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Summary: Field reflectance spectroscopy has been 
widely used in proximal soil sensing. Results of 
spectroscopic approaches depend, inter alia, from 
the experimental setup and the applied spectrora-
diometric instrumentation. Beyond the traditional 
instrument concepts (acquisition of ground truth 
data with field spectroradiometers, air- and space-
borne scanners), there are currently alternative de-
velopments in the ground-based or near-ground 
spectroscopy: The hand-held and thus mobile non-
scanning hyperspectral imaging technique might 
be one previously missing part in the operational 
spectral data chain to be used for down- and up-
scaling purposes. It should effectively bridge the 
gap between point and image data as it enables a 
very rapid data acquisition.

This study describes how readings of a hyper-
spectral frame camera (in the nominal spectral 
range from 450 nm to 950 nm) could be utilised for 
soil detection and analysis. The proximally sensed 
hyperspectral images were compared to 1D spec-
troradiometric data, both acquired in the lab using 
raw, sieved and grinded soil samples. Measured 
spectral datasets were then used to define multi-
variate calibration models, i.e., the spectra were 
analysed to extract quantitative models between 
spectral data and soil constituents of interest deter-
mined by wet chemical analysis. We used partial 
least squares regression (PLS) as statistical calibra-
tion method to estimate soil organic carbon (OC), 
hot-water extractable carbon (HWE-C) and nitro-
gen (N). The results that we obtained from the cam-
era data were satisfactory (with coefficients of de-
termination (R2) between 0.62 and 0.84 in the 
cross-validation), but only with crushed samples 
and when combining PLS with CARS (competitive 
adaptive reweighted sampling), an effective spec-
tral variable selection technique. For in-field stud-
ies without any sample preparation, stratified ap-
proaches considering soil surface roughness and/or 
the elimination of shadow pixels from the acquired 
images might both be promising to improve the ac-
curacy of obtainable estimates.

Zusammenfassung: Einblick in die hyperspektrale 
Abbildung zur Untersuchung von Böden – Ergeb-
nisse einer Laboruntersuchung. Anwendungen der 
Feldspektroskopie zur Charakterisierung von Bö-
den sind in zahlreichen Studien aufgezeigt worden. 
Erzielte Ergebnisse sind unter anderem von den 
eingesetzten Spektroradiometern und der gewähl-
ten Messkonfiguration abhängig. Neben klassi-
schen Instrumentierungskonzepten (Erhebung von 
Referenzdaten mit Feldspektroradiometern, Scan-
ner auf Flugzeug- und Satellitenplattformen) gibt 
es aktuell in der bodengestützten bzw. -nahen 
Spektroskopie eine Reihe von Neuentwicklungen. 
So könnte sich eine handgehaltene und somit mobil 
einsetzbare bildgebende (nicht-scannende) Hyper-
spektralkamera als ein bislang fehlendes Element 
in der operationellen Spektraldatenkette erweisen, 
nutzbar sowohl zum Up- als auch zum Downsca-
ling. Diese Technik sollte die Lücke zwischen 
Punktmessung und Bilddaten effektiv schließen 
können, da sie eine sehr schnelle Datenaufnahme 
möglich macht.

Eine Vollformat-Hyperspektralkamera (nomi-
neller Spektralbereich 450 nm bis 950 nm) wurde 
in der vorliegenden Studie zur spektralen Erfas-
sung von Böden eingesetzt. Bodennah aufgenom-
mene Hyperspektralbilder wurden dazu mit 1D 
Spektroradiometerdaten verglichen. Beide Daten-
sätze wurden im Labor für jeweils unaufbereitete, 
gesiebte und fein gemahlene Bodenproben aufge-
nommen. Die gemessenen Spektren wurden ge-
nutzt, um multivariate Kalibrierungen aufzustel-
len, d.h. den Zusammenhang zwischen Spektralda-
ten (nach adäquater Transformation) und nassche-
misch gemessen Bodenparametern zu modellieren. 
Als Methode zur Kalibrierung wurde die „partial 
least squares“-Regression (PLS) genutzt, um die 
Gehalte an organischem Kohlenstoff (OC), heiß-
wasserlöslichem C (HWE-C) und Stickstoff (N) 
abzuschätzen. Die aus den Kameradaten abgeleite-
ten Schätzergebnisse waren zufriedenstellend. Die 
Bestimmtheitsmaße (R2) der Schätzmodelle lagen 
zwischen 0.62 und 0.84 in der Kreuzvalidierung. 
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tung erscheinen Submodelle für aus den Bildern 
geschätzte unterschiedliche Bodenrauigkeiten und/
oder die Beseitigung von Schattenpixeln als aus-
sichtsreiche Möglichkeiten, um die Schätzergeb-
nisse verbessern zu können.

Diese Resultate konnten aber nur erzielt werden, 
wenn die Bodenproben vor der spektralen Messung 
zerkleinert und die PLS mit einer effektiven Spek-
tralvariablenselektion (CARS, „competitive adap-
tive reweighted sampling“) kombiniert wurden. 
Für Feldstudien ohne mögliche Probenaufberei-

1 Introduction

Spectroscopy in the visible and near-infrared 
(VNIR) has been widely used in soil sensing, 
either in the laboratory (e.g. Ben-Dor & Banin 
1995, SuDDuth et al. 1989, ViScarra roSSel & 
McBratney 1998) or for in-situ soil monitor-
ing (e.g. KooiStra et al. 2003, uDelhoVen et al. 
2003). Typically, field reflectance spectra are 
collected by portable field spectrometers (1D 
high-resolution spectra), which are often com-
plemented by 2D data of air- or spaceborne 
imaging spectrometers with a more limited 
spatial resolution. Compared to portable field 
spectroscopy, airborne imaging spectroscopy 
has a greater potential to cover large areas dur-
ing a single flight campaign, but accuracies of 
estimated soil properties are usually lower due 
to a lower signal-to-noise ratio and disturbing 
atmospheric influences, for example. Variable 
soil and surface properties (moisture content, 
roughness, crusting) induce spectral variabil-
ity that is critical for large area approaches 
and may be accounted for by using stratified 
(local) calibrations (SteVenS et al. 2008, 2010, 
hill et al. 2010).

With traditional instrument concepts, i.e., 
ground truthing with field spectrometers 
to link ground spectra with data of air- and 
space borne scanners, there is a gap in the 
“point-pixel-image”-upscaling approach as 
proximally sensed hyperspectral image data 
are missing. However, ground-based imaging 
line-scanners are currently less widespread in 
ground truthing than portable field spectro-
meters. One reason for this is the time factor 
as operating a field line scanner on a tripod 
set-up is very time consuming compared to 
the use of a 1D-field spectrometer. One of the 
concepts to overcome this limitation and to 
bridge the gap in the hyperspectral data chain 
is non-scanning snapshot hyperspectral imag-
ing, which enables rapid (1 ms) data acquisi-
tion in a hand-held mode (Jung et al. 2013).

Due to the novelty of this technique there 
are no available references for non-scanning 
hyperspectral cameras used in proximal soil 
sensing. However, there is a comprehensive 
list of studies and works conducted with line-
scanners. Recently, SteffenS & BuDDenBauM 
(2013) utilised a hyperspectral scanner from 
400 nm to 1000 nm to determine the con-
centrations of carbon, nitrogen, aluminium, 
iron and manganese of a stagnic Luvisol pro-
file under laboratory conditions. For air- and 
space borne scanners e.g. SteVenS et al. (2010) 
provide an overview of available soil stud-
ies. In addition, numerous studies exist deal-
ing with ground-based imaging spectroscopy  
using the line-by-line-scanning principle for 
applications in geology and vegetation analy-
sis (Kurz et al. 2013, Vigneau et al. 2011, ye 
et al. 2008).

Irrespective of the instrumentation, hyper-
spectral measurements provide large sets of 
spectral variables which are strongly correla-
ted and often contain noise. These data have 
to be processed to model the relationship bet-
ween spectral values and soil constituents, 
which can make use of a simple spectral index, 
for example, or a number of factors or compo-
nents extracted after data projection; these 
factors/components should ideally represent 
the underlying structure and contain the most 
relevant information of the data. In the cali-
bration approach, the statistical components 
are then modelled against the constituents de-
termined by wet chemical analysis. After its 
validation, either internal with e.g. leave-one-
out cross-validation or – more appropriate – 
external with an additional dataset, this model 
may be applied to unknown samples.

The statistical method that is used in the ca-
libration process should reflect the inherent 
structure of the hyperspectral data and be able 
to handle correlated and noisy data. In chemo-
metrics, partial least squares regression (PLS) 
has firmly established as a robust multivariate 
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states of crushing (raw, sieved, grinded). For 
multivariate calibration, we applied both full 
spectrum-PLS and PLS combined with a key 
wavelengths selection procedure, the CARS 
method (competitive adaptive reweighted 
sampling; li et al. 2009). The workflow fol-
lowed in this study is illustrated in Fig. 1.

2 Data Acquisition

2.1 Study Site, Sampling and Soil 
Wet-Chemical Analysis

The soil sampling area was situated in the 
Northwest Saxon Basin (Geopark Mulden-
land), which is characterised by Permian bed-
rock geology (rhyolites and ignimbrites), Cre-
taceous-Tertiary weathering products (like 
Kaolin) and quaternary sediments (loess, 
Pleistocene terrace gravel).

Within the study area 40 randomly selec-
ted soil samples were taken on different ag-
ricultural fields from the very top layer (Ap, 
0–10 cm depth). For further wet-chemical 
analysis, soil samples were air-dried, sieved 
≤ 2 mm, and subsequently homogenised by 
grinding using an agate mortar. Soil texture 
was determined with the Köhn sieve-pipette 
method (E DIN ISO 11277:1994-06 1994) and 
ranged from loamy sand (n = 2), sandy loam 
(11), loam (4), silt loam (22) to silt clay loam (1) 
(after FAO classification; FAO 2006) (Tab. 1).

The total contents of OC and N were meas-
ured by gas chromatography after dry com-
bustion at 1100 °C with an EuroEA elemental 
analyser (HekaTech, Wegberg, Germany), all 
soil samples were free of carbonate-C. Deter-
mination of HWE-C followed the method of 

calibration tool. However, improvements of 
accuracy are usually achieved by selecting the 
most informative spectral variables instead of 
using the full spectrum. The selection of spec-
tral variables also tends to reduce the com-
plexity of the multivariate model that is finally 
retrieved for quantification purposes (XiaoBo 
et al. 2010).

This paper focuses on the use of the recent-
ly available non-scanning UHD 285 hyper-
spectral frame camera (Cubert GmbH, Ulm, 
Germany) for VNIR soil sensing in a labora-
tory experiment. The studied sample set con-
sisted of 40 soil samples, which were analysed 
for their contents of organic carbon (OC), hot-
water extractable carbon (HWE-C) and nitro-
gen (N); spectral readings were taken with 
the UHD 285 and an ASD (Analytical Spec-
tral Devices, Boulder, Colorado, USA) full 
range spectroradiometer for three different 

Fig. 1: Workflow to assess soil constituents 
from spectral data.

Tab. 1: Soil texture of three selected soil sam-
ples (from loess and sandy moraine material).

Sand 
(%)

Silt 
(%)

Clay 
(%)

Soil from loess
(silt loam)

5 79 16

Soil from sandy loess 
(sandy loam)

31 56 13

Soil over sandy 
moraine (loamy sand)

82 9 6
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350 nm to 2500 nm. The spectral resolution of 
this instrument is 3 nm at 700 nm and 30 nm 
at 1400/2100 nm. The sampling interval is 
1.4 nm in the VNIR range from 350 nm to 
1050 nm and 2 nm in the SWIR range; spec-
tra are provided with 1 nm increments (2151 
channels).

For the data collection both instruments 
were mounted on a single tripod (Fig. 2). As il-
lumination source we used an ASD Pro-Lamp 
model, which is also tripod-mountable for in-
door laboratory diffuse reflectance measure-
ments. The size of the calibrated reference 
panel (Zenith Polymer®) was 30 cm × 30 cm. 
For imaging and non-imaging measurements, 
the same white reference panel was used to 
keep the referencing standardised.

The air-dried soil samples were prepared at 
three different degrees of fineness (raw, sieved 
≤ 2 mm and grinded, Fig. 3) in order to vary 
micro-shadowing and to possibly maximise 
the spectral significance of the chemical soil 
components. The distance between sensor and 
soil sample was set to 35 cm in the nadir po-
sition, the illumination zenith angle was 45°. 
All samples were prepared on a reflection neu-
tral plate (spectrally tested before) and cov-
ered, prior to the spectroscopic measurement, 
by a black passepartout (reflectance under 5% 
over the entire spectral range from 400 nm to 
2500 nm) with a window of 20 cm × 20 cm. 
After each measurement, the soil sample was 
rotated by 90°, so that each sample was ar-
chived with 4 spectra. The spectra of the ASD 
instrument were pre-processed by ViewSpec 
(ASD software) and exported as mean spec-
tra for the subsequent statistical analysis. The 
same measurement scheme was followed for 

KörSchenS et al. (1998) and was examined by 
an one hour extraction of 10 g soil with dis-
tilled water (50 ml) at 100 °C using a Gerhardt 
Turbotherm TT 125 (Gerhardt, Bonn, Germa-
ny). After the extraction, cooling, adding of 
MgSO4 and centrifugation at 2600 rpm for 10 
minutes, the dissolved organic carbon of the 
supernatant was analysed with a TOC-VCPN-
analyzer (Shimadzu, Duisburg, Germany). 
Tab. 2 illustrates mean, minimum, maximum, 
and standard deviation (std) of the analysed 
soil properties. In total, soil parameters given 
in Tab. 2 cover the values that are typical for 
agricultural soils.

2.2 1D and 2D Spectral Data 
Acquisition and Pre-Processing

For the acquisition of image data we used the 
UHD 285 hyperspectral frame camera. A sili-
con CCD chip with a sensor resolution of 970 
× 970 pixel captures the full frame images. 
The dynamic image resolution is 14 bit. At 
normal sun light illumination, the integration 
time of taking one hyperspectral data cube is 
1 ms. The camera is able to capture more than 
15 spectral data cubes per second, which fa-
cilitates hyperspectral video recording. The 
high-resolution imaging spectrometer coupled 
with the camera chip was designed and devel-
oped by ILM (Institute of Laser Technologies 
in Medicine and Metrology) at the University 
of Ulm and the Cubert GmbH. For our analy-
sis, we used the spectral range from 450 nm to 
950 nm that is covered by 125 channels. The 
hyperspectral data cube has a spectral resolu-
tion of 4 nm.

1D measurements were performed with 
an ASD FieldSpec 4 Wide-Res spectro radio-
meter with an available spectral range from 

Tab. 2: Wet-chemical parameters of the 
studied soil samples.

Mean Min Max Std

OC (%) 1.54 0.62 4.31 0.74

HWE-C (μg g−1) 652 306 1568 265

N (%) 0.145 0.048 0.377 0.068

Quotient C × N−1 10.9 8.5 18.0 2.2

Fig. 2: Experimental set-up for 1D and 2D 
spectral measurements in the laboratory.
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detector decreases from around 800 nm up to 
the response limit of the detector (Magnan 
2003), which can to some extent be observed 
for the now reduced image spectra in Fig. 4 
too. Based on the described pre-processing, 
119 spectral dimensions (458 nm – 930 nm, 
see Fig. 4) were used for both the 1D reflec-
tance vectors and the 2D image pixels. To en-
able a direct comparison to the 1D spectra, the 
2D reflectance data (hyperspectral data cubes) 
were converted to virtual 1D measurements 
by averaging the entire image of each sam-
ple. Additionally, spectra were transformed by 
converting reflectances to absorbances with 
log(reflectance-1) and by applying the stan-
dard normal variate approach, that is assumed 
to partly remove the multiplicative interfer-
ences of scatter and particle size. Fig. 4 shows 
also the known effect of soil particle size on 
reflectance level, i.e., a general decrease with 
increasing particle size, which has often been 
described in soil spectroscopic studies (e.g. 
BowerS & hanKS 1965).

2.3 Statistical Methods

PLS has established as multivariate standard 
tool in the field of chemometrics. PLS is simi-
lar to principal component regression (PCR), 
as both employ statistical rotations to over-
come the problems of high-dimensionality 
and multicollinearity. Different from PCR, 
PLS maximises the covariance between the 
spectral matrix (X) and the chemical concen-
tration matrix (Y) to maximise the predic-
tive power of the resulting model (wolD et al. 

the 2D reflectance measurements. The native 
hyperspectral data cubes were converted into 
.bsq (band sequential) format and processed 
by the image analysis software ENVI (Exelis 
Visual Information Solutions).

The spectral resolution of both datasets was 
adjusted prior to the multivariate calibration 
procedure. In detail, both sets were reduced 
to 458 nm – 930 nm and spectrally resam-
pled to the 4 nm resolution of the native image 
spectra. The camera’s first spectral bands be-
low 458 nm showed non-correctable artefacts 
and were removed. The spectral region over 
930 nm suffered from a distinct Si-induced 
loss of sensitivity. Therefore, the last spec-
tral band was set to 930 nm. It is a general and 
known phenomenon in CCD imaging tech-
nology that the light efficiency of a silicium 

Fig. 3: Examples of the differently prepared soil samples (raw, sieved and grinded) with typical 
micro-structures and micro-shadowing due to surface roughness.

Fig. 4: 1D and 2D reflectance curves after 
spectral resampling for raw, sieved and grind-
ed soil samples captured by the hyperspectral 
camera (2D) and the ASD field spectrometer 
(1D).
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considered to indicate excellent predictions, 
whereas values from 2.5 to 3.0 (RPDcv) and 
0.82 to 0.90 (R2

cv) denote a good prediction. 
Approximate quantitative predictions are in-
dicated by RPDcv values between 2.0 and 2.5 
and R2

cv values in the range from 0.66 to 0.81. 
The possibility to distinguish between high 
and low values is shown by values between 
1.5 and 2.0 (RPDcv) and 0.50 and 0.65 (R2

cv). 
Unsuccessful predictions have RPDcv or R2

cv 
values lower than 1.5 or 0.50, respectively.

3 Results and Discussion

3.1 Estimates from Full Range and 
VNIR Spectra (Spectroradiometer 
and Image Data)

Estimates from full range spectroradiometer 
data (cross-validated results) obtained with 
both approaches, PLS and CARS-PLS, are 
summarised in Tab. 3. Excellent results were 
obtained with CARS-PLS for OC (raw sam-
ples) and N (raw and grinded samples); for 
HWE-C, results were slightly worse (good 
predictions using raw or grinded samples). As 
HWE-C represents a comparatively small car-
bon pool (as a measure of labile C), indirect 
correlations to the spectral data triggered by 
OC may be of relevance. High correlations be-
tween OC and HWE-C (Persons’s r = 0.93, p 
< 0.01) also support the assumption of such an 
indirect correlation (see also VohlanD et al. 
2011). CARS-PLS outperformed PLS (with-
out variable selection) in all cases and re-
sulted in at least “approximate quantitative 
predictions”. Due to the selection procedure, 
CARS-PLS models were – as a general rule 
– more parsimonious than PLS models. With 
the exception of sieved samples (OC and N), 
the number of latent variables reduced slight-
ly; the number of spectral variables that were 
integrated in CARS-PLS models ranged be-
tween 13.9 (HWE-C, sieved samples – aver-
aged from 50 runs) and 23.5 (N, sieved sam-
ples) and was thus distinctly lower than the 
original number of n = 500 spectral variables. 
With respect to the preparation level, worst 
results were obtained with the use of sieved 
samples.

2001). To calibrate a PLS model for each con-
stituent, the optimum number of latent varia-
bles was identified by performing a leave-one-
out cross-validation; the minimum root-mean-
squared error (RMSE) in the cross-validation 
was used as decision criterion (with a prede-
fined maximum of ten latent variables). For an 
overall description of the PLS method, please 
refer to aBDi (2003).

Many studies have shown that more accu-
rate calibration models may be achieved by 
selecting the most informative spectral vari-
ables instead of using the full spectrum. For 
this purpose, we used the CARS approach, 
which was combined with PLS to CARS-PLS. 
For a detailed description of the CARS proce-
dure, please refer to li et al. (2009). Briefly, it 
uses two successive steps of wavelengths se-
lection in a series of Monte Carlo sampling 
runs: In a first step, an exponentially decreas-
ing function is used for an enforced removal of 
wavelengths with relatively small PLS regres-
sion coefficients. In a second step, an adaptive 
reweighted sampling of variables is employed 
to further eliminate wavelengths in a competi-
tive way. In this step, random numbers are 
generated to pick variables; the probability of 
each spectral variable to be kept depends on its 
weight (calculated from the respective PLS re-
gression coefficient). For our data, 50 succes-
sive sampling runs with both steps described 
above were performed; at the end, the optimal 
subset of variables with the lowest RMSE in 
the cross-validated PLS model is kept.

Due to the Monte Carlo strategy and the 
generation of random numbers in the second 
step, CARS does not provide a unique solu-
tion. Thus, CARS was rerun 50 times to gen-
erate 50 estimates for each sample and each 
constituent; these 50 solutions were averaged 
to obtain the final estimates.

To assess the accuracy of the multivariate 
calibrations, we used as measures the residual 
prediction deviation (RPD, defined as the ratio 
of standard deviation of the reference values 
to standard error of the cross-validated esti-
mates), the RMSE, the relative RMSE (rRMSE 
= RMSE × measured arithmetic mean-1) and 
R2. Obtained accuracies (cross-validated (cv) 
values) were evaluated following the guide-
line of SaeyS et al. (2005): RPDcv and R2

cv val-
ues greater than 3.0 or 0.90, respectively, are 
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and at 1140 nm (sieved samples). Compared to 
the visible and the NIR domain, the shortwave 
IR (SWIR) region was distinctly more relevant 
for the CARS approach with markedly higher 
peaks of selection frequencies at 1374 nm – 
1394 mm (raw and grinded samples), 1850 nm 
– 1902 nm (raw, grinded), 2078 nm – 2194 nm 
(all preparation levels) and some wavelengths 
beyond 2300 nm (e.g. 2306, 2334/2338 nm) 
(Fig. 5). In the wavelength range between 
1406 nm and 1798 nm, selection frequencies 
were low in all cases.

The found selection peaks indicate some 
wavelength regions (VIS range, prominent 
water bands, hydroxyl band, C-H absorption 
bands) that were already identified in other 

Fig. 5 illustrates the selection frequencies 
of spectral variables for assessing OC, which 
were obtained in 50 runs of CARS-PLS with 
the full spectra of raw and sieved samples. Se-
lection frequencies of grinded samples (not il-
lustrated) showed peaks partly similar to raw 
and partly similar to sieved samples. Some re-
gions in the visible were rather frequently se-
lected for all preparation levels (e.g. 406 nm 
– 418 nm, 662 nm – 674 nm and – for sieved 
and grinded samples – 526 nm – 538 nm), 
whereas selection frequencies in the very near 
IR (a region covered by the UHD camera) 
were very low (Fig. 5). In the NIR range up 
to 1300 nm, selection peaks were found only 
at about 1100 nm (raw and grinded samples) 

Fig. 5: Selection frequencies (raw (a) and sieved (b) samples) for spectral variables in the full 
range from 402 nm to 2398 nm (realised in 50 runs of CARS-PLS with OC as target soil constituent).
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from raw samples were on a similar level at 
least for pruned ASD and UHD data (Tab. 3). 
As the UHD spectra were obtained by aver-
aging all pixel values over the complete image,  
it is not entirely clear why these data per-
formed generally worse than the ASD read-
ings. The differences were probably due to the 
irregular surface roughness of the raw samples 
which caused multidirectional light scattering 
effects and strong contrasts between illumi-
nated and shadowed image regions (Fig. 3). 
Soil surface roughness is known as one main 
disturbing factor for e.g. SOC estimates from 
proximally sensed VNIR data, which may be 
compensated, in case of larger samples sets, 
by stratified models specified for different sur-
face roughness classes (roDionoV et al. 2014). 
Thus, for future in-field tests of the UHD hy-
perspectral frame camera its potential to as-
sess soil roughness from the images (e.g. by 
analysing the extent of shadowed image por-
tions; garcía Moreno et al. 2008) should be 
fully exploited.

3.2 Spatial Analysis: How Much 
Variability is in One Image?

We selected three samples with different lev-
els of mean OC contents to analyse the vari-
ability in the hyperspectral images (Tab. 4). 
Within each image, 500 randomly determined 
pixels were extracted and then used to obtain 
pixel-wise estimates for OC. For this estima-

studies to be relevant for assessing OC with 
spectroscopy (e.g. Mouazen et al. 2007, ViS-
carra roSSel & BehrenS 2010, VohlanD et al. 
2014). Bellon-Maurel & McBratney (2011) 
quote the 1600 nm – 2500 nm range to be the 
most relevant for measuring OC. cécillon et 
al. (2009) present a compilation of important 
NIR wavelengths for OC and also N that are 
all beyond 1100 nm.

As most of these essential wavelength re-
gions were not included in the pruned ASD 
spectra and the UHD data, a drop of accuracies 
was a priori to be expected for the multivariate 
calibrations with these datasets. The obtained 
results were, de facto, inferior to those with 
full range spectra (Tab. 3), but especially for 
OC these differences were small when using 
grinded samples and the CARS-PLS method; 
for both datasets (pruned ASD and averaged 
UHD Spectra) the cross-validation resulted in 
“good” estimates. In addition, very similar re-
sults were obtained for OC from sieved sam-
ples using full and pruned ASD spectra and 
also for HWE-C from grinded samples with 
full range ASD and UHD data (Tab. 3).

Differences of accuracy between the three 
instrumental settings were most pronounced 
when raw samples were measured and used 
for the calibration with CARS-PLS; in this 
case, the general order for all soil variables 
was ASD (full spectra) >> ASD (pruned spec-
tra) >> UHD data. The CARS variable selec-
tion procedure obviously highlighted these 
differences, as accuracies obtained with PLS 

Tab. 4: Statistics for OC estimates from image data obtained with CARS-PLS (each sample and 
preparation level: 500 randomly selected pixels).

Raw Sieved Grinded

Mean2 Std Min
Max Mean2 Std Min

Max Mean2 Std Min
Max

Sample 
#11 1.62 0.77 -1.21 

3.77 1.72 0.61 -0.06
3.56 1.95 1.88 -4.05 

6.18

Sample 
#21 2.28 0.66 0.51 

6.40 2.21 0.85 -0.24
4.69 2.53 1.91 -4.04 

8.20

Sample 
#31 1.10 0.41 0.17

2.37 0.98 0.82 -1.44
3.51 1.26 2.09 -5.58 

6.93
1 Wet-chemical reference values (OC): #1: 1.90, #2: 2.70, #3: 0.62
2 Previous estimates from averaged images (see 3.1):
Sample #1: raw: 1.83, sieved: 1.81, grinded: 1.90; Sample #2: raw: 2.34, sieved: 2.20, grinded: 2.33;
Sample #3: raw: 1.28, sieved: 1.28, grinded: 1.09
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variable selection). CARS was found to be an 
effective selection method that improved ac-
curacies at least in the cross-validation; how-
ever, it should be tested with an independent 
validation set. The majority of CARS-selected 
wavelengths were physically meaningful, as 
they were related – in the case of organic car-
bon – to water absorption bands, the hydroxyl 
band at 2200 nm or C-H absorption bands in 
the region beyond 2300 nm.

In soil spectroscopy, the SWIR domain is 
of high relevance. Although the tested hyper-
spectral camera (UHD 285) does not cover 
this region, obtained values indicated, at least 
in part, good estimates. These results were re-
stricted to crushed (grinded) samples; accura-
cies dropped distinctly for raw samples (which 
represent the normal in-field situation with 
rough soil surfaces). Thus, for in-field stud-
ies, the full potential of the image data should 
be used, which is to estimate soil roughness 
directly from the images to define stratified 
models or to eliminate shadowed pixels which 
have very restricted information content.

The image data that we analysed in detail 
showed a great variability of the contained 
(spectral) information. These fine-scale varia-
tions are relevant for chemometric approach-
es, as they require a careful definition of cali-
bration sets that have to cover these variations 
adequately.

tion, the already available models calibrated 
before (for n = 40 reference values) were ap-
plied.

The results we obtained were similar for all 
three images. In all cases, the estimates fol-
lowed the normal distribution. As an exam-
ple, the Q-Q (quantile-quantile) plot is illus-
trated for sample #1 (grinded) in Fig. 6. Mean 
values calculated from the 500 image pixels 
provided useful estimates close to the mea-
sured reference values (Tab. 4). The range of 
estimates indicated, on the one hand, highly 
variable OC contents; on the other hand, how-
ever, we often received inconsistently low and 
high values, i.e. negative values and obvious 
overestimates (OC contents of more than 6%, 
for example; see boxplots in Fig. 6 and Tab. 4). 
Evidently, the calibration set was not sufficient 
to represent all situations (including illumina-
tion differences) contained in the image data; 
this may be due to the small number of cal-
ibration samples and the way the calibration 
set was compiled, as only averaged and thus 
“smoothed” image spectra were used.

4 Summary and Conclusions

We tested two multivariate calibration meth-
ods; in all cases, PLS combined with CARS 
outperformed full spectrum-PLS (without 

Fig. 6: Statistics for OC estimates (in %) obtained from 500 randomly selected pixels for one sam-
ple (#1) and its different preparation levels (for clarification, boxplot for grinded sample is scaled 
differently).



A. Jung & M. Vohland, Snapshot Hyperspectral Imaging 521

surface roughness. – Geoderma 146 (1–2): 201–
208.

hill, J., uDelhoVen, t., VohlanD, M. & SteVenS, 
a., 2010: The Use of Laboratory Spectroscopy 
and Optical Remote Sensing for Estimating Soil 
properties. – oerKe, e.c., gerharDS, r., Menz, 
g. & SiKora, r.a. (eds.): Precision crop protec-
tion – the challenge and use of heterogeneity: 
67–86. – 441 pp., Springer Science, Dordrecht, 
The Netherlands.

Jung, a., VohlanD, M., heinrich, J., MichelS, r. & 
graSer, r., 2013: Soil analysis with hyperspec-
tral data – an experiment with a hyperspectral 
frame camera and VIS-NIR spectrometers. – 8th 
EARSeL SIG Imaging Spectroscopy Workshop, 
Nantes, France, in press.

KooiStra, l., wanDerS, J., epeMa, g.f., leuVen, 
r.S.e.w., wehrenS, r. & BuyDenS, l.M.c., 
2003: The potential of field spectroscopy for the 
assessment of sediment properties in river flood-
plains. – Analytica Chimica Acta 484 (2): 189–
200.

KörSchenS, M., weigel, a. & Schulz, E. 1998: 
Turnover of Soil Organic Matter (SOM) and 
Long-Term Balances – Tools for Evaluating Sus-
tainable Productivity of Soils. – Zeitschrift für 
Pflanzenernährung und Bodenkunde 161 (4): 
409–424.

Kurz, t.h., BucKley, S.J. & howell, J.a., 2013: 
Close-range hyperspectral imaging for geologi-
cal field studies: workflow and methods. – Inter-
national Journal of Remote Sensing 34 (5): 
1798–1822.

li, h., liang, y., Xu, Q. & cao, D., 2009: Key 
wavelengths screening using competitive adap-
tive reweighted sampling method for multivari-
ate calibration. – Analytica Chimica Acta 648 
(1): 77–84.

Magnan, p., 2003: Detection of visible photons in 
CCD and CMOS: A comparative view. – Nuclear 
Instruments and Methods in Physics Research 
Section A: Accelerators, Spectrometers, Detec-
tors and Associated Equipment 504 (1): 199–
212.

Mouazen, a.M., MaleKi, M.r., De BaerDeMaeKer, 
J. & raMon, H., 2007: On-line measurement of 
some selected soil properties using a VIS-NIR 
sensor. – Soil and Tillage Research 93 (1): 13–27.

roDionoV, a., pätzolD, S., welp, g., pallareS, 
r.c., DaMerow, l. & aMelung, w., 2014: Sens-
ing of soil organic carbon using VIS-NIR spec-
troscopy at variable moisture and surface rough-
ness. – Soil Science Society of America Journal 
78 (3): 949–957.

SaeyS, w., Mouazen, a.M. & raMon, h., 2005: Po-
tential for onsite and online analysis of pig ma-

Acknowledgements

Our special thanks go to Cubert GmbH that 
made it possible to use and test the hyperspec-
tral frame camera, by name to rainer gra Ser 
and Dr. rené MichelS. We would like to thank 
the Soil Science Department at University 
of Trier, headed by Sören thiele-Bruhn, for 
carrying out chemical analyses. CARS calcu-
lations were carried out using the freely avail-
able CARS package (Copyright hongDong 
li, 2011; https://code.google.com/p/carspls/). 
The project was supported by a grant of the 
German Research Foundation (DFG, VO 
1509/3-1).

References

aBDi, V., 2003: Partial least squares (PLS) regres-
sion. – lewiS-BecK, M., BryMan, a. & futing, t. 
(eds.): Encyclopedia for research methods for the 
social sciences: 772–795, Sage Publications, 
Thousand Oaks, CA, USA.

Bellon-Maurel, V. & McBratney, a., 2011: Near-
infrared (NIR) and mid-infrared (MIR) spectro-
scopic techniques for assessing the amount of 
carbon stock in soils – Critical review and re-
search perspectives. – Soil Biology and Bio-
chemistry 43 (7): 1398–1410.

Ben-Dor, e. & Banin, a., 1995: Near-infrared anal-
ysis as a rapid method to simultaneously evalu-
ate several soil properties. – Soil Science Society 
of America Journal 59 (2): 364–372.

BowerS, S.a. & hanKS, r.J., 1965: Reflection of 
radiant energy from soils. – Soil Science 100 (2): 
130–138.

cécillon, l., BarthèS, B.g., goMez, c., ertlen, 
D., genot, V., heDDe, M., SteVenS, a. & Brun, 
J.J., 2009: Assessment and monitoring of soil 
quality using near-infrared reflectance spectros-
copy (NIRS). – European Journal of Soil Sci-
ence 60 (5): 770–784.

e Din iSo 11277:1994-06, 1994: Bodenbeschaf-
fenheit – Bestimmung der Partikelgrößenver-
teilung in Mineralböden – Verfahren durch Sie-
ben und Sedimentation nach Entfernen der lösli-
chen Salze, der organischen Substanz und der 
Carbonate. – Beuth-Verlag, Berlin.

FAO (Food and Agriculture Organization of the 
United Nations), 2006: Guidelines for soil de-
scription. – 4th ed., 97 pp., Rome, Italy.

garcía Moreno, r., Saa reQueJo, a., tarQuiS 
alonSo, a.M., Barrington, S. & Díaz, M.c., 
2008: A shadow analysis method to measure soil 



522 Photogrammetrie • Fernerkundung • Geoinformation 6/2014

VohlanD, M., harBich, M., SchMiDt, o., JarMer, 
t., eMMerling, c. & thiele-Bruhn, S., 2011: Use 
of imaging spectroscopy to assess different or-
ganic carbon fractions of agricultural soils. – 
neale, c.M.u. & MalteSe, A. (eds.): Remote 
Sensing for Agriculture, Ecosystems, and Hy-
drology XIII. – Proceedings of SPIE 8174, Bell-
ingham, WA, USA.

VohlanD, M., luDwig, M., thiele-Bruhn, S. & 
luDwig, B., 2014: Determination of soil proper-
ties with visible to near- and mid-infrared spec-
troscopy: effects of spectral variable selection. 
– Geoderma 223–225: 88–96.

wolD, S., SJöStröM, M. & eriKSSon, l., 2001: PLS-
regression: a basic tool of chemometrics. – Che-
mometrics and Intelligent Laboratory Systems 
58 (2): 109–130.

XiaoBo, z., Jiewen, z., poVey, M.J., holMeS, M. & 
hanpin, M., 2010: Variables selection methods 
in near-infrared spectroscopy. – Analytica Chi-
mica Acta 667 (1–2): 14–32.

ye, X., SaKai, K., oKaMoto, h. & garciano, l.o., 
2008: A ground-based hyperspectral imaging 
system for characterizing vegetation spectral 
features. – Computers and Electronics in Agri-
culture 63 (1): 13–21.

Address of the Authors:

Dr. anDráS Jung & Prof. Dr. Michael VohlanD, 
Institute for Geography, University of Leipzig, 
Geoinformatics and Remote Sensing, Johannis-
allee 19a, D-04103 Leipzig, Tel.: +49-341-97-32785, 
Fax: +49-341-97-32799, e-mail: {andras.jung}, 
{michael.vohland}@uni-leipzig.de

Manuskript eingereicht: Juni 2014
Angenommen: September 2014

nure using visible and near infrared spectrosco-
py. – Biosystems Engineering 91 (4): 393–402.

SteffenS, M. & BuDDenBauM, h., 2013: Laboratory 
imaging spectroscopy of a stagnic Luvisol pro-
file – High resolution soil characterisation, clas-
sification and mapping of elemental concentra-
tions. – Geoderma 195: 122–132.

SteVenS, a., Van weSeMael, B., BartholoMeuS, h., 
roSillon, D., tychon, B. & Ben-Dor, E., 2008: 
Laboratory, field and airborne spectroscopy for 
monitoring organic carbon content in agricul-
tural soils. – Geoderma 144 (1–2): 395–404.

SteVenS, a., uDelhoVen, t., DeniS, a., tychon, B., 
lioy, r., hoffMann, l. & Van weSeMael, B., 
2010: Measuring soil organic carbon in crop-
lands at regional scale using airborne imaging 
spectroscopy. – Geoderma 158 (1–2): 32–45.

SuDDuth, K.a., huMMel, J.w. & funK, r.c., 1989: 
NIR soil organic matter sensor. – ASAE-Paper 
89-1035.

uDelhoVen, t., eMMerling, c. & JarMer, t., 2003: 
Quantitative analysis of soil chemical properties 
with diffuse reflectance spectrometry and par-
tial-least-square regression: A feasibility study. 
– Plant and Soil 251 (2): 319–329.

Vigneau, n., ecarnot, M., raBatel, g. & rouMet, 
p., 2011: Potential of field hyperspectral imaging 
as a non destructive method to assess leaf nitro-
gen content in wheat. – Field Crops Research 
122 (1): 25–31.

ViScarra roSSel, r.a. & BehrenS, t., 2010: Using 
data mining to model and interpret soil diffuse 
reflectance spectra. – Geoderma 158 (1–2): 46–
54.

ViScarra roSSel, r.a. & McBratney, a.B., 1998: 
Laboratory evaluation of a proximal sensing 
technique for simultaneous measurement of soil 
clay and water content. – Geoderma 85 (1-2): 
19–39.




