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Summary: Micro aerial vehicles (MAV) are re-
stricted in their size and weight, making the design
of sensory systems for these vehicles challenging.
We designed a small and lightweight continuously
rotating 3D laser scanner — allowing for environ-
ment perception in a range of 30 m in almost all
directions. This sensor is well suited for applica-
tions such as 3D obstacle detection, 6D motion es-
timation, localisation, and mapping.

Reliably perceiving obstacles in the surroundings
of the MAV is a prerequisite for fully autonomous
flights in complex environments. Due to varying
shape and reflectance properties of objects, not all
obstacles are perceived in every 3D laser scan (one
half rotation of the scanner). Especially farther
away from the MAV, multiple scans may be neces-
sary in order to adequately detect an obstacle. In
order to increase the probability of detecting obsta-
cles, we aggregate acquired scans over short peri-
ods of time in an egocentric grid-based map. We
register acquired scans against this local map to
estimate the motion of the MAV and to consistently
update the map.

In experiments, we show that our approaches to
pose estimation and laser scan matching allow for
reliable aggregation of 3D scans over short periods
of time, sufficiently accurate to improve detection
probability without causing inaccuracies in the es-
timation of the position of detected obstacles. Fur-
thermore, we assess the probability of detecting
different types of obstacles in varying distances
from the MAV.

Zusammenfassung: Omnidirektionale Wahrneh-
mung fiir leichte MAVs mittels eines kontinuierlich
rotierenden 3D-Laserscanners. Dieser Artikel be-
schreibt einen kleinen und leichten kontinuierlich
rotierenden 3D-Laserscanner, der fiir die dreidi-
mensionale Wahrnehmung von Hindernissen auf
einem Micro Aerial Vehicle (MAV) entwickelt
wurde. Der Sensor ermdglicht eine nahezu omnidi-
rektionale Wahrnehmung der Umgebung in einer
Entfernung von bis zu 30 m.

Eine Voraussetzung fiir die vollstdndige Autono-
mie von MAVs in komplexen Umgebungen ist die
zuverldssige Wahrnehmung von Hindernissen.
Durch unterschiedliche Formen und optische Ei-
genschaften, wie Reflektanz, werden nicht alle
Hindernisse in jedem Laserscan wahrgenommen.
Speziell bei weiter entfernten Objekten sind mehre-
re Scans notwendig, um ein Hindernis zu detektie-
ren.

Um die Detektionswahrscheinlichkeit zu erhdhen,
werden Entfernungsmessungen des Sensors tiber
kurze Zeitfenster in einer egozentrischen 3D Git-
terkarte aggregiert. Neue 3D-Scans werden gegen
diese Karte registriert, um die Eigenbewegung des
Fluggerits zu schitzen.

Experimente zeigen, dass der Ansatz zur Positions-
bestimmung eine robuste Aggregation von 3D-
Scans iiber kurze Zeitfenster ermdglicht. Dadurch
wird die Detektionswahrscheinlichkeit erhoht,
ohne Ungenauigkeiten in der Position erkannter
Hindernissen zu verursachen.

1 Introduction

In recent years, lightweight micro aerial ve-
hicles (MAV) such as quadrotors attracted
much attention in the field of aerial robotics
because of their relatively low cost, ease of
control, and compatibility with everyday in-
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door and outdoor environments. The size and
weight limitations of such platforms, however,
pose a problem for the design of their sensory
systems. Most of today’s lightweight MAVs
are equipped with ultrasound distance sensors
and air pressure sensors for estimating height
above the ground, inertial sensors for estimat-
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ing attitude, magnetometers for estimating the
heading direction, GPS for absolute position
estimates (outdoors), and cameras, e.g. for es-
timating visual odometry. While these small
and lightweight sensors provide valuable in-
formation, they do not suffice for obstacle
detection and safe navigation. Only few sys-
tems are equipped with 2D laser range find-
ers (LRF) that measure distances in a plane
around the MAV (Towmic¢ et al. 2012, GRZONKA
et al. 2009, BacHracH et al. 2009, SHEN et al.
2011).

2D laser range sensors are widely used for
mobile robots navigating on flat ground — due
to their accurate distance measurements even
in bad lighting conditions and their large field-
of-view (FoV). For robots acting in 3D envi-
ronments or driving on more complex terrain,
three-dimensional laser scanning sensors are
popular. For instance, many autonomous cars
perceive obstacles by means of a rotating la-
ser scanner with a 360° horizontal FoV, allow-
ing for detection of obstacles in all directions
(Urmson et al. 2008, MoNTEMERLO et al. 2008).
Up to now, such 3D laser scanners are rarely
used on lightweight MAVs due to their pay-
load limitations.

In order to enable navigation in complex 3D
environments for lightweight MAVs, we de-
signed a continuously rotating 3D laser scan-
ner that is minimalistic in terms of size and
weight and measures distances of up to 30 m
in almost all directions. Fig. 1 shows the sen-
sor mounted on our MAV.

We use the laser scanner to perceive obsta-
cles around the MAV by aggregating the dis-
tance measurements over a short period of
time in an MAV-centric local multiresolution

Fig.1: The 3D laser scanner mounted on our
MAV.

3D map. The map models occupancy in all di-
rections around the MAV and, thus, can cope
with dynamic obstacles and changing envi-
ronments as the regions where changes take
place are updated with high frequency. We es-
timate the 6D motion of the MAV — relative to
the egocentric map — by registering 3D laser
scans with this local map. Fig. 4 illustrates the
architecture of our approach.

2 Related Work

The use of MAVs in recent remote sensing and
robotics research varies largely in the level of
autonomy — ranging from basic hovering and
position holding (BouaBpaLLAH et al. 2004)
over trajectory tracking and waypoint navi-
gation (Puts et al. 2009) to fully autonomous
navigation (Grzonka et al. 2012). Similarly,
the complexity of environments where MAVs
operate ranges from flight arenas instrument-
ed with motion capture systems and external
computing, over outdoor flights in open spac-
es where GPS is available, to indoor flights in
restricted spaces. Limiting factors for increas-
ing the level of autonomy and/or the complex-
ity of environments for lightweight MAVs are
onboard sensing and onboard processing pow-
er.

Particularly important for fully autonomous
operation of MAVs is the ability to perceive
obstacles and avoid collisions. Most autono-
mous MAVs, however, cannot adequately per-
ceive their surroundings and, hence, cannot
avoid all collisions. Instead, collision detec-
tion is often restricted to the two-dimensional
measurement plane of laser range finders (Gr-
zoNKaA et al. 2012) or to the limited FoV of for-
ward-facing cameras (Mor1 & SCHERER 2013,
Ross et al. 2013). Most often, collision avoid-
ance is neglected altogether, e.g. by flying in a
certain height when autonomously flying be-
tween waypoints.

One way to extend the FoV for obstacle de-
tection is to combine multiple sensors. Tomi¢
et al. (2012), for example, present an autono-
mous MAV that perceives the environment us-
ing a stereo camera pair mounted in forward
direction and a 2D laser range scanner mount-
ed horizontally. Still, their perceptual field
does not include the space below, above, and



David Droeschel et al., Omnidirectional Perception for Lightweight MAVs

453

behind the MAV. Most similar to our work is
the work of ScHERER et al. (2012) and CoveEr et
al. (2013). The authors describe a system that
is used to autonomously explore rivers using
visual localisation and laser-based 3D obstacle
perception. Similar to their approach, we aim
at perceiving as much of the surroundings as
possible in order to obtain almost omnidirec-
tional obstacle detection.

In contrast to related approaches, we are
able to aggregate distance measurements from
consecutive 3D scans in an egocentric 3D
multiresolution map and efficiently align new
3D scans with it to estimate the 6D motion of
the MAV. By aggregating the scans, we obtain
a higher measurement density in the map and
a higher probability of detecting obstacles.

3 System Setup

Our platform is based on the open source Mik-
roKopter octocopter kit, with a co-axial ar-
rangement of rotors. The onboard computer
(Intel Core i7-3820QM 2.7 GHz, 8 GB RAM)

Stereo cameras » 3D laser scanner

Fig.2: CAD drawings of our MAV.
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has ample computing power for sensor data
processing and navigation planning. As mid-
dleware, we employ the Robot Operating Sys-
tem ROS (QUIGLEY et al. 2009).

Besides the 3D laser scanner, our MAV is
equipped with two stereo camera pairs (see
Fig. 2) to estimate the motion of the MAV dur-
ing scan acquisition.

3.1 3D Laser Scanner

Our continuously rotating 3D laser scanner
consists of a Hokuyo UTM-30LX-EW 2D la-
ser range finder (LRF) which is rotated by a
Robotis Dynamixel MX-28 servo actuator to
gain a three-dimensional FoV. As shown in
Fig. 3, the scanning plane is parallel to the axis
of rotation, but the heading direction of the
scanner is twisted slightly away from the di-
rection of the axis in order to enlarge its FoV.

The 2D LRF is electrically connected by
a slip ring, allowing for continuous rotation
of the sensor. The axis of rotation is pitched
downward by 45° in forward direction, which
places the core of the MAV upwards behind
the sensor as depicted in Fig.3. Hence, the
sensor can measure in all directions, except
for a conical blind spot pointing upwards be-
hind the robot.

The 2D laser scanner has a size of 62 mm
x 62 mm % 87.5 mm and a weight of 210 g.
Together with the actuator (72 g) and the slip
ring, the total weight of the 3D scanner is ap-
proximately 400 g.

The Hokuyo LRF has an apex angle of 270°
and an angular resolution of 0.25° resulting

(d)

Fig. 3: (a) CAD drawings of our continuously rotating laser scanner. The Hokuyo 2D LRF is mount-
ed on a bearing and rotated around the red axis. Its mirror is rotated around the green axis, result-
ing in a 2D measurement plane (blue). (b) Photo of the sensor. (c + d) CAD drawings illustrating
the FoV of individual scans of the laser scanner (blue) from side and top view. The black dashed
line illustrates the centre of the measurement plane. The 2D LRF is rotated around the red axis.
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in 1080 distance measurements per 2D scan,
called a scan line. The measurement accuracy
is specified by the manufacturer with + 30 mm
at 0.1-10 m distance (+ 50 mm at 10-30 m).
The Dynamixel actuator rotates the 2D LRF
at one rotation per second, producing 40 scan
lines and 43,200 distance measurements per
full rotation. Slower rotation is possible if a
higher angular resolution is desired. For our
setup, a half rotation leads to a full 3D scan of
most of the environment. Hence, we can ac-
quire 3D scans with up to 21,600 points with
2 Hz.

3.2 Camera System

The MAV is equipped with two stereo cam-
era pairs pointing forward and backward with
a pitch angle of 45° (see Fig.2). Each stereo
pair consists of two UEye 1221LE-M camer-
as with Lensagon BF2M15520 fisheye lenses.
The lenses allow for a wide field-of-view up
to 285° and the baseline between the camer-
as in a stereo pair is 20 cm. Image acquisition
of all four cameras is initiated by a hardware
trigger with 18 Hz, which allows for synchro-
nised data acquisition. The hardware trigger
is released by the onboard computer by using
a general-purpose input/output. Thus, we gain
time synchronisation between the clock on

LAF grianiatsn

1T scan lnew
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the onboard computer and the camera images.
In addition, we also synchronise the internal
clock of the Hokuyo laser scanner with the PC
board by actively resetting the clock and then
using time differences.

The mutual orientations of the cameras in
a stereo pair are determined in advance with
the method of ScHNEIDER & FORSTNER (2013).
We calibrate the camera system to the laser
scanner by manually labelling points in a la-
ser scan and its corresponding pixel in the
camera images. We select 50 scan points and
their corresponding camera pixel, preferring
spatially distributed points in corners and on
edges in the scene. The 3D coordinates for the
camera points are calculated as described in
ScHNEIDER & FORSTNER (2013). The resulting
transformation is calculated using singular
value decomposition (SVD).

4 Preprocessing
In order to calculate a 3D point cloud from the
scan lines originated by the LRF, a 3D point P,

in the LRF’s coordinate frame is transformed
to P, in the base coordinate frame of the MAV

P,=TTTP, O]

Estemated
transdnrenat inn

Fig.4: An architectural overview of our system. The laser range finder (LRF) measurements are
processed in preprocessing steps described in section 4. The resulting 3D point cloud is used to
estimate the transformation between the current scan and the map as described in section 5.
Registered scans are stored in a local multiresolution map.



David Droeschel et al., Omnidirectional Perception for Lightweight MAVs

455

Here, T, is a static transformation between
the base frame of the MAV and the link where
the 3D laser scanner is mounted and 7, is the
static transformation between the 2D LRF
and the bearing. 7 is a continuously chang-
ing transformation that takes into account the
bearing’s orientation. Its rotational parts are
measured using the encoder positions report-
ed by the Dynamixel actuator. Fig. 5 shows a
resulting scan of an outdoor environment.

The offset between the scanned plane sec-
tion and the rotation axis results in a different
FoV for two different half rotations which is
shown in Fig. 6a. In this way, occlusion from
small parts of the MAV is reduced significant-

ly.

Fig.5: A 3D scan of an outdoor environment
acquired with our continuously rotating laser
scanner. The colour of the points encodes the
distance from the ground.

(a)

4.1 Multi-Echo Detection

The Hokuyo UTM-30LX-EW is able to
measure up to three echoes of a single emitted
light pulse. The number of echoes for a light
pulse depends on the surface of the measured
objects, i.e. shape and reflectivity. For exam-
ple, transparent materials, vegetation or edges
of buildings often yield more than one echo.
Often, the second echo comes from a structure
in the original pulse direction, behind a partial
occlusion, which means that it can be treated
as an additional distance measurement. Meas-
urements from the first and the second echo
are shown in Fig. 6b.

4.2 Scan Aggregation

Preprocessing raw laser scans to form 3D
scans considers only the rotation of the scan-
ner w.r.t. to the MAV. The motion of the MAV
during acquisition is not taken into account
(so far). As a consequence, the environmental
structures measured in 3D scans are not con-
sistent. In particular, first and last scan line ap-
pear considerably disconnected, structures in
consecutive scans drift. We account for this
effect by undistorting 3D scans in two steps.
First, measurements of individual scan lines
are undistorted with regards to the rotation of
the 2D LRF around the servo rotation axis
(red axis in Fig. 3). Here, the rotation between

(b)

Fig. 6: Accumulated 3D scans of an indoor environment. (a) The colour encodes the different half
rotations of the scanner. Moving the optical centre of the 2D laser range finder away from the rota-
tion axis of the actuator results in different self-occlusions of the scans from the first (green) and
the second (red) half rotation. (b) Measurements from first echo (yellow) and the second echo
(purple). In case of partial occlusions, e.g. by the MAV itself, multi-echo detection leads to an in-
crease of distance measurements.
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the acquisition of two scan lines is distributed
over the measurements by using spherical lin-
ear interpolation.

Second, we compensate for the motion of
the MAV during acquisition of a full 3D scan.
To this end, we incorporate a visual odometry
estimate from the two stereo cameras. Here,
a keyframe-based bundle adjustment is per-
formed (ScHNEIDER et al. 2013) on the synchro-
nised images with 18 Hz. Since the update rate
of the 2D LRF is 40 Hz, we linearly interpo-
late between the estimates of the visual odom-
etry.

The 6D motion estimate is used to assemble
the individual 2D scan lines of each half rota-
tion to a 3D scan. Fig. 7 illustrates the effect of
scan undistorting.

4.3 Self-Filter

The laser range finder measures also points
on the MAV. These points are excluded from
further processing by checking the egocen-
tric point coordinates (in the base coordinate

(a)

frame of the MAV) against a simplified CAD
model of the MAV. Furthermore, distance
measurements that are most likely caused by
the veiling effect when scanning the edge of
an object are removed.

5 Scan Registration

We register 3D laser range scans with a local
multiresolution map to estimate the motion of
the MAV. After aggregating scans to a full 3D
scan over one half rotation and transforming
them to compensate for the sensor motion, the
generated 3D scan is aligned to the so far built
map by means of the iterative closest point
(ICP) algorithm. The map is incrementally up-
dated by inserting every registered 3D scan. It
is initialised using the first 3D scan acquired.
Correspondences are assigned using the
point-based representation in the cells of our
local grid map (section 5.1) and the ICP algo-
rithm estimates a transformation between the
scan and the map, describing the displace-
ment between them. We benefit from the mul-

(b)

Fig.7: Example of deskewing a 3D laser scan acquired in an indoor environment with flat ground
from a side view. (a) Sensor movement during scan acquisition yields distorted 3D scans. (b) We

deskew the scan based on the motion estimate.

Fig.8: A grid-based local multiresolution map with a higher resolution in the close proximity to the
sensor and a lower resolution with increasing distance. The point colour encodes the distance

from the ground.
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tiresolution property of our map, which al-
lows aligning a 3D scan in a coarse-to-fine ap-
proach. Hence, we start assigning correspond-
ences and estimating the transformation at the
coarsest level. The resulting transformation is
used as initialisation for the registration on the
next finer level and so forth.

5.1 Local Multiresolution Map

Distance measurements from the sensor are
accumulated in a robot-centric 3D multireso-
lution map with increasing cell sizes from the
MAV centre. The representation consists of
multiple MAV-centred 3D grid-maps with dif-
ferent resolutions. On the finest resolution, we
use a cell length of 0.25 m. Each grid-map is
embedded in the next level with coarser reso-
lution and doubled cell length. An example of
a built local multiresolution map is shown in
Fig. 8.

We use a hybrid representation, storing 3D
point measurements along with occupancy in-
formation in each cell. Point measurements of
consecutive 3D scans are stored in fixed-sized
circular buffers, allowing for point-based data
processing and facilitating efficient nearest-
neighbour queries.

Fig. 9 shows a one-dimensional schematic
illustration of the map organisation. We aim
for efficient map management for translation
and rotation. To this end, individual grid cells

are stored in a circular buffer to allow shift-
ing of elements in constant time. We interlace
multiple circular buffers to obtain a map with
three dimensions. The length of the circular
buffers depends on the resolution and the size
of the map. In case of a translation of the MAYV,
the circular buffers are shifted whenever nec-
essary to maintain the egocentric property of
the map. In case of a translation equal to or
larger than the cell size, the circular buffers
for respective dimensions are shifted. For sub-
cell-length translations, the translational parts
are accumulated and shifted if they exceed the
length of a cell.

Since we store 3D points for every cell for
point-based processing, individual points are
transformed into the local coordinate frame
of a cell when adding points, and back to the
map’s coordinate frame when accessing point
coordinates. Every cell in the map stores a list
of 3D points from the current and previous 3D
scans. This list is also implemented by a fixed-
sized circular buffer. If the capacity of the cir-
cular buffer is exceeded, old measurements
are discarded and replaced by new measure-
ments.

Since rotating the map would require mov-
ing all cells, our map is oriented independent-
ly of the MAV orientation. We maintain the
orientation between the map and the MAV and
use it to rotate measurements when accessing
the map.

Previous position
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Fig. 9: One-dimensional schematic illustration of the hybrid local multiresolution map. Along with
the occupancy information, every grid-cell (blue) maintains a circular buffer (left) with its associ-
ated measurement points (grey). The map is centred around the MAV and in case of a MAV mo-
tion, ring buffers are shifted according to the translational parts of the movement, maintaining the
egocentric property of the map. Cells at coarser levels are used to initialise newly added cells (red
arrows). Due to the implementation using ring buffers, cells vanishing on one side of the map be-

come new cells at the other side (blue arrows).
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Besides the scan registration approach for
pose estimation and map updates, the map is
used for obstacle avoidance and local navi-
gation planning (NIEUWENHUISEN & BEHNKE
2014).

5.2 Data Association

When using the ICP algorithm for scan reg-
istration, corresponding points between the
model and the current point cloud are as-
signed, usually by building a space-parti-
tioned data structure from the model point
cloud. In contrast, we continuously maintain
our data structure for efficient nearest-neigh-
bour queries to assign correspondences. Eve-
ry point from a newly acquired 3D scan is di-
rectly assigned to a cell in the map in constant
time. The closest point in terms of the Euclid-
ean distance from the point list of this cell is
initially assigned as corresponding point.

As illustrated in Fig. 10, points in neigh-
bouring cells might be closer to the measured
point than the initially assigned point. Conse-
quently, we extend the search to neighbouring
cells, if the distance to the initial assignment
is larger than the distance to the border of a
neighbouring cell.

Since acquired 3D scans of the scene and
the aggregated local map differ in terms of
structure and point density, especially when
parts of the scene have previously been oc-
cluded, individual assigned correspondences
can be incorrect. These incorrect correspond-
ences distort the transformation estimation
and need to be filtered. We reject correspond-
ences using the following criteria:
® Asymmetric correspondences: We check

for symmetry in the assignments: for a cor-

-ff "
l-.‘!.-—.
] Ll ol P

| .
!' 1

i | "

respondence from a scan point d, to a map
point m,, we check if d, is the closest point
to m, in the scan point cloud. Otherwise, the
correspondence is rejected.

® One-to-many correspondences: In case
multiple points in the 3D scan correspond
to the same point in the map, we keep only
the one correspondence with the smallest
point-to-point distance and reject all others.

® Correspondence trimming: Correspond-
ences are rejected by only considering the
best 6, percent of the assigned correspond-
ences (ranked by point-to-point distance).

® Distance rejection: Correspondences are
rejected if the point-to-point distance ex-
ceeds a threshold 6,

5.3 Transformation Estimation

With N assigned corresponding point pairs
(m, d), we determine the displacement be-
tween the points of a scan d, and the map
points m, by finding a rigid transformation T
that minimises

E(D)= Y |m,~1d,|f @

using a closed-form solution using singular

value decomposition (BesL & McKay 1992).
In each ICP iteration, correspondences are

re-assigned, the transformation best align-

ing the corresponding points is applied to the

scan, and the following termination criteria

are checked:

® E(T) is smaller than a given threshold 6 ,

e the difference between 7, and 7, | is small-
er than 6 _or

® the number of iterations exceeds 6,

nl o g =
I-.“’..._.
I.-‘.u.l

]
L N

Fig. 10: Assigning point correspondences. Left: for every point of a 3D scan (blue), a correspond-
ing map point (green) is initially assigned from the cell’s point list (red line). Right: if the distance to
neighbouring cells is smaller than the distance to the initial assignment, closer points might be

found in the neighbouring cell (orange line).
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where T, and 7, | are the estimated transfor-
mations from the current and the previous it-

eration, respectively.

6 Experiments and Results

Due to varying shape and reflectance proper-
ties of objects, not all obstacles are perceived
in every 3D laser scan (one half rotation of the
scanner). Especially farther away from the ro-
bot, multiple scans may be necessary in order
to adequately detect an obstacle.

In experiments, we assess the probability of
detecting different types of obstacles in vary-
ing distances from the MAV. Furthermore, we
assess the quality of the produced local map.
The intuitions behind these experiments are
the following: if a certain object can only be
perceived (at least once) in » 3D laser scans,
it is sufficient for reliable collision avoidance
if our local mapping approach can reliably ag-
gregate n 3D laser scans without inducing in-
consistencies in the egocentric obstacle map,
e.g. blurring effects due to drifts in the pose
estimates. Obviously, whether or not an ob-
stacle can be avoided also depends on the dis-
tance to the obstacle and movement direction
and speed of the MAV. Both can be neglected
if the sensor is able to detect all types of ob-
stacles in the immediate vicinity of the MAV
(and the MAV is not flying too fast).

6.1 Obstacle Detection Probabilities

For assessing the probability of detecting ob-
jects in the vicinity of the robot, we have cho-
sen seven test obstacles differing, amongst
other characteristics, in size (diameter), col-
our and material (reflectivity), and transpar-
ency. Referring to the experiment setup in
Fig. 11a, the objects are mounted on a tripod
holder. The MAV is positioned with distances
to the holder of 1 m to 10 m. For each distance,
a total of 30 3D scans are captured. We visu-
ally inspect the acquired data and count the
3D scans in which at least a part of the object
is visible in the distance measurements and
estimate the average detection probability.
For the estimation of the detection probabili-
ties, we considered roughly the same lengths

for all obstacles (1 m, which is also the mini-
mum safety distance during navigation). That
is, the probabilities primarily depend on diam-
eter and reflection properties rather than ob-
ject length.

As can be seen in the plots (Fig. 11b) and the
detailed results (Fig. 11c), we are able to detect
all types of obstacles at 1 m distance, and with
an aggregation period of 10 s up to 3 m (for the
transparent plexiglass tube). Obstacles with
better visibility like the metal rod, the card-
board and plastic tubes, are reliably detected
up to 10 m away from the robot.

Based on the achievable results, we distin-
guish, respectively, different obstacle types
(and distances) and detection probabilities:
objects that can be reliably detected when ag-
gregating over 2.5 s (5 scans) are considered
safe and easy to detect (green in Fig. 11c), ob-
stacles that cannot be detected at least once in
10 s (20 scans) are considered especially dan-
gerous and very hard to detect (red in Fig. 11),
and obstacles of moderate detection probabil-
ity (yellow in table in Fig. 11c) can be reliably
handled by scan aggregation when not flying
too fast.

6.2 Scan Matching and Aggregation

In a second experiment, we evaluate the accu-
racy of the scan registration in an indoor mo-
tion capture (MoCap) system. It provides ac-
curate pose information of the MAV at high
rates (100 Hz) but is restricted to a small cap-
ture volume of approximately 2m X 2m x
3 m. As error metric, the absolute trajectory
error (ATE) is computed, based on the esti-
mated and the ground-truth trajectory from
the MoCap system. The reference implemen-
tation provided by Sturwm et al. (2012) was
used to compute the error. Throughout the ex-
periments, we used five levels for the multires-
olution map and a cell length of 0.125 m at the
finest level, yielding a cell length of 2 m at the
coarsest level.

The registration parameters (sections 5.2,
5.3) 0, 0, and 0_are manually determined. In
this experiment, 6 =1 ¢m, 6, = 0.001 cm, 0, =
15,0,=1m, and 6, = 80% showed best results.

The dataset for evaluation is a 50 seconds
flight sequence containing 100 3D scans,
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(a) Left: Six different object types, from left to right: cable (0.75 cm), aluminium broomstick (2.7 cm),
plexiglass tube (5 cm), cardboard tube (7.5 cm), rectangular metal rod (4 cm), blue plastic tube
(11 cm). Middle and right: experiment setup with object holder (black metal rod, 4 cm), measuring
type and flying multicopter.

Rectangular metal rod —+— Black metal rod —M
Blue plastic mbe —#— Cable
Cardboard tube —#— Plexiglass tube —@—

Aluminium broomstick —&—

g
&

Detection Probability
2
S

40%
20%
0%
Im 2m 3m 4m Sm fim Tm m 9m 10m
Distance

(b) Change of detection probabilities over increasing distance for the different objects (standing).
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(c) Detailed detection probabilities in percent (standing MAV).

Fig. 11: Assessing the probabilities of detecting different types of objects in different distances,
measured over 30 3D scans for each obstacle and distance. We count the 3D scans in which at
least a part of the object is visible in the measurements and estimate the average detection
probability.
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where the MAV was controlled by a human
operator, taking off and landing at two loca-
tions in the MoCap volume. The speed dur-
ing the experiment was varying from 0.1 m/s
to 1.1 m/s. Fig. 12 shows the ATE of our mul-
tiresolution scan registration method, com-
pared to the MoCap trajectory.

In quantitative experiments, we compare
our method to a state-of-the-art registration
method, the Generalized-ICP (SEcaL et al.
2009). In addition, we evaluate the accuracy
of the visual odometry that is used to undistort
acquired 3D scans. The mean, standard devia-
tion and maximum ATE of all three methods
are summarized in Tab. 1. The results indicate
that both scan registration methods improve
the motion estimate from the visual odometry
and that the trajectory generated by our meth-
od has a slightly lower ATE compared to the
Generalized-ICP. The run-times of both meth-

ods for this experiment on a single core of an
Intel Core i7-3820QM (2.7 GHz) processor,
are also summarized in Tab. 1, showing that
Generalized-ICP is computationally much
more expensive than our method.

In a third experiment, we assess the qual-
ity of our grid-based map. Consecutive 3D
scans are aligned with the map and 3D points
are added to respective cells. Fig. 13 shows the
point-based representation of the map at dif-
ferent time steps, accounting for an increasing
density of the map after adding consecutive
3D scans. As obstacle, the blue plastic tube
shown in Fig. 1la was used. The MAV was
hovering at a height of 2 m with a distance
to the obstacle of 8 m. The experiment shows
that we can reliably and accurately track the
MAV’s movement over 10 s and aggregate the
acquired 20 3D scans to a dense and sharp
map.

¥ im

— ground truth
— estimated
difference

-1.0 0.3 oo

0.5 1.0 L5

x (m)

Fig.12: Absolute trajectory error of the scan registration using the multiresolution map (blue)
compared to ground-truth data from the MoCap system (black). Points of the trajectory are pro-

jected on the xy-plane.

Tab. 1: Absolute trajectory error (ATE) and run-time of our registration method, in comparison to
visual odometry (VO), and Generalized-ICP (GICP). Referring to the root-mean-square error
(RMSE), our approach achieves better results while being significantly faster.

ATE (m) run-time (ms)
RMSE mean median max mean max
VO 0.151 0.134 (= 0.059) 0.129 0.324
GICP 0.033 0.030 (£ 0.013) 0.030 0.079 1432 (+ 865) 5673
ours 0.030  0.028 (+0.015) 0.026 0.093 311 (= 90) 376
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Fig. 13: Aggregating 3D scans in a scene of the third experiment. Photos show the sensed pole
(red ellipse) and the surroundings from an on-board camera with fish-eye lens (top left) and an
external camera (top right). Scan aggregation increases the detection probability and the point
density in the map (bottom row, left to right: map after aggregating 5, 10, and 20 scans.

Since ground-truth data, e.g. from a MoCap
system was not available in this experiment,
we evaluate the different methods by inspect-
ing the variation of points in a planar area.
Fig. 14 shows a part of the floor in the resulting
point-based representation from a side view.
It can be seen that using scan registration de-
creases the thickness of the floor significantly,
indicating an improved motion estimate. Sim-
ilar to the results of the second experiment, the
resulting floor patch generated by aggregating
scans using our method is slightly thinner.

(@) i T
b e Vit e o et PSR

(c) i T T R Ty et

ilm

Fig. 14: A cut-out part of the floor from a side
view after scan aggregation (length of the seg-
ments: 1 m). (a) using only visual odometry, (b)
visual odometry combined with scan registra-
tion using Generalized-ICP, (c) visual odometry
with our multiresolution scan registration.

Note that in normal operation, scans are only
added if they properly align with the map, i.c.,
E(T) is smaller than € _in (2). For this experi-
ment, we added every scan to the map to have
a fair comparison to the motion estimate from
visual odometry.

7 Conclusion

We designed a small and lightweight continu-
ously rotating 3D laser scanner that is partic-
ularly well suited for the use in MAVs. The
sensor allows for measuring distances of up to
30 m in almost all directions with a minimal
blind spot. For each light pulse, up to three
echoes are reported which is advantageous
in case of transparent material, vegetation, or
edges of buildings.

We use the sensor to perceive obstacles in
the vehicle’s vicinity by building a grid-based
obstacle map. We estimate the motion of our
MAV by registering 3D laser scans with the
map.

In experiments, we showed that our ap-
proaches to pose estimation and laser scan
matching allow for reliably aggregating 3D
scans over short periods of time, accurately
enough to improve detection probability and
without causing inaccuracies in the estimation
of the position of detected obstacles.
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Overall, we can build dense and sharp 3D
obstacle maps and estimate the vehicle’s tra-
jectory by 3D scan registration.

As an outlook on ongoing and future work,
we integrated the sensor in our MAV and con-
ducted experiments with dynamical obstacles,
showing that the MAV is able to omnidirec-
tionally perceive obstacles and to react on
them (NIEUWENHUISEN et al. 2013).
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