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widely used binary “change/no change error
matrix” (VAN OORT 2007).
The emergence of object-based image anal-

ysis (OBIA) techniques in remote sensing in
recent years necessitates metrics for the geo-
metric accuracy assessment of spatial objects
which BLASCHKE (2010) has identified as one of
the “hot” OBIA research topics. This is espe-
cially true for classified objects change detec-
tion techniques which are often used for the
updating of maps or GIS layers (CHEN et al.
2012, HUSSAIN et al. 2013).

1 Introduction

In the context of the accuracy assessment of
classified remote sensing data, commonly ac-
cepted thematic metrics like user’s, producer’s
and overall accuracy have been established
for decades. They are calculated from the
well-known “error matrix” which aggregates
point-related class assignments (STEHMAN
1997, FOODY 2002, ZHAN et al. 2005, LIU et al.
2007, OLOFSSON et al. 2013). The assessment
of change detection accuracy results from the

Summary: European initiatives to harmonize geo-
data and the emergence of object-based image anal-
ysis techniques in remote sensing lead to increased
demands regarding the quality assessment of the-
matic classification results. While common metrics
for the thematic accuracy assessment have already
been established for decades, there is a deficit in
generally accepted geometric accuracy metrics en-
abling the assessment of two-dimensional thematic
objects.
In this study, geometric accuracy metrics are intro-
duced which base on differences in area and posi-
tion between classified and reference objects. They
are exemplarily calculated on classified and the-
matically verified agricultural fields in a German
test site. We demonstrate how the metrics 1.) can be
used for both the assessment of the total dataset and
of single objects as well as 2.) can be coupled with
thematic accuracy assessment results of a change
detection analysis.

Zusammenfassung: Genauigkeitsbewertung von
klassifizierten Landnutzungs-/Landbedeckungsän-
derungen. Europäische Initiativen zur Harmonisie-
rung von Geodaten sowie das Aufkommen objekt-
basierter Bildanalysetechniken führen zu steigen-
den Anforderungen hinsichtlich der Qualitätsbe-
wertung von thematischen Klassifikationsergeb-
nissen. Während etablierte thematische Genauig-
keitsmaße seit Jahrzehnten existieren, besteht ein
Defizit an anerkannten geometrischen Genauig-
keitsmaßen, die eine Bewertung von zweidimensi-
onalen thematischen Objekten erlauben.
In der vorliegenden Studie werden geometrische
Genauigkeitsmaße vorgestellt, die auf Differenzen
zwischen Referenz- und klassifizierten Objekten
hinsichtlich Position und Fläche basieren. Die
Maße werden beispielhaft für klassifizierte und
thematisch verifizierte Ackerschlagobjekte in ei-
nem deutschen Testgebiet berechnet. Wir zeigen,
wie die Maße 1.) sowohl für die Bewertung ganzer
Datensätze als auch einzelner Objekte verwendet
werden können sowie 2.) mit den thematischen Va-
lidierungsergebnissen einer Veränderungsanalyse
verknüpft werden können.
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tions 2.3 and 3). The accuracy assessment pro-
cedure is exemplified on thematically tested
and confirmed agricultural land use changes
(sections 2.1 and 4.1) in a German test site
(section 3).
The study was embedded in the national

joint project DeCOVER 2which has developed
a methodological framework for the spatial
and thematic updating of already existing land
use data by analyzing multi-temporal Rapid-
Eye imagery (BUCK 2010). The RapidEye sen-
sors belong to a new generation of small earth
observation systems for the better observation
of dynamic phenomena (SANDAU et al. 2010)
representing a high spatial, temporal and up-
to-date availability (TYC et al. 2005).

2 Methods

2.1 Assessment of Change Detection
Accuracy

The “change/no change error matrix” distin-
guishes four error types whereas “true posi-
tive” and “true negative” stand for correctly
classified changes and no-changes (Tab. 1). In
contrast, the error types “false positive” and
“false negative” characterize misclassifica-
tions representing errors of commission and
ommission (BOSCHETTI et al. 2004).
Tab. 1: Change/no-change error matrix.

reference

change no change

class
change true positive false negative

no change true negative false positive

2.2 Geometric Accuracy Metrics

In Fig. 1, object F overlaps object T. The in-
tersection I of F and T corresponds to the
Boolean AND operation according to (1). The
“relative area metrics” RAF and RAT shown in
(2) and (3) arise from the ratio of the object ar-
eas AI and AF or AT.

I T F= ∩ (1)

I
F

F

ARA
A

= (2)

Geometric accuracy is related to the “prob-
lem of matching objects” (ZHAN et al. 2005).
A complete matching can be assumed if there
exists a one-to-one correspondence between
reference and classified objects (CLINTON et al.
2010). Most common metrics result from the
overlap of reference and classified objects (LU-
CIEER & STEIN 2002, ZHAN et al. 2005,MÖLLER

et al. 2007, CLINTON et al. 2010, PERSELLO &
BRUZZONE 2010, HERNANDO et al. 2012, SE-
BARI & HE 2013, MONTAGHI et al. 2013). Sev-
eral authors have also compared the locations
of objects’s gravity centres (ZHAN et al. 2005,
MÖLLER et al. 2007, CLINTON et al. 2010,WANG
et al. 2010, SEBARI & HE 2013). Such metrics
are strongly related to quality elements of the
International Organization for Standardiza-
tion (ISO) where – apart from the thematic
accurracy – the positional accuracy is consid-
ered as most important for the sufficient ac-
curacy assessment of thematic geodata. In this
context, differences of gravity centres’ loca-
tions can be seen as an indicator charateriz-
ing two-dimensional spatial objects regarding
their positional accuracy.
The combination of positional and areal

metrics describing spatial extent and location
enables an accurate geometric accuracy as-
sessment of spatial objects (ZHAN et al. 2005).
A combination of geometric metrics can be re-
alized by arithmetic averaging, e.g. quadratic
mean, whereas a normalized value range and
value meaning is beneficially (CLINTON et al.
2010). Statistical clustering approaches allow
an automatic structuring of a n-dimensional
metrics’ feature space independent of value
ranges. For instance, MÖLLER et al. (2007) ap-
plied the k-means clustering algorithm on geo-
metric metrics and used ranked cluster means
to generate a comparison index which can be
used to identify suitable metric combinations.
However, PERSELLO & BRUZZONE (2010) have
pointed out that a metrics’ combination result
can possibly lead to a lack of interpretability.
In this study, basic and combined geometric

accuracy metrics are presented (sections 2.2
and 4.2) considering both requirements con-
cerning ISO standards and OBIA. The metrics
enable a local validation of single objects as
well as an overall geometric validation of the
entire geodata set. A precondition is the ex-
istence of independent reference objects (sec-
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The basic metrics M (RAF, RAT, RPF and
RPT) represent a value range between 0 and
1. While the value 0 stands for no match, the
value 1 indicates a complete correspondence
of Iwith F or T regarding area or position. The
normalized value ranges enable a combination
which is realized by using the geometric mean
according to (8). In doing so, small values are
emphasized which reflects the fact that geo-
metric quality is mainly determined by min-
imal overlaps or high positional distances of
classified and reference objects.
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Positional differences of two-dimensional
objects can be expressed by the distances be-
tween objects’ gravity centres. The normal-
ized distances between the gravity centres of
I and F (dist (CI, CF)) or T (dist (CI, CT)) are
referred to as the “relative positional metrics”
RPF and RPT ((4) and (5)). As normalization
factor, the distance between CI and the far-
thermost gravity centres CF*,max or CT*,max within
the extent of F or T is used (dist (CI, CF*,max))
or (dist (CI, CT*,max)). F* and T* result from
Boolean NOT operations according to (6) and
(7). In Fig. 1b and c, three F* and T* comple-
ments arise in each case whereas the gravity
centres between I and F*,max or T*,max are most
distant.
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Fig. 1: Visualization of object features for the calculation of geometric accuracy metrics: (a) over-
lap of F and T, (b) comparison of I and F, (c) comparison of I and T (F – reference object | T – clas-
sified of to be tested object | I – intersection of F and T | F*, T* – relative complement of F or T and
I | C(T,F,I) – gravity centres of T, F or I | CF*,max, CT*,max – farthermost gravity centre from CI within the
extent of F or T).
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of Saxony-Anhalt and covers 263 km2. Due to
the high land use dynamic caused by urban
development and land use conversions, agri-
cultural parcels of the Land Parcel Identifica-
tion System (LPIS, INAN et al. 2010) have been
geometrically and thematically updated in the
course of a DeCOVER 2 test production by
BUCK et al. (2011). They have analyzed bi-tem-
poral RapidEye scenes from 2010 (16.7. and
21.8.) which have been segmented and classi-
fied within the software environment eCogni-
tion (TRIMBLE 2012) using the region growing
segmentation algorithm Fractal Net Evolu-
tion Approach (FNEA, BENZ et al. 2004) and
applying an object-based and scale-specific
change detection approach.
Publicly available digital aerial photographs

from 2010 with a resolution of 0.4 m × 0.4 m
have been used to create a reference data base
by digitizing reference objects. Their loca-
tions are spatially associated with all samples
representing confirmed classified geometric
changes (Fig. 2b).

4 Results

4.1 Change Detection Accuracy

The change detection results are visualized
in Fig. 2a. Accordingly, 567 field objects had
to be tested which corresponds to an area of
5033 ha or 20 % of the total study area. In do-
ing so, 148 objects (26 %) or 379 ha (7.5 %)
were identified as changes. Using stratified
random samples, a thematic accuracy assess-
ment of changed and un-changed agricultural
objects was carried out. While the error for the
classification of un-changed objects is negligi-
ble, the accuracy of changed objects is 70 %
(Tab. 3).

The resulting combined metrics C are listed
in Tab. 2. The combination of RAF and RAT as
well as of RPF and RPT results in the metrics
RA and RP which show the degree of aggre-
gated positional and areal differences between
reference and classified objects. Their mean is
considered as “overall geometric accuracy”
(OGA). The mean of RAT and RPT is referred
to as “test object-related geometric accuracy”
(TGA). The metric shows whether a classified
object is under- (OGA < TGA) or over-sized
(OGA > TGA).
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Tab. 2: Combination of basic geometric accu-
racy metrics Mi to combined metrics C accord-
ing to (8).

C Mi

RA combined relative area RAF, RAT
RP combined relative position RPF, RPT

OGA overall geometric accuracy RAF, RAT,
RPF, RPT

TGA test object-related
geometric accuracy RAT, RPT

2.3 Sampling of Reference Objects

The samples used for the thematic validation
also mark the locations of reference objects. In
this study, independent interpreters digitized
manually such objects on-screen on the basis
of digital aerial photographs.

3 Study Site and Input Data

The geometric accuracy assessment proce-
dure is demonstrated using a classification
which was carried out in the study site Bit-
terfeld/Wolfen (Fig. 2a). The study site is one
of five DeCOVER 2 project test sites, is situ-
ated in the south of the German Federal State

Tab. 3: Change detection accuracy results:
number and proportion (%) of changed and un-
changed agricultural land use objects.

reference

change no change

class
change 72 (70%) 31 (30%)

no change 1 (1%) 119 (99%)
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Fig. 2: (a) Test site location within Germany and Saxony-Anhalt and a RapidEye image from 21th

August 2010 overlaid with the used datasets as well as (b) digital aerial photographs from 2010
overlaid with two examples of classified and reference objects.
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like minimum mapping units (MMU) and
affects the geometric accuracy results. This
is illustrated in Fig. 3a where the relation be-
tween thresholds of object sizes as well as cor-
responding object numbers (N) and the overall
accuracy metric OGA is shown. The median
of the OGA distribution is used for the global
assessment of the entire dataset. In this study,
only object changes greater than 0.5 ha are
considered which corresponds to the MMU
within the DeCOVER 2 project. This is true
for 57 objects and results in an OGA median
of 0.75 (Fig. 3b). The OGA boxplot illustrates
the broad value distribution which is charac-
terized by the 25th percentile (Q1). Here, the
Q1 value is 0.43. The relation of RA and RP
medians clarifies which error type is domi-

4.2 Geometric Accuracy Assessment

The geometric accuracy assessment is applied
to the 72 confirmed samples in the sense of
an in-depth assessment of thematically veri-
fied object changes (see Tab. 3). The basic geo-
metric metrics were calculated using the soft-
ware package eCognition (TRIMBLE 2012). The
metrics’ visualization was realized within the
statistical environment R (R CORE TEAM 2012).
The accuracy assessment is spatially related

to the intersections of classified and reference
objects (see Figs. 1b and c). An intersection
operation leads to objects of different sizes.
The determination of object size thresholds,
which are considered as meaningful geomet-
ric changes, depends on user-specific needs

Fig. 3: Global geometric accuracy assessment results: (a) Relation between thresholds of object
change sizes, overall geometric accuracies (OGA) and object numbers (N). (b) RA, RP and OGA
boxplots for all 57 objects with an object size greater 0.5 ha.
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the TGA values are different. In example “A”,
T is under-sized or smaller than F which is in-
dicated by a negative difference of OGA and
TGA (0.67 − 0.96 = −0.29). The opposite case
of over-sizing shows example “B” where the
classified object is characterized by a positive
difference (0.71 − 0.52 = 0.19). The considera-
tion of all 57 objects reveals that 33 objects
(58 %) are under-sized.
The absolute differences of globalOGAme-

dians and 25th percentiles as well as of local
OGA and TGA values reflect the global and lo-
cal variation of geometric accuracy. User-de-
fined tolerance levels could define which de-
gree of variation is still acceptable. In Fig. 4,
three examples of tolerance levels are shown
exemplarily.

nant. Here, the RA median (0.71) is smaller
than the RPmedian (0.81). This means that the
geometric inaccuracies are mainly caused by
overlapping mismatches.
The local accuracy assessment is related to

single objects and is based on object-specif-
ic OGA and TGA values. In Fig. 4, the sorted
OGA values of all 57 tested objects are vis-
ualized. The related positions of the corre-
sponding TGA values indicate the degree of
under- or over-sizing. The red-emphasized
vertical lines exemplify the accuracy assess-
ment results of the example objects “A” and
“B” (see Fig. 2). Accordingly, the red- and yel-
low-framed objects display classified (T) and
reference objects (F). The corresponding ac-
curacy metrics are listed in Tab. 4. While the
OGA, RA and RP values are on the same level,

Tab. 4: Local geometric accuracy results of the example objects A and B (see Fig. 2b).

RAR RAT RPR RPT RA RP OGA TGA

A 0.35 0.95 0.63 0.98 0.57 0.79 0.67 0.96

B 0.97 0.40 0.98 0.67 0.62 0.81 0.71 0.52

Fig. 4: Sorted OGA values of all 57 object changes greater than 0.5 ha (see Fig. 3b). The differ-
ence of an OGA and corresponding TGA value indicates whether a classified object is under-sized
or over-sized. The classified object "A" is under-sized or smaller than the corresponding reference
object which leads to a negative difference of -0.29. In contrast, the classified object "B" is over-
sized or greater than the corresponding reference object. Thus, the resulting difference of 0.19 is
positive (see Fig. 2b and Tab. 4).
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further and coupled categories of thematic
coincidence levels with geometric overlap-
ping accuracy metrics in a so called “Object
Fate Analysis” (OFA) matrix which charac-
terizes the thematic and spatial agreement
between classified and reference objects.

3. The coupling of thematic and geometric
accuracy assessment affects the sampling
strategy of reference objects. In this study,
the sampling was restricted to the change
detection category “true positive”. The full
integration of geometric accuracy assess-
ment into a validation process of thematic
classifications would entail a higher sam-
pling effort. Thus, RADOUX et al. (2011) in-
troduced an object-based and statistically
sound sampling strategy which noticeably
reduces the sampling effort.
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