called “soft margin”. C controls
thereby the balance between over-fitting (high
values) and generalization (low values) of the
maximum margin and must be selected care-
fully (VAPNIK 1995 & 1999, SCHÖLKOPF & SMO-
LA 2002, FOODY & MATHUR 2004).
For this analysis, support vector classifier

(C-SVC) from the Library for Support Vector
Machines (LIBSVM) developed by CHANG &
LIN (2011) was utilized. It implements a “one-
against-one” approach, which builds a classi-
fier for each target value pair. The classifica-
tion was conducted with a linear kernel and

2.5 Topographic Indices

A track of the shuttle radar topography mis-
sion X-band (SRTM-X) digital elevation mod-
el (DEM) with 25 m ground resolution covers
the study area. To eliminate the noise in the
SRTM-X DEM, a multidirectional Lee filter
was applied to preserve topographic features
(LEE 1980). Different topographic indices
(Tab. 3) were derived from the DEM to serve
as independent features in the classification.
The indices are used to characterize the topo-
graphic conditions of the Manyara Bed’s loca-
tion. The selected indices are listed in Tab. 3.

2.6 Training and Reference Data

As reference for this study, 498 ground refer-
ence points were collected during field cam-
paigns between 2010 and 2014. Because of
the time gap between the acquisition of the
ASTER scene and the reference point selec-
tion, all points were taken with care even
though the landscape is considered as relative-
ly stable in relation to the ground resolution
of the ASTER and SRTM-X data. Moreover,
we assume that the mineral components of the
Manyara Beds are conservative, means that in
the study area environment they will change
insignificantly over such a time period.
Some parts in the south and southeast of

the study area are remote and partly inacces-
sible. Therefore, we applied a random clus-
tered sampling strategy. The reference points
are imbalanced with 40 points describing the
UMBs, 139 points describing the LMBs, and
320 points with dissimilar landcover. To the
latter class we refer to as “other landcover”,
which involves a rather complete reference se-
lection of soils, minerals and vegetation with-
in the study area, which were merged to take
into account a potential landcover change.
UMBs are not as abundant in the field as
LMBs, which are the more important sedi-
ments for the reconstruction of the paleolake
history. 20% of points from each class were
randomly selected to serve exclusively as test
datasets. Soils which are adjacent to or devel-
oped from the Manyara Beds were not classi-
fied as Manyara Beds. Reference points were
collected describing the relative spatial distri-
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multi-class classification problem to multiple
binary-class problems. However, the Ada-
Boost.M1 and the SAMME algorithms extend
the AdaBoost algorithm to the multi-class
case (ZHU et al. 2009). The difference between
the algorithms is the calculation of the α con-
stant, which estimates the error of the classi-
fier for each tree iteration. For binary classi-
fications SAMME is equivalent to AdaBoost.
M1. The measure of the relative importance of
the input features uses the gain of the Gini in-
dex (ALFARO et al. 2013), which measures the
divergences between the probability distribu-
tion of the values of a feature. Best results for
both approaches were achieved with the build-
ing of 500 trees and 5 nodes for each tree.

4 Results

The classification of the Manyara Beds for two
classes (LMB, “other landcover”) and three
classes (LMB, UMB, “other landcover”) with
SVM and BRT was conducted with different
sets of input feature combinations. As shown
in Tabs. 4 and 5, the nine “Spectral Bands” of
ASTER, the derived “Spectral Indices” and
“Topographic Indices” derived from the DEM
were considered for classification separately.
Additionally, we show also the model perfor-
mance considering “All Features” as well as
a “Selection of Features” which were identi-
fied for SVM and BRT as the features with the
highest importance for solving the classifica-
tion problem (Fig. 2). The number of relevant
features varies between the different methods
and parameterizations. The smallest number
of features (20) was identified for the SVM
with an RBF kernel and the binary classifica-
tion problem, the highest number (66) for the
BRT approaches (Tabs. 4 and 5). The BRT
methods stabilized with about 80 trees for the
binary classification and for the multi-class
problem between 130 and 500, depending on
the feature set (Fig. 3).
The highest accuracy with 92% was

achieved with SVM (linear kernel) and all
“Spectral Bands” as well as “Spectral Indi-
ces” and “Topographic Indices” for the bina-
ry classification of LMB against “other land-
cover” (Tab. 4). Both linear and RBF kernels
perform for the two classes with similar ac-

the radial basis kernel function (RBF) which
is widely used when a nonlinear relation is ex-
pected (FOODY & MATHUR 2004). The width of
the RBF or Gaussian kernel is controlled by
the constant γ, with high values describing a
far reaching influence of the training sample
and a low value for influencing the adjacent
feature space. A grid search was applied by
iteratively cross-validating the accuracy of
test data classification, while optimizing the
constants C and γ. All input feature sets were
scaled to the range [-1, +1]. For the selection
of features we applied the recursive feature
elimination (RFE) technique which is widely
used with SVM approaches following GUYON
& ELISSEEFF (2003). In an iterative process the
features are weighted according to their abili-
ty of discriminating the target classes. At each
step the most insignificant features are elimi-
nated recursively.

3.2 Boosted Regression Trees

Boosted regression trees (BRT), also known
as stochastic gradient boosting (ELITH et al.
2006), combine classification and regression
trees with the gradient boosting algorithm
(FRIEDMAN 2001). This method employs a
learning algorithm to identify a model that fits
best the relationship between a feature set and
the class label of the target classes. We ran the
model using the free statistical programming
language R (RDEVELOPMENT CORE TEAM 2008)
with the package adabag (ALFARO et al. 2013).
The boosting algorithm used in adabag is the
AdaBoost (adaptive boosting) algorithm based
on FREUND & SCHAPIRE (1996). The goal of the
algorithm is to improve the accuracy of a tree
by combining single predictor variables into
classifiers. The points along the tree where the
features are split are called nodes. Bagging
reduces the variance and hence increases the
prediction accuracy by taking repeated sam-
ples from the training dataset to build a pre-
diction model and then averages the resulting
predictions. Boosting constructs each tree on
the original dataset but each tree is grown us-
ing information from previously grown trees.
When a binary classification problem is ex-
tended to a multi-class classification problem,
most boosting algorithms have to reduce the
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Fig. 3: AdaBoost SAMME error rate in relation
to the number of trees for selected features.

Fig. 2: Relationship between error rate and
number of features selected by SVM-RFE.

Tab. 4: Overall accuracy and applied parameters for SVM and BRT. Binary classification scheme:
LMB & “other landcover”. Highest overall accuracy displayed in boldface (no = number of fea-
tures).

Spectral
Bands
(no: 9)

Spectral
Indices
(no: 35)

Topographic
Indices
(no: 25)

All Features
(no: 69)

Selected
Features

SVM linear 85% 86% 86% 92% 91%

C: 75 C: 8 C: 8 C: 50 (no: 40) C: 40

SVM RBF 84% 87% 88% 89% 89%

C: 29
γ: 1.5

C: 39.5
γ: 0.135

C: 50
γ: 1

C: 1.5
γ: 0.16

(no: 20)
C: 1.6 γ: 0.2

BRT
AdaBoost.M1 82% 85% 86% 89% 90%

(no: 66)

Tab. 5: Overall accuracy and applied parameters for SVM and BRT. Three-class classification
scheme: LMB, UMB & “other landcover”. Highest overall accuracy displayed in boldface (no =
number of features).

Spectral Bands
(no: 9)

Spectral
Indices
(no: 35)

Topographic
Indices
(no: 25)

All Features
(no: 69)

Selected
Features

SVM linear 74% 73% 72% 79% 80%

C: 2 C: 4 C: 8 C: 1.5 (no: 27) C: 10

SVM RBF 75% 78% 73% 80% 80%

C: 20
γ: 1.6

C: 12.5
γ: 0.105

C: 3
γ: 0.15

C: 3
γ: 0.235

(no: 32)
C: 17.6 γ: 0.25

BRT
AdaBoost.M1 75% 76% 72% 78% 78%

(no: 66)

BRT SAMME 72% 75% 73% 79% 79%
(no: 66)
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curacies. Only for the classification with “All
Features” and the “Selected Features” the lin-
ear kernel can achieve a higher accuracy. The
accuracies show a slightly lower performance
for BRT than for both SVM methods.
When expanding the classification problem

with the LMBs as the third class the overall ac-
curacy drops with all possible combinations.
The RBF kernel and the linear kernel perform
similarly well and achieve 80% accuracy with
“All Features” (Tab. 5). Fig. 4 shows the as-
sociated spatial distribution of the LMBs and
UMBs. Stratigraphic units with similar topo-
graphic and spectral properties compared to
the LMBs were identified in the south of the
study area in the Tarangire River valley and
further east in the Makuyuni River valley.

5 Discussion

In comparing the SVM classifier with linear
and RBF kernels, as well as with the BRT Ad-
aBoost.M1, results show that the binary clas-
sification problem can be solved with high ac-
curacies of up to 92%. Regarding the binary

Fig. 4: Three-class SVM RBF result with “All
Features”, ASTER false colour infrared image
(near-infrared, red, green) as background.

Fig. 5: Three-class SVM RBF comparison of
different input features. ASTER false colour in-
frared image as background; a) SVM RBF with
“All Features”; b) SVM RBF with 9 “Spectral
Bands” of ASTER; c) hillshade of DEM; d) SVM
RBF with “Topographic Indices”.
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Manyara Beds. The spectral “Opaque Index”
(CUDAHY 2012) is sensitive to magnetite-bear-
ing rocks, maghemite gravels, and manganese
oxides. Whether the value distribution of the
“Opaque Index” for this ASTER scene results
from those specific absorption features can
only be determined through further laborato-
ry analysis or field spectroscopy. The spectral
reflection characteristics may also result from
other materials. The topographic information
“Elevation (height a.s.l.)” describes the depo-
sition on a distinct paleolake level. The topo-
graphic index “Positive Openness” expresses
the degree of geometric dominance of one or
several convex relief features. It therefore ac-
curately highlights elevated areas (YOKOYAMA
et al. 2002). “Plan Curvature” differentiates
between ridges and valleys and may describe
the incision of streams and gully systems into
the lacustrine sediments. The “Multiresolu-
tion Index of Valley Bottom Flatness” (GAL-
LANT & DOWLING 2003) may describe the dep-
ositional areas of the Manyara Beds.
Lacustrine sediments similar to the LMB

are identified in the eastern part of the study
area. After the first classification results we
conducted a field check proving the predicted
lacustrine sediments in the eastern part of the
study area. In addition, vertebrate fossils are
abundant at this location. Since the elevation of
these sediments is higher than the LMBs, their
elevation can be explained by a tectonic down-
shift of the block with the LMB as is proposed
by SCHWARTZ et al. (2012). This must have hap-
pened after or during the sedimentation of the
Manyara Beds. The second explanation would
propose a lake or swamp situation parallel to
the paleolake Manyara. A gneissic ridge that
is incised today by the Makuyuni River would
have functioned as a barrier. The drainage of
this lake was directed into the Tarangire River

classification problem, the linear and the RBF
kernels yielded a very good performance. The
BRT model performs marginally lower, but
also at a high level. By enlarging the classifi-
cation problem to three classes the overall ac-
curacy drops by nearly 12% on average (Tabs.
4 and 5). The small number of UMB training
features and their irregular spatial distribu-
tion result in an imbalanced training set and
cause a lower overall accuracy. As for the
three-class classification, the SVM with the
RBF kernel as well as the SVM paired with
the linear kernel perform slightly better than
the BRT methods. The SVM three-class prob-
lem requires a higher generalization, leading
to a wider hyperplane margin. The SVM bina-
ry problem however displays no such require-
ment (lower C values).
“Spectral Bands”, “Spectral Indices” and

“Topographic Indices” may be used as input
features to explain the location of LMBs and
UMBs. Both SVM methods perform similar-
ly when using “All Features” and the RFE-
“Selected Features”. The same is true for the
BRT methods. When using only “Topograph-
ic Indices” the binary classification approach
detects the distribution of the Lower Man-
yara Beds better than with spectral informa-
tion. Though for the three-class approach, the
Lower and the Upper Manyara Beds seem to
be separated better by spectral input features.
“Spectral Bands” and “Spectral Indices” iden-
tify areas where the spectral information
of the target classes is not (or only margin-
ally) disturbed by heterogeneous land cover
(Fig. 5b). The use of solely “Topographic In-
dices” results in a separation of the different
topographic positions of the Manyara Beds
within the study area (Fig. 5c, d). Consequent-
ly, the “Topographic Indices” with the multi-
class scheme achieved the lowest accuracies
because the topographic characteristics of the
LMBs and the UMBs partly overlap. Accord-
ingly, the combination of both spectral and
topographic features best explains the distri-
bution of the Manyara Beds (Fig. 5a).
Several optimized feature sets were identi-

fied which explain the distribution of the target
classes with the training data (Fig. 2). Eight in-
put features are common in all optimized fea-
ture sets (Tab. 6). The spectral feature VNIR
Green (ASTER band 1) correlates with the

Tab. 6: Features which are common in all fea-
ture selection results.

VNIR Green SWIR 6

Opaque Index Stream Power Index

Multiresolution Index of
Valley Bottom Flatness Positive Openness

Plan Curvature Elevation (height
a.s.l.)
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ence (EROS) Center, Sioux Falls, South Da-
kota, USA. We would like to thank the DLR
and the German Remote Sensing Data Center
(DFS) for providing the SRTM/X-SAR data.
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