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best automatically derive explicit 3D models
composed of points, lines, surfaces and vol-
umes.

With recent progress in large scale terrestri-
al surveying, e.g. by means of mobile or porta-
ble TLS (Terrestrial Laser Scanning) systems
(vENNEgEErtS 2010), the automatic derivation
of non-geometrical and geometrical object
information has become increasingly impor-
tant in order to efficiently exploit the record-
ed scenes, such as in order to create various

1 Introduction

The urban space can nowadays be effective-
ly represented by means of dense textured 3D
point clouds derived from the recordings of
mobile or non-mobile terrestrial laser scan-
ning and image based systems. Apart from the
use of such rich point clouds for interactive 3D
visualization and measuring purposes (NEbiK-
Er et al. 2010), point clouds are widely used as
a basis to manually, semi-automatically or at

Summary: This paper presents a robust approach
for directly labelling textured 3D points within
complex urban scenes. The approach is primarily
based on the specific exploitation of various colour
and geometry based point features, namely by cal-
culating the HSV colour values, a fast point feature
histogram (FPFH), and the zenith angle to the sur-
face normal per point. The geometrical point fea-
tures are thereby calculated over two different lev-
els of neighbourhood regions in order to accommo-
date point density variation. This results in a 71-di-
mensional feature vector per point, which is used as
input for a supervised point classification using a
previously trained self-organizing map (SOM). In-
vestigations of the proposed method show, that a
3D point cloud of a real complex urban laser scan-
ning scene can be classified with good to very good
accuracy for the object classes “road”, “building
façade” and “vegetation” but with an inferior per-
formance for the class “tree trunk / branch”.

Zusammenfassung: Geometrie- und farbbasierte
Punkt wolkenklassifizierung von urbanen Laser-
scanningszenen mittels über wachter SOM-Klassi-
fikation. In diesem Beitrag wird eine robuste Me-
thode zur direkten Klassifizierung texturierter 3D-
Punkte innerhalb komplexer urbaner Laserscan-
ningszenen vorgestellt. Die Methode basiert auf
farblichen und geometrischen Charakteristiken der
Punkte. So wird für jeden Punkt sein jeweiliger
HSV-Farbwert, sein Fast Point Feature Histogramm
und sein Zenitwinkel zur Flächennormalen berech-
net. Um dabei variable Punktdichten zu berück-
sichtigen, werden die geometrischen Punktcharak-
teristika für zwei unterschiedlich große Nachbar-
schaftsregionen berechnet. Daraus resultiert ein
71-dimensionaler Featurevektor pro Punkt als In-
put für die überwachte Punktklassifikation mittels
einer trainierten Self-Organizing Map (SOM). Un-
tersuchungen des vorgeschlagenen Verfahrens an
einer realen komplexen urbanen Laserscanningsze-
ne zeigen auf, dass die Methode in der Lage ist,
Punkte nach den Objektklassen Straße, Vegetation
und Gebäudefassade mit einer guten bis sehr guten
Klassifikationsgenauigkeit zu klassifizieren, je-
doch eine geringere Qualität bei der Baumstamm/-
ast-Klassifikation erreicht wird.
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these geometrical point features, the RGB col-
our values per point are transformed into the
HSV colour space in order to receive decor-
related and thus robust colour values. The re-
sulting feature vector is used as input for a
point-based classification, using a previously
trained self-organizing map (SOM).

In the following section, related work re-
garding the direct classification of points,
also known as point labelling, is presented.
After presenting our method and the used al-
gorithms in section 3, investigation results,
namely the analysis of the expressiveness of
the used point features and the obtainable
classification accuracy, are presented in sec-
tion 4. In the last section, conclusions and an
outlook on possible future optimization of the
proposed method are given.

2 Related Work

Object detection within point clouds can be
viewed as the process of assigning different
distinct point subsets to an object class of the
real world. In order to distinguish these object
classes, a set of geometrical or non-geomet-
rical features characterizing the properties of
points belonging to these classes can be ana-
lysed. Thus, by calculating features for each
point and using a classification method which
labels a point according to its features one can
implicitly create the point subsets belonging to
different object classes. According to bioSca

& lErMa (2008), the local point features used
should represent the surrounding area as well
as possible. In addition, the choice of features
also greatly depends on the objects to be dis-
tinguished from one another.

In particular, liu et al. (2007) and ZHuaNg

et al. (2008) both utilize the 3D position, sur-
face normal, mean and Gaussian local curva-
ture for their different segmentation methods,
namely a fuzzy-clustering- and SOM-based
segmentation. In presence of a textured point
cloud, ZHaN et al. (2009) and SarEEN et al.
(2010) both present a region-growing segmen-
tation method solely based on the colour val-
ues of each point, whereas ScHoENbErg et al.
(2010) and StroM et al. (2010) use the colour
values in addition to the surface normal per
point in order to achieve a more robust result

products, such as 3D city models, or to further
understand a recorded scene. Although dense
textured 3D point clouds have high geometric
and radiometric information content, the au-
tomatic robust derivation of further semantic
or geometric information and models is not
easily achieved. Furthermore, the complex
structure of different objects, their arrange-
ment within the world as well as point cloud
properties, e.g. outliers in measurements, var-
iations in point density and occlusions, have
resulted in the development of various special-
ized object detection and labelling methods.
Thus, among others, algorithms have been de-
veloped for extracting geometric primitives
(ScHNabEl et al. 2007, HoHMaNN et al. 2009,
WaN & SHarf 2012), for directly classifying
single points (liM & SutEr 2007, MuNoZ et al.
2009, ruSu et al. 2009, broDu & laguE 2012,
SHaPovalov et al. 2010, XioNg et al. 2011, NiE-
MEYEr et al. 2012), for detecting objects (Pat-
tErSoN et al. 2008, goloviNSKiY et al. 2009,
StEDEr et al. 2009, tEicHMaN et al. 2011, MoN-
NiEr et al. 2012, vEliZHEv et al. 2012) and for
segmenting point clouds, e.g. by the means of
region-growing algorithms (ZHaN et al. 2009),
graph-based algorithms (lai et al. 2009, ScH-
oENbErg et al. 2010, StroM et al. 2010) or clus-
tering algorithms (JiaNg 2004, liu et al. 2007,
bioSca & lErMa 2008, ZHuaNg et al. 2008).

In this paper, a method for directly label-
ling 3D points is presented, which exploits
a combination of geometric and radiomet-
ric properties. It enables the classification of
textured points within a complex urban laser
scanning scene according to a finite number of
disjoint object classes. The method is primar-
ily based on the specific calculation of vari-
ous colour and geometry based point features,
namely the calculation of the HSV colour val-
ues, a fast point feature histogram (FPFH)
and the zenith angle of the surface normal per
point. Similar to broDu & laguE (2012) the
geometrical point features are calculated over
two different levels of neighbourhood regions
in order to consider point density variations.
In doing so, the FPFH values allow to deter-
mine if a point is part of a surface, sphere, cyl-
inder, edge or corner, whereas the zenith an-
gle of the surface normal is calculated in order
to receive an absolute inclination measure of
the underlying surface. In addition to deriving
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al. 2009) as well as non-associative Markov
network (SHaPovalov et al. 2010) classifiers or
stacked 3-D parsing using a simple K-class lo-
gistic regression classifier (XioNg et al. 2011)
are proposed, in order to generally achieve a
higher classification performance than non-
point-context considering approaches.

3 Method

3.1 Overview

Our system takes an unclassified textured
point cloud as input. As a result, it creates a
classified point cloud, in which each point
is labelled according to the object class it is
most likely to belong to. The system proceeds
in three steps, as outlined in Fig. 1. First, we
manually extract a set of points for each object
class to be detected from the given input point
cloud, thus yielding a set of training data.
Then the local point features are calculated
for both, the training and the test data, namely
the HSV colour values {hq, sq, vq}, the surface
normals {nq

(1), nq
(2)}, the zenith angles of the

surface normal {zq
(1), zq

(2)} and the 33 features
of the fast point feature histogram { fpfh33q

(1),
fpfh33q

(2)} for each point pq and the two neigh-
bourhood regions (1) and (2). Finally, the SOM
classifier is trained and used to classify each
point of the point cloud using the feature vec-
tor [hq sq vq zq

(1) zq
(2) fpfh33q

(1) fpfh33q

(2)] having a
dimension of 71. The different steps and the
prototype implementation are described in de-
tail in the following sections.

3.2 Transformation of the RGB
Colour Values to HSV Colour
Values

Based on the works of ZHaN et al. (2009) and
SarEEN et al. (2010), which both present a re-

of their graph-based segmentation. In addi-
tion to these rather simple point features, there
has been considerable work done on making
local shape 3D features more discriminative
and robust. Amongst others, PattErSoN et al.
(2008) use spin images (JoHNSoN & HEbErt

1999) and extended Gaussian images (HorN

1984) for detecting cars, ruSu et al. (2009) use
fast point feature histograms (FPFH) in order
to assign points to different surfaces, edges
or corners, broDu & laguE (2012) present a
multi-scale eigenvalue-based feature in order
to characterize the 1D/2D/3D properties of the
local scene at each point and at different scales
while flittoN et al. (2012) present a novel 3D
extension to the visual cortex model, previ-
ously used in 2D object recognition (SErrE et
al. 2005, MutcH & loWE 2008), for recogniz-
ing various objects in 3D volumetric image-
ry. Furthermore, inspired by the SIFT (loWE

2004) image feature, SKEllY & Sclaroff

(2007) present the rotation invariant feature
transform (RIFT) and toMbari et al. (2010)
the Signature of Histograms of OrienTations
(SHOT) feature, both showing promising re-
sults for the problem of identifying corre-
sponding points. Finally, we refer to toMbari

et al. (2010) and alEXaNDrE (2012) for a com-
parative evaluation and presentation of further
3D point features.

Besides the point feature choice, various
classification methods are proposed for direct-
ly classifying single points. On the one hand,
point independent classification schemes using
a linear discriminant analysis (broDu & laguE

2012), a support vector machines (goloviN-
SKiY et al. 2009, ruSu et al. 2009, broDu &
laguE 2012) or a random forest (goloviNSKiY

et al. 2009, SHaPovalov et al. 2010) classifier
are proposed. On the other hand, classification
schemes that consider point context, such as
conditional random fields (liM & SutEr 2007,
NiEMEYEr et al. 2012, ruSu et al. 2009), high-
order associative Markov network (MuNoZ et

Fig. 1: Schematic representation of the proposed point classifications steps.
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In order to obtain an absolute geometrical
local point feature, enabling inference of the
absolute inclination of the underlying surface,
the zenith angle zq of the surface normal nq is
calculated according to (3).
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(3)

3.4 Calculation of the Fast Point
Feature Histograms (FPFH)

As a relative geometrical local point feature
the fast point feature histogram, as presented
in ruSu et al. (2009) and ruSu (2009), is used.
The purpose of this feature is to encode lo-
cal geometrical properties by generalizing the
mean curvature around a query point pq using
a multi-dimensional histogram. The feature is
invariant to the pose of the underlying surface
and copes very well with different sampling
densities or noise (ruSu 2009). In addition to
this robustness the FPFH has good discrimi-
nating properties. According to the compara-
tive study of alEXaNDrE (2012) the FPFH per-
forms well compared to other state of the art
3D features in object and category recogni-
tion and has shown to yield excellent results in
classifying points (ruSu et al. 2009). The cal-
culation of the FPFH for a point pq based on its
neighbouring points pk is presented in detail in
Alg. 1 and Fig. 2.

1. Calculation of the simplified point feature
histogram (SPFH) for point pq:
a) Definition of the points pk constituting

the neighbourhood pq, either by taking all
points within a certain range or by taking
the n-nearest neighbours (Fig. 2a).

b) Calculation of the k angles (α, ϕ, θ) be-
tween point pq and pk:
By defining a DarbouX uvw coordinate
frame in one of the points pq or pk (Fig. 2b)

according to, u = ns,
2

( ) ,t s

t s

p pv u
p p

−
= ×

−

w = u×v with
if arccos(nq pkq) ≤ arccos(nk pqk), pkq = pq
– pk, then ps = pq, ns = nq and pt = pk, nt =
nk else ps = pk, ns = nk and pt = pq, nt = nq

gion-growing segmentation method solely us-
ing colour values in order to achieve better re-
sults compared to geometry-based methods
for point clouds with a high degree of outliers
and areas of occlusion, as well as on the work
of StroM et al. (2010), who also propose to use
colour values in addition to surface normals
in order to ensure a more robust segmentation
performance, we use point colour values to
include a non-geometrical local point feature
during classification. Due to the high correla-
tion between the colour values in the RGB col-
our space, the recorded RGB values per point
are transformed into the HSV colour space. In
this model a colour is primarily characterized
by the hue (H) parameter, whereas the satura-
tion (S) and value (V) represent variations of
the same hue (H). Thus, resulting in a colour
characterization primarily based on a single
parameter.

3.3 Calculation of the Surface
Normals and their Zenith Angles

In order to calculate the zenith angles of the
surface normals and the Fast Point Feature
Histograms, the surface normal of each point
is calculated. The surface normal nq of a point
pq is calculated according to the principal
component analysis (PCA) method originally
proposed by bErKMaNN & caElli (1994), by
calculating the covariance matrix Cq accord-
ing to (1) using the k-nearest neighbours and
by determining its eigenvector n0 = nq corre-
sponding to the smallest eigenvalue λ0.

( )( )
1

1 k T

q j j
j

c p p p p
k =

= − −∑ (1)

However, since there is no mathematical
way to solve for the sign of n0, the inward or
outward orientation of the normals with re-
spect to the underlying surface is unknown.
Thus, in order to solve this problem, we orient
all normals nq consistently towards the sensor
viewpoint v, as proposed by ruSu (2009), by
determining the sign of nq so that the (2) is sat-
isfied.

( ) 0q qn v p⋅ − > (2)
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new training samples are made available. The
choice of using a self-organizing map was ad-
ditionally motivated by works of JiaNg (2004)
and liu et al. (2007), which both achieved
good results in segmenting point clouds using
a SOM, even for noisy data.

The self-organizing map, a competitive
self-learning neural network, developed by
KoHoNEN since 1981, is mainly used to project
data of an n-dimensional feature space onto a
two-dimensional regular grid of nodes / neu-
rons. By doing so, the original information is
compressed, while the most relevant topologi-
cal and metrical relationships of primary data
patterns are preserved. Thus, entities that lie
near to one another within the n-dimensional
feature space will also come to lie close to one
another in the SOM (KoHoNEN 2001). On the
one hand, a SOM can be used for clustering
datasets, whereas on the other hand, by apply-
ing a slight modification to the algorithm, it
can also be used for the classification of data-
sets. The so-called supervised SOM classifica-
tion, in principle still an unsupervised learn-
ing method, in addition to the n-dimensional
feature vectors takes into account their class
labels during training. This allows the result-
ing trained neuron weights to be assigned to
a class and, consequently, a test sample to be
classified (see following Alg. 2).

Input data:
• Set of training vectors ( ) ( ) ( ),i i i

trainx x y =  

with vector x(i) ∈ℝn containing the N point
feature values and y(i) ∈ℝk corresponding
to the unit label vector with its kth component

and calculating the angles (α, ϕ, θ) ac-

cording to
2

( ), ,

arctan( , )

t s
t

t s

t t

p pv n u
p p

w n u n

α φ

θ

−
= ⋅ = ⋅

−
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c) Creation of the histogram for the k angles
(α, ϕ, θ).

2. Calculation of the simplified SPFH for all
neighbouring points pk as in step 1.

3. Calculation of the FPFH for point pq accord-
ing to:

1

( )
1 1( ) ( )

q

k
q ki

k

FPFH p

SPFH p SPFH p
k w=

=
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with wk = Distance beween point pq and pk.

Alg. 1: Calculation of the FPFH for point pq
(according to Rusu 2009).

3.5 Supervised Self-Organizing Map
Classification

In order to implement a precise as well as fast
3D point classification method a self-organiz-
ing map (SOM) was used. In contrast to su-
pervised methods, a SOM, in principle being
an unsupervised clustering method, demands
significantly less computational resources
and scales better to large learning problems
(HaYKiN 1999). Yet, as shown by vaSigH &
KoMPaNY-ZarEH (2013), it can achieve a simi-
lar classification performance as a more pow-
erful support vector machines classification.
SOM can also be used for online learning, i.e.
the model can be adapted incrementally as

Fig. 2: Illustration of the calculation of the FPFH for point pq adapted from Rusu 2009) in (a) and
(b) as well as a parallel coordinate plot of the FPFH’s for multiple tree trunk / branch points (high-
lighted in blue) in (c).
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a wrapper for calculating the point features us-
ing the point cloud library (ruSu & couSiNS

2011) and for performing the supervised SOM
classification using Matlab’s SOM toolbox
(alHoNiEMi et al. 2012).

4 Investigations

4.1 Test, Training and Reference
Datasets

For the investigation of the expressiveness of
the point features and of the overall classifi-
cation accuracy, a point cloud of an urban re-
gion, recorded from two locations with a Leica
ScanStation 2, was used. The recorded scene
has the dimension of 100 m × 70 m × 15 m,
contains over 1 million points and is shown
in Fig. 3a. Apart from a high inter and intra
object class variance within the scene, e.g.
for vegetation, the point cloud contains varia-
tions in point density, occluded areas and, due
to using the on-board capabilities of the Lei-
ca ScanStation 2, is generally poorly textured
(see Fig. 3a).
Based upon this unclassified point cloud the

training and the reference datasets were creat-
ed. The training dataset was created by manu-
ally extracting small regions corresponding to
the object classes “building façade”, “road”,
“vegetation”, and “tree trunk / branch”. In
this process regions of different point densi-
ties per object class were selected in order to
account for any inter-class variation of the de-
rived point features. The final training data-
set consists of 100,000 points. The point count
per object class is equal to 10% of the num-
ber of points of that class in the reference (see
Tab. 2). The reference data was created by
manually labelling the rest of the entire un-
classified point cloud according to the object
classes to be detected.

4.2 Expressiveness of the used Point
Features

During the feature design phase various
graphical exploratory data analysis meth-
ods were used, in order to primarily deter-
mine whether the selected point features allow

set to one if x(i) belongs to the object class k
and the rest of its components set to zero.

• Set of vectors x(ii)
test ∈ℝ

n.

1. Random or linear initialization of the
weight vector m( j) ∈ℝn+k asscociated with
each neuron j.

2. Training phase of the SOM:
For each training step t from 1 to max_it-
erations:
a) Random selection of a training vector

xtrain(t) from the set of training vectors.
b) Comparison of xtrain(t) with all neuron

weight m( j), in order to determine the
best matching neuron c according to the
chosen similarity measure (i.e., the Eu-
clidean distance).

c) Modification of the weight vector m(c)

of the best matching neuron c and the
weight vectors m( j) of the neurons j with-
in a circular neighbourhood of radius
σ(t) of the best matching neuron c ac-
cording to:
m( j)(t + 1) = m( j)(t) + hcj(t)[xtrain(t) – m( j)(t)]
with hcj = α(t) · e−d2

cj/2σ2(t): Gaussian neigh-
bourhood function, α(t) ∈[0, 1]: learn-
ing rate, dcj ∈ℤ: grid distance between
neuron c and respective neuron j and
α(t) ∈[0, max_som_size]: neighbour-
hood distance. α(t) and σ(t) are monoton-
ically decreasing functions over time t in
our case linear functions with negative
slope (section 4).

3. Classification phase using the trained SOM:
Each test vector x(ii)

test is compared to the x-
part (the first N components corresponding
to the features) of all trained neuron weights
m( j), in order to determine the best matching
neuron c according to the chosen similarity
measure. The point’s class membership is
then given by the index of the largest com-
ponent of the y-part (the last K components
corresponding to the label vector) of m(c).

Alg. 2: Supervised SOM classification (accord-
ing to KohonEn 2001).

3.6 Prototype Implementation

A first prototype of the proposed labelling
method was implemented by using Python as
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the ground vegetation and leaves on the trees,
with the latter vegetation subclass having an
especially high zenith angle variance.

For further investigation of the expres-
siveness of the calculated point features, the
values of the 37-dimensional feature vec-
tor [hq sq vq zq fpfh33q

] for a training data sub-
set with similar point density were visualized
using an interactive and dynamic grand tour
visualization (aSiMov 1985, buJa & aSiMov

1986). This multi-dimensional visualization
technique generally maps the values of an n-
dimensional feature space using a linear com-
bination to a lower dimensional feature space.
Thus, it is a useful technique for visually ana-
lysing the distribution of and for identifying
clusters within multivariate data. In order to
perform an optimal visual cluster analysis,
we projected the values of the 37-dimensional
feature vectors into the orthogonal coordinate
frame defined by their principal components
and determined the projection parameters us-

for a distinction between the selected object
classes to be detected and which of the fea-
tures are the most expressive ones. First, a ma-
trix of pairwise scatter plots of the four point
features hq, sq, vq and zq of training data sub-
sets with similar point density was generated.
Fig. 4 illustrates that the HSV colour values al-
low a partial separation of the object classes
“building façade” and “road” from the class-
es “tree trunk / branch” and “vegetation”, but
the zenith angle of the surface normal needs
to be taken into account in order to separate
the object classes “tree trunk / branch” and
“vegetation”, overlapping in the HSV colour
space. Furthermore, it can be seen, that the ze-
nith angles of the vegetation class have a high
variance and that therefore some points nev-
ertheless come to lie within the region main-
ly occupied by points belonging to the object
class “tree trunk / branch”. The reason for this
high zenith angle variance is that the vegeta-
tion training sample contains both points of

Fig. 3: Original textured point cloud (a) with examples of typical problems such as variations in
point density, occluded areas and poor texturing. Classified point cloud (b) and a detail (c).
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Fig. 4: Scatterplot matrix of the HSV colour values and the zenith angle of the surface normals
(using 32 nearest neighbours for the surface normal calculation).

Fig. 5: Grand Tour Visualization of the HSV colour, the zenith angle of the surface normals and the
FPFH values per point (using 32 nearest neighbours for the surface normal and FPFH calculation).
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details). This enables the calculation of confu-
sion matrices and various quality measures by
comparing each point’s object class member-
ship resulting from the classification with its
actual membership. All of the following clas-
sification results are based upon using the su-
pervised SOM classification functionality of
Matlab’s SOM toolbox (alHoNiEMi et al. 2012).
The linear initialized, 100 x 100 sized SOM
of hexagonal lattices was thereby trained ac-
cording to Alg. 2 using a two-phased train-
ing scheme and the parameters presented in
Tab. 1.
Tab. 2 shows the resulting classification ac-

curacy of a single-scale approach using the
HSV, the zenith angle and FPFH values per
point as input for the supervised SOM classi-
fication. The geometrical features were calcu-
lated using the 32 nearest neighbouring points.
Tab. 2 shows that the precision for all classes,
except for the class “tree trunk / branch”, lies

ing a Linear Discriminant Analysis (LDA)
(cooK et al. 1995, cooK & SWaYNE 2007).
Fig. 5 shows that by using the HSV colour,
zenith angle and FPFH values, all the points
belonging to each object class form a distinct
cluster, which is different to the case in Fig. 4,
when FPFH were not used. This provides a
visual indication that the selected point fea-
tures are expressive enough to classify the
points according to the examined object class-
es and under the assumption of similar point
density.

4.3 Classification Accuracy

In order to numerically quantify the achiev-
able classification accuracy for various pa-
rameterizations of the proposed point label-
ling method, a manually labelled reference
dataset was created (see section 4.1 for further

Tab. 1: Parameterization of the rough (a) and fine-tuning (b) phase of the SOM training.

Parameter Value

Max. iterations 15 x number of neurons(a), 60 x number of neurons(b)

α(t) (Learning rate) Linear decreasing function from 0.5 to 0.05(a) and 0.05 to 0.0(b)

σ(t) (Neighbourhood radius) Linear decreasing function from m/8 to m/32(a) and m/32 to 1(b), with m =
maximal SOM side length / SOM size

Tab. 2: Confusion matrix and classification accuracy using both colour and geometrical features
composed of the HSV values as well as the single set of zenith angles and FPFH values calcu-
lated using 32 nearest neighbours.

Reference data

Road Tree trunk
/ branch

Building
façade Vegetation Total amount

of points
Precision

(%)

C
la
ss
ifi
ca
tio
n

Road 597,217 4,578 15,040 127,935 744,770 80

Tree trunk /
branch 1,903 6,937 238 1,183 10,261 68

Building
façade 25 14 23,131 87 23,257 99

Vegetation 25,151 12,075 1,264 298,864 337,354 89

Total amount of
points 624,296 23,604 39,673 428,069 1,115,642

Recall (%) 96 29 58 70

Overall classification
accuracy (%) 83
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points. Analysing the relatively poor classifi-
cation result for the object class “tree trunk
/ branch” it was found that the majority of
misclassifications are due to the challenging
problem of correctly distinguishing between
leaves and branches for each point while creat-
ing the reference dataset (see Fig. 3c). Hence,
the classification results for this object class
can be considered as too pessimistic. Compa-
ring our best classification results presented in
Tab. 3 to other terrestrial point cloud labeling
methods with comparable object classes, we
achieve a nine percent lower and two percent
higher overall classification accuracy than liM

& SutEr (2007) and MuNoZ et al. (2009), res-
pectively. As these results were achieved on
different datasets, this comparison is not con-
clusive. Nevertheless, it shows that a similar
classification performance is achieved.

In summary, the proposed point labelling
method, using both colour and multi-scale ge-
ometrical point features, allows for a moder-
ately accurate classification of points belong-
ing to object class “tree trunk / branch”, while
achieving good to very good classification
results for the object classes “road”, “build-
ing façade” and “vegetation”. Additionally,

above 80%. In contrast, the recall for all class-
es is generally unsatisfying, with only the
points of the class “road” having a recall rate
of 96%. The analysis of this poor classifica-
tion result shows that the majority of the mis-
classifications occur in areas where the point
density is sparse and hence the consideration
of only 32 neighbouring points while calculat-
ing the geometrical features is not sufficient.
Tab. 3, in contrast, shows the classification

accuracy achieved in two experiments involv-
ing geometrical features obtained from two
neighbourhoods. The results shown in bold
font were achieved using the HSV values, the
two sets of zenith angle values using 8 and 128
nearest neighbouring points and the two sets
of FPFH values using 8 and 32 neighbouring
points. The results shown in regular font were
obtained by using the same point features, but
neglecting the HSV values. The results show
that the precision and recall rate for all classes,
except for the class “tree trunk / branch”, now
are above 91% and 87%, respectively. Further-
more, the results show that the additional con-
sideration of colour values results in a more
accurate classification, especially for the geo-
metrically similar road and ground vegetation

Tab. 3: Confusion matrix and classification accuracy using both colour and geometrical features
composed of the HSV values, the two sets of zenith angles using 8 and 128 nearest neighbours
and the two sets of FPFH values using 8 and 32 nearest neighbours (bold font). In comparison, the
values in regular font show the results obtained without the colour features.

Reference data

Road Tree trunk
/ branch

Building
façade Vegetation Total amount

of points
Precision

(%)

C
la
ss
ifi
ca
tio
n

Road 600,257
558,519

4,200
3,993

1,520
1,402

52,203
70,192

658,180
634,106

91
88

Tree trunk /
branch

413
488

10,086
9,885

127
761

4,094
3,225

14,720
14,359

69
69

Building
façade

331
603

1,206
909

36,876
36,719

1,347
1,462

39,760
39,693

93
93

Vegetation 23,295
64,686

8,112
8,817

1,150
791

370,425
353,190

402,982
427,484

92
83

Total amount of
points 624,296 23,604 39,673 428,069 1,115,642

Recall (%) 96
89

43
42

93
93

87
83

Overall classification
accuracy (%)

91
86
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2011, as well as the features needed for opti-
mal classification.

References

alEXaNDrE, a., 2012: 3D Descriptors for Object
and Category Recognition : A Comparative
Evaluation. – IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS),
Vilamoura, Portugal.

alHoNiEMi, E., HiMbErg, J., ParHaNKaNgaS, J. &
vESaNto, J., 2012: SOM Toolbox. – http://www.
cis.hut.fi/somtoolbox/ (24.4.2012).

aSiMov, D., 1985: The Grand Tour: A Tool for
Viewing Multidimensional Data. – SIAM Jour-
nal on Scientific Computing 6 (1): 128–143.

bErKMaNN, J. & caElli, t., 1994: Computation of
Surface Geometry and Segmentation using Co-
variance Techniques. – IEEE Transactions on
Pattern Analysis and Machine Intelligence 16
(11): 1114–1116.

bioSca, J.M. & lErMa, J.l., 2008: Unsupervised
Robust Planar Segmentation of Terrestrial Laser
Scanner Point Clouds Based on Fuzzy Cluster-
ing Methods. – ISPRS Journal of Photogramme-
try and Remote Sensing 63 (1): 84–98.

broDu, N. & laguE, D., 2012: 3D Terrestrial Lidar
Data Classification of Complex Natural Scenes
using a Multi-Scale Dimensionality Criterion:
Applications in geomorphology. – ISPRS Jour-
nal of Photogrammetry and Remote Sensing 68
(0): 121–134.

buJa, a. & aSiMov, D., 1986: Grand Tour Methods:
An Outline. – Computing Science and Statistics
17: 63–67.

cooK, D., buJa, a., cabrEra, J. & HurlEY, c.,
1995: Grand Tour and Projection Pursuit. – Jour-
nal of Computational and Graphical Statistics 4
(3): 155–172.

cooK, D. & SWaYNE, D.f., 2007: Interactive and
Dynamic Graphics for Data Analysis. – With R
and GGobi, Springer.

DEMaNtKé, J., MallEt, c., DaviD, N. & vallEt, b.,
2011: Dimensionality Based Scale Selection in
3D LIDAR Point Clouds. – ISPRS Workshop La-
ser Scanning: 97–102, Calgary, Alberta, Cana-
da.

flittoN, g., brEcKoN, t.P. & MEgHErbi, N., 2012: A
3D Extension to Cortex Like Mechanisms for 3D
Object Class Recognition. – IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR): 3634–3641, Los Alamitos, CA, USA.

goloviNSKiY, a., KiM, v.g. & fuNKHouSEr, t.,
2009: Shape-Based Recognition of 3D Point
Clouds in Urban Environments. – International

the presented classification results show two
properties of the used features that result in a
better overall classification. Firstly, the HSV
colour values support a correct classification
of geometrically similar object classes and
secondly, by calculating the geometrical point
features over two levels of neighbourhood re-
gions, point density variations are accounted
for.

5 Conclusion

This paper presents an approach for classify-
ing textured points within a complex urban
point cloud according to a distinct set of ob-
ject classes. By using the HSV colour values
as well as the zenith angle and the Fast Point
Feature Histogram (FPFH) values, calculat-
ed over two different local neighbourhoods,
as point features as an input to a supervised
SOM classification, we were able to classify
points according to the object classes “road”,
“tree trunk / branch”, “building façade” and
“vegetation”. Our investigations show that the
selected 3D point features are sufficiently ex-
pressive for labelling points according to the
examined object classes under the assumption
of constant point density. Secondly, by using a
supervised SOM classifier, the features allow
the classification of a poorly textured point
cloud affected by occlusion and density vari-
ations with a good overall classification accu-
racy of 91%, but with a relatively poor recall
for the challenging object class “tree trunk /
branch”. Our work further supports the known
fact that the features used for classification
have a large influence on achieving optimal
results and thus must be designed according
to the object classes to be distinguished from
one another. In our application we thus select-
ed point features allowing the separation of
various objects of different colours, absolute
surface inclinations, and shapes within a point
cloud of varying point density. Future work
will focus on the further development of the
proposed method, on combining different fea-
tures to a multi-scale / multi-modal point fea-
ture in dependency of the classification task,
by including an approach for automatically
determining the size and amount of required
neighbourhood regions, e.g. DEMaNtKé et al.



172 Photogrammetrie • Fernerkundung • Geoinformation 3/2014

NEbiKEr, S., blEiScH, S. & cHriStEN, M., 2010: Rich
Point Clouds in Virtual Globes – A New Para-
digm in City Modeling? Computers, Environ-
ment and Urban Systems 34 (6): 508–517.

NiEMEYEr, J., rottENStEiNEr, f. & SoErgEl, u.,
2012: Conditional Random Fields for LIDAR
Classification in Complex Urban Areas. – XXI-
Ind ISPRS Congress, Technical Commission
III: 263–268, Melbourne, Australia.

PattErSoN, a., MorDoHai, P. & DaNiiliDiS, K.,
2008: Object Detection from Large-Scale 3D
Datasets using Bottom-up and Top-down De-
scriptors. – ECCV 2008: 10th European Confer-
ence on Computer Vision: 553–566, Marseille,
France.

ruSu, r.b., 2009: Semantic 3DObjectMaps for Eve-
ryday Manipulation in Human Living Environ-
ments. – Ph.D. Computer Science Department,
Technische Universität München, Germany.

ruSu, r.b., HolZbacH, a., bloDoW, N. & bEEtZ, M.,
2009: Fast Geometric Point Labeling using Con-
ditional Random Fields. – IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Sys-
tems: 3212–3217, St. Louis, MO, USA.

ruSu, r.b. & couSiNS, S., 2011: 3D is here: Point
Cloud Library (PCL). – IEEE International Con-
ference on Robotics and Automation (ICRA):
1–4, Shanghai, China.

SarEEN, K., KNoPf, g. & caNaS, r., 2010: Rapid
Clustering of Colorized 3D Point Cloud Data for
Reconstructing Building Interiors. – ISOT 2010
International Symposium on Optomechatronic
Technologies: 1–6, Toronto, ON, Canada.

ScHNabEl, r., WaHl, r. & KlEiN, r., 2007: Effi-
cient RANSAC for Point-Cloud Shape Detec-
tion. – Computer Graphics Forum 26 (3): 1–12.

ScHoENbErg, J., NatHaN, a. & caMPbEll, M., 2010:
Segmentation of Dense Range Information in
Complex Urban Scenes. – IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Sys-
tems: 2033–2038, Taipei, Taiwan.

SErrE, t., Wolf, l. & Poggio, t., 2005: Object rec-
ognition with features inspired by visual cortex.
– IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition 2: 994–
1000.

SKEllY, l.J. & Sclaroff, S., 2007: Improved Fea-
ture Descriptors for 3D Surface Matching. –
SPIE Conference on Two- and Three-Dimen-
sional Methods for Inspection and Metrology V
6762.

SHaPovalov, r., vEliZHEv, a. & bariNova, o.,
2010: Non-Associative Markov Networks for 3D
Point Cloud Classification. – ISPRS Technical
Commission III Symposium, PCV 2010 – Photo-
grammetric Computer Vision and Image Analy-
sis: 103–108, Saint-Mandé, France.

Conference on Computer Vision (ICCV): 2154–
2161, Kyoto, Japan.

HaYKiN, S., 1999: Neural Network. – Second Edi-
tion, MacMillan College Publishing Company,
London, UK.

HoHMaNN, b., KriSPEl, u., HavEMaNN, S. & fEll-
NEr, D., 2009: Cityfit: High-Quality Urban Re-
constructions by Fitting Shape Grammars to Im-
ages and Derived Textured Point Clouds. – 3D
Virtual Reconstruction and Visualization of
Complex Architectures, Trento, Italy.

HorN, b.K.P., 1984: Extended Gaussian images. –
IEEE 72 (12): 1671–1686.

JiaNg, b., 2004: Extraction of Spatial Objects from
Laser-Scanning Data using a Clustering Tech-
nique. – XXth ISPRS Congress, Technical Com-
mission III: 219–224, Istanbul, Turkey.

JoHNSoN, a. & HEbErt, M., 1999: Using Spin Im-
ages for Efficient Object Recognition in Clut-
tered 3D Scenes. – IEEE Transactions on Pattern
Analysis and Machine Intelligence 21 (5): 433–
449.

KoHoNEN, t., 2001: Self-Organizing Maps. – Third
Edition, Springer, Heidelberg, Germany.

lai, Y.-K., Hu, S.-M., MartiN, r.r. & roSiN, P.l.,
2009: Rapid and Effective Segmentation of 3D
Models using Random Walks. – Computer Aid-
ed Geometric Design 26 (6): 665–679.

liM, E.H. & SutEr, D., 2007: Conditional Random
Field for 3D Point Clouds with Adaptive Data
Reduction. – International Conference on Cy-
berworlds: 404–408, Hannover, Germany.

liu, X.-M., ZHoNg, S.-S. & bai, X.-l., 2007: A
Modified SOFM Segmentation Method in Re-
verse Engineering. – Eighth ACIS International
Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distrib-
uted Computing: 570–573, Qingdao, China.

loWE, D.g., 2004: Distinctive Image Features from
Scale-Invariant Keypoints. – International Jour-
nal of Computer Vision 60 (2): 91–110.

MoNNiEr, f., vallEt, b. & SoHEiliaN, b., 2012:
Trees Detection from Laser Point Clouds Ac-
quired in Dense Urban Areas by a Mobile Map-
ping System. – XXIInd ISPRS Congress, Tech-
nical Commission III: 245–250, Melbourne,
Australia.

MuNoZ, D., vaNDaPEl, N. & HEbErt, M., 2009: On-
board Contextual Classification of 3-D Point
Clouds with Learned High-order Markov Ran-
dom Fields. – IEEE International Conference on
Robotics and Automation: 4273–4280, Piscata-
way, NJ, USA.

MutcH, J. & loWE, D., 2008: Object Class Recogni-
tion and Localization Using Sparse Features
with Limited Receptive Fields. – International
Journal of Computer Vision 80 (1): 45–57.



E.K. Matti & S. Nebiker, Geometry and Colour Based Classification 173

nieurwesen und Geodäsie, Leibniz Universität
Hannover, Germany.

WaN, g. & SHarf, a., 2012: Grammar-Based 3D
Facade Segmentation and Reconstruction. –
Computers Graphics 36 (4): 216–223.

XioNg, X., MuNoZ, D., bagNEll, J.a. & HEbErt, M.,
2011: 3-D Scene Analysis via Sequenced Predic-
tions over Points and Regions. – IEEE Interna-
tional Conference on Robotics and Automation
(ICRA), Shanghai, China.

ZHaN, Q., liaNg, Y. & Xiao, Y., 2009: Color-Based
Segmentation of Point Clouds. – Laserscanning
09: 248–252, Paris, France.

ZHuaNg, J., liu, X. & Hou, X., 2008: The Fuzzy
Clustering Algorithm Based on Weighted Dis-
tance Measures for Point Cloud Segmentation.
– 2008 Second International Symposium on In-
telligent Information Technology Application
(IITA): 51–54, Shanghai, China.

Address of the Authors:

Eric KENNEtH Matti & Prof. Dr. StEPHaN NEbiKEr,
FHNW University of Applied Sciences and Arts
Northwestern Switzerland, Institute of Geomatics
Engineering, CH-4132 Muttenz, Tel.: +41-61-467-
4242, Fax: +41-61-467-4460, e-mail: {eric.matti}
{stephan.nebiker}@fhnw.ch

Manuskript eingereicht: Mai 2013
Angenommen: Februar 2014

StEDEr, b., griSEtti, g., vaN loocK, M. & bur-
garD, W., 2009: Robust On-line Model-based
Object Detection from Range Images. – IEEE/
RSJ International Conference on Intelligent Ro-
bots and Systems: 4739–4744, St. Louis, MO,
USA.

StroM, J., ricHarDSoN, a. & olSoN, E., 2010:
Graph-Based Segmentation for Colored 3D La-
ser Point Clouds. – IEEE/RSJ International Con-
ference on Intelligent Robots and Systems:
2131–2136, Taipei, Taiwan.

tEicHMaN, a., lEviNSoN, J. & tHruN, S., 2011: To-
wards 3D Object Recognition via Classification
of Arbitrary Object Tracks. – IEEE International
Conference on Robotics and Automation
(ICRA): 4034–4041, Shanghai, China.

toMbari, f., Salti, S. & StEfaNo, l., 2010: Unique
Signatures of Histograms for Local Surface De-
scription. – 11th European Conference on Com-
puter Vision (ECCV): 356–369, Hersonissos,
Greece.

vaSigHi, M. & KoMPaNY-ZarEH, M., 2013: Classifi-
cation Ability of Self Organizing Maps in Com-
parison with Other Classification Methods. –
MATCH Communications in Mathematical and
in Computer Chemistry 70: 29–44.

vEliZHEv, a., SHaPovalov, r. & ScHiNDlEr, K.,
2012: Implicit Shape Models for Object Detec-
tion in 3D Point Clouds. – XXIInd ISPRS Con-
gress, Technical Commission III: 79–184, Mel-
bourne, Australia.

vENNEgEErtS, H., 2010: Objektraumgestützte kine-
matische Georeferenzierung für Mobile-Map-
ping-Systeme. – Ph.D. Fakultät für Bauinge-


