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Summary: Simplification of given polygons has
attracted many researchers. Especially, finding cir-
cular and elliptical structures in images is relevant
in many applications. Given pixel chains from edge
detection, this paper proposes a method to segment
them into straight line and ellipse segments. We pro-
pose an adaption of Douglas-Peucker’s polygon sim-
plification algorithm using circle segments instead
of straight line segments and partition the sequence
of points instead the sequence of edges. It is ro-
bust and decreases the complexity of given poly-
gons better than the original algorithm. In a second
step, we further simplify the poly-curve by merg-
ing neighbouring segments to straight line and el-
lipse segments. Merging is based on the evaluation of
variation of entropy for proposed geometric models,
which turns out as a combination of hypothesis test-
ing and model selection. We demonstrate the results
of circlePeucker as well as merging on several
images of scenes with significant circular structures
and compare them with the method of PATRAUCEAN
et al. (2012).

Zusammenfassung: ���������	
�� ��� ��������
��� �� ��	����� 
�� ����������������.��ie������-
tion runder und elliptischer Strukturen ist relevant
für viele Anwendungen. Die Reduktion der Kom-
plexität gegebener Polygone ist für sich ein inter-
essantes Forschungsthema. Diese Arbeit stellt ein
Verfahren zur Segmentierung von Pixelketten einer
Kantendetektion in Geraden- und Ellipsensegmente
vor. Der erste Schritt besteht in einer Adaption des
Douglas-Peucker Algorithmus, in der Kreise anstel-
le von Geraden zur Partitionierung verwendet wer-
den und die Punkt- statt der Kantensequenz parti-
tioniert wird. Das Verfahren ist robust und reduziert
die Komplexität der gegebenen Polygone stärker als
der originale Algorithmus. In einem zweiten Schritt
vereinfachen wir diese Vorsegmentierung durch das
Verschmelzen benachbarter Segmente zu Geraden-
und Ellipsensegmenten und stützen uns dabei auf
die Entropieänderung. Wir zeigen die Ergebnisse der
Vorsegmentierung als auch der folgenden Vereinfa-
chung anhand verschiedener Bilder von Szenen, die
signifikante kreisförmige Strukturen aufweisen und
vergleichen sie mit dem Algorithmus von PATRAU-
CEAN et al. (2012).

1 Introduction

Polygon simplification is interesting from sev-
eral points of view. First, in terms of compact
description of spatial data, e.g. in the context of
image description. Second, in terms of gener-
alisation, e.g. in the context of cartography or
resolution dependent visualization of polygons.

On the other hand finding circular and ellip-
tical structures in images is relevant in terms
of compact image description and further im-
age interpretation. Most image interpretation
systems which use bottom up image features,
thus not just pure pixel information, are based

on key point or edge detection. Directly identi-
fying circular and elliptical structure gives rise
to much more informative image features from
bottom up (CHIA et al. 2012, JURIE & SCHMID
2004).

In this paper we propose a two-step poly-
gon simplification algorithm that approximates
a given set of ordered points in 2D by a se-
quence of straight line and ellipse segments.
The poly-curves are intended to be at least C0,
thus positional continuous. Although the algo-
rithm is applicable to any kind of ordered 2D
points we assume pixel chains within images,
see Fig. 1. The first intuition behind our ap-
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Fig. 1: Finding line and ellipse sections. Left:
pixel chains. Middle: segmentation into circle
chains using circlePeucker. Right: aggre-
gation and classification into straight line and el-
lipse segments.�����: �lines.���	
��:��ircular�	nd
elliptical arcs.

proach is that arbitrary smooth curves can be lo-
cally characterised by an osculating circle. We
will use this in the first step of the algorithm
where we simplify the given set of points by a
sequence of circle segments.

But due to perspective distortions, in gen-
eral there will be almost no circles in images.
All circles in object space are projected to el-
lipses in image space, ellipses in object space
are projected to ellipses, anyway. Only in rare
cases, the image of 3D circles or 3D ellipses are
mapped to hyperbola, namely in case they par-
tially are behind the camera. The situation is
different if the circles are sitting in a set of par-
allel planes and the viewing direction intention-
ally has been taken orthogonal to these planes
or the image has been rectified to mimic this sit-
uation. Then almost no ellipses will occur in the
images, and the proposed method can directly
be transferred by replacing ellipses by circles.

Therefore, eventually the pixel chain is rep-
resented by a sequence of straight line and el-
lipse segments. This way we are more flexible
representing curved lines. Please note, that cir-
cles are part of the representation, as they are
just special ellipses.

The proposed method consists of two steps,
see Fig. 1. Given the pixel chains within the
image, we first iteratively segment the region
boundary into circular segments. This yields an
over-segmentation due to the non existence of
real circle segments. Second, we merge neigh-
bouring segments to straight line and ellipse
segments based on statistical reasoning, namely
hypothesis testing and model selection. This
step optimally estimates lines and ellipses in a
least squares sequence.

One might argue, why not directly segment
a pixel chain into ellipses, but first look for cir-
cle segments, and then group them to ellipses.

There are two main reasons for the two-step
procedure:

1.) The slope, curvature or curvature change
functions of the ellipse are no simple functions,
which allow to identify elliptical segments, as
this is the case for straight lines (constant slope)
and circles (constant curvature), 2.) there is
no simple local measure telling whether a local
segment belongs to an ellipse or not: Analysing
the curvature, distinguishes circles and straight
lines. One would need the second derivatives of
the curvature to capture the properties of a local
ellipse element, as an ellipse has two more de-
grees of freedom, than a circle. But determining
fourth derivatives is very unstable.

There are two main contributions of this pa-
per. First, for region boundary segmentation we
propose an adaption to Douglas-Peucker’s al-
gorithm (DOUGLAS & PEUCKER 1973) which
is based on circles as basic geometric elements
and partitions the sequence of points instead
of the sequence of edges. Second, we adapt
the idea of variation of entropy by BEDER
(2005) and statistically optimal merge neigh-
boured segments while optimally fitting lines
and ellipses. The whole process depends on
two parameters, namely the precision of the
edge extraction and the expected accuracy of
the straight line and ellipse segments. The first
one is an internal precision which guides the
edge extraction, the second one is what the user
defines to be and might guide the degree of gen-
eralization. Both can be estimated from training
data.

Therefore, setting these parameters once is
sufficient: The process works stable for all of
our experiments using the same parameter set.

Related�or�

To our knowledge there is no work about an
adaption of Douglas-Peucker’s algorithm to the
use of circles instead of lines as basic elements.
However, proposals exists to simplify polygons
by sets of circular arcs for the efficient stor-
age of polylines. GÜNTHER & WONG (1990)
proposed the so called Arc Tree which repre-
sents arbitrary curved shapes in a hierarchical
data structure with small curved segments at the
leaves of a balanced binary tree. MOORE et al.
(2003) proposed a method for polygon simpli-
fication using circles. They aim on closed poly-
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gons given by a set of 2D points. Based on me-
dial axis from Voronoi polygons they propose
a population of circles which they afterwards
filter to get a set of circles which best approx-
imate the given polygon. The final represen-
tation of the polygon consists of circles repre-
sented by centre and radius and tangents which
link neighbouring circles. No work on using
ellipses for improving storage requirements are
known to us.

Finding ellipses in images has attracted
many researchers. Some of them use Hough-
transform methods which tend to be slow.
Most techniques start from pixel chains. Early
works focussed on ellipse fitting, e.g. PAVLIDIS
(1983) and PORRILL (1990), later focussed
on unbiased estimates, e.g. WU (2008) and
LIBUDA et al. (2006). We are interested in the
more general problem of describing the pixel
chains by sequences of line and ellipse seg-
ments, a problem already addressed in AL-
BANO (1974), however, neither enforcing el-
lipses, nor looking for a best estimate for el-
lipses. WEST & ROSIN (1992) and ROSIN &
WEST (1995) performed a segmentation of se-
quences into lines and ellipses in a multistage
process. They first segment a 2D-curve into
straight lines. Afterwards sequences of line
segments are segmented into arcs restricted
to their endpoints. One might interpret this
step as merging sequences of lines to ellipti-
cal arcs. Model selection is done implicitly
by evaluating a significance measure to each
proposed segment, which is based on its ge-
ometry, purely. However, their criteria are
non-statistical, thus cannot easily be adapted
to varying noise situations. JI & HARALICK
(1999) criticised this and proposed a statisti-
cally valid criterium. Starting from Rosin’s out-
put of arc segmentation they merge pairs of
arcs belonging to the same ellipse. Moreover
they also group non-adjacent arcs and exploit
the sign of the arcs for grouping. Proposals
for merging are validated via hypothesis test-
ing. They showed only few results on compa-
rably easy images. NGUYEN & KERAUTRET
(2011) also addressed the segmentation of pixel
chains into lines and ellipses. It is based on a
discrete representation of tangents, circles, and
an algebraic fitting through neighbouring arcs
only using some key points (boundary and mid-

point, instead of the complete pixel chain. Re-
cently PATRAUCEAN et al. (2012) proposed a
parameterless line segment and elliptical arc de-
tector. They use an ellipse fitting algorithm
which uses both, the algebraic distance of the
conic equation and deviation from the gradient
direction. Their model selection aims at avoid-
ing false negatives, by controlling the num-
ber of false positives. Realizing the principle
of ”non-accidentalness” their method adapts to
noise, which explains their visually appealing
results. Their validation and model selection
criteria, however, are based on fixed tolerance
bands. Also they do not enforce any continuity
between neighbouring segments.

Our scope is to segment pixel chains into
straight line and ellipse segments, exploiting the
knowledge about their statistical properties both
w.r.t. detectability as well as w.r.t. accuracy.

Notation

Geometric elements are named with calli-
graphic letters, e.g. x is the name of a point,
whereas x is its Cartesian representation. Ho-
mogeneous vectors and matrices are denoted
with upright bold letters, e.g. x and C.

The rest of the paper is organized as fol-
lows. First, we describe the segmentation of re-
gion boundaries into circle elements based on
the idea of Douglas-Peucker’s algorithm. The
merging procedure to obtain line and ellipse
segments is explained in������
� 3. This sec-
tion also gives details about model selection
by variation of entropy and by the principle
of minimum description length. Finally, sec-
tion 4 presents results on synthetic and real data
and compares them with the method of PA-
TRAUCEAN et al. (2012).

2 Region Boundary Segmentation

Given a set of ordered points in 2D we
aim at a partitioning into groups joining a
common geometric element, specifically cir-
cular segments. We use the feature extrac-
tion procedure as described in FÖRSTNER
(1994) and FUCHS & FÖRSTNER (1995). It
includes an automatic noise estimation and
an edge preserving filter as described in
FÖRSTNER (2000). In contrast to many
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other procedures it delivers region boundaries
as well as thin lines in the form of chains of
points with sub-pixel coordinates. For finding
fine details, we use 0.7 pixel for the differen-
tiation and 1.0 pixel for the integration scale.
No blow up of the images is performed, as pro-
posed by KÖTHE (2003) for fully exploiting the
resolution.

2.1 Algorithm

Our concept of region boundary segmentation is
based on the well known Douglas-Peucker al-
gorithm (DOUGLAS & PEUCKER 1973). This
algorithm is designed to simplify polygons.
Therefore, it recursively splits the sequence
of polygon edges into larger edges, until the
distance of an eliminated point to the corre-
sponding edge is below a threshold t. Thus
neighbouring edges share a common point. In
contrast, we want to recursively split the se-
quence of points X = {xi} until each sub-
sequence can be approximated by a circular arc
well enough. Thus neighbouring sequences are
meant not to share a common point.

We realize this by first determining the mid
points x′

i = 1
2 (xi + xi+1) , i = 1, ..., I − 1 ,

leading to a sequence X ′ = {x′
i}, which is a

factor 2 smoother in variance than the original.
Each edge in the sequence X ′ corresponds to
a point xi in the original sequence, except for
the start and the end point. We now recursively
partition the sequence of edges of X ′ into seg-
ments, which approximate the points x′

i by a
circular arc up to a pre-specified tolerance t. A
segment is split at that point x′

i where the dis-
tance to the circular arc is maximum. In order
to enforce continuity, we fix the start and end
point of the segments and determine the best fit-
ting arc, see below.

The algorithm for approximating a
polyline by a sequence of circles, called
circlePeucker, is given in Alg. 1. It uses
(1) function fitArc(X ) for fitting a circular
arc segment S to a given set of points X
constraining it to the start and end point, and
(2) a function distXS(X , S ) for determining
the index ib and the distance dmax of the point
with the largest distance of the points X to
an arc segment S . The algorithms recursively
splits the chain until the largest distance of
a point to the corresponding arc is below a

In: Ordered set of points X = {x1 . . . xI},
tolerance t

Out: List of segments O
1 if I = 2 then O = {1, I}, return;
2 S = fitArc(X );
3 (dmax, ib) = distXS(X , S );
4 if dmax > t then
5 partition at ib:

X1 = {x1 . . . xib},
X2 = {xib . . . xend};

6 O1 = circlePeucker(X1, t);
7 O2 = circlePeucker(X2, t);
8 O = O1 ∪ O2;
9 end
10 return

circlePeucker

pre-set threshold t. As result we get a list O of
N circle segments, each segment represented
as a list of indices {i′n}, n = 1, ...,N . Thus� we
call O′=circlePeucker(X ′ , t). The edges
(i′, i′ + 1) of the segments in O′ correspond
to the sought points xi, except for the start
and the end point, which are added to the first
and the last segment. This yields the required
partitioning O of the original point sequence.

2.2 Fitting Circle Segments

The algorithm fitArc(X ), needed in Alg. 1
line 2, constrains the circle to the starting
and the endpoint of the current polygon seg-
ment. Additionally, we determine the distances
d = [di] of the involved points xi to the arc
segment between x1 and xI of S , not to the
whole circle. Thus, the distance of a point to
a segment is the minimum of the distance to the
footpoint on the segment or the distance to the
start or endpoint.

A circle usually has three degrees of free-
dom, but by restricting the arc to two points
there is just one degree of freedom left. We
parametrize the arc segment by its height h and
solve the following optimization problem

ĥ = argminh (‖d(X , S(xs,xe, h))‖L) . (1)

For a robust estimate we choose the L1-norm
(L = 1), thus we optimize h such that the sum

 
Algorithm 1:����
����
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of absolute distances of all points to the arc seg-
ment is minimized.

3 Merging

Given the pre-segmentation O of���ec��
� 2
which is assumed to be over-segmented, we
aim at a simplification by merging neighbour-
ing segments which share the same model.

The pre-segmentation is based on circles, but
in general there are almost no circles in natu-
ral images as they suffer from perspective dis-
tortions. Thus, our final segmentation is meant
to consist of segments of straight lines and el-
lipses. From the pre-segmentation we just take
the information about which points belong to
one segment and ignore the parameters of the
fitted circles.

The final representation is achieved by fit-
ting straight lines and ellipses through neigh-
boured segments and single segments using all
points belonging to them. This is different from
ROSIN & WEST (1995) who only use the end-
points from the pre-segmentation.

3.1 Fitting Ellipses

We perform maximum-likelihood estimations
for fitting lines and ellipses, respectively, to the
data. For line fitting we refer to standard litera-
ture, e.g. MCGLONE (2004).

Fitting ellipses is not trivial. We have to
make sure an arc segment to be an ellipse and
not a parabola or hyperbola.

We represent conics with the symmetric

3× 3-matrix C =

[
Chh ch0
cT0h c00

]
using ho-

mogeneous coordinates x for the points on the
conic xTCx = 0. To ensure the conic to be an
ellipse the homogeneous part of the conic must
fulfil |Chh| > 0. Therefore, we use Fitzgib-
bon’s constraint (FITZGIBBON et al. 1999)
which is equivalent to

|Chh| = 1 . (2)

This is a valid choice, as the conic representa-
tion is homogeneous. We end up with a maxi-
mum likelihood estimation following a Gauss-
Helmert model with the constraint (2). Param-
eters are initialized using the direct method of
Fitzgibbon (FITZGIBBON et al. 1999).

As a result we not only obtain the ellipse pa-
rameters but also the estimated variance σ2 of
the data and covariance matrix Σ of the param-
eters, which we use for the subsequent tests.

3.2 Merging Segments Based on
Variation of Entropy

Deciding whether two neighbouring segments
belong to the same model may be based on a
statistical hypothesis test. As hypothesis tests
aim at rejecting the null hypothesis, they can
be used as sieve for keeping false hypothesis:
Therefore, we use hypothesis testing for reli-
ably identifying breakpoints between segments
��� belonging to the same model, by testing
the null-hypothesis that they belong to the same
segment.

Deciding which model fits the data best, i.e.
whether a curved line is best approximated by
a line or an ellipse, is a typical model selection
problem and may be solved by the principle of
minimal description length (MDL). This may
be directly applied to isolated segments.

Merging segments based on hypothesis test-
ing lacks on the risk of accepting large changes
in geometry, in case the parameters of the pro-
posed model are very uncertain. Therefore,
we follow the idea of variation of entropy by
BEDER (2005). He derives an information
theoretical measure for the increase of uncer-
tainty of a model due to adding new observa-
tions. This is equivalent to the change of en-
tropy of the probability density function of the
model’s parameters. Following BEDER (2005),
the change of entropy can be split into two parts.
One depends on the increase of randomness due
to new observations and is related to hypothe-
sis testing. The other depends on the change of
geometric uncertainty due to new data, respec-
tively.

The differential entropy of a proba-
bility density function p(x) is given by
h(p) = −

∫
p(x) log p(x)dx. It reflects the

randomness of a stochastic variable x. In
case of a D-dimensional normally distributed
random variable x ∼ N (μ,Σ) the entropy is
given by COVER & THOMAS1991)

h(p) = 0.5 log
[
(2πe)D |Σ|

]
. (3)

Now, assume a segmentation O of points
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X = {X1 ∪ . . . ∪ XN} into N segments. Fur-
ther assume, we already found a model Mn fit-
ting the points Xn of segment n, e.g. a line
Mn = ln. Now� we propose the points Xn+1 of
the neighbouring segment to belong to model
Mn, too. Without loss of generality we might
argue on the neighbouring segments n = 1 and
n + 1 = 2. Now, let the parameters of pro-
posed model M1 be θ1 ∼ N (μ̂1,Σ1), with
the empirical covariance matrix Σ1 = σ̂2

1Σ1 of
the parameters, depending on the theoretical co-
variance matrix Σ1 and the estimated variance
factor σ̂2

1 = Ω1/R1, derived from the weighted
sum Ω1 of the squared residuals and the redun-
dancy R1 of the estimation process.

When adding new observations Xn+1 we es-
timate θ2 ∼ N (μ̂2,Σ2) from Xn,n+1 =
{Xn ∪ Xn+1} and obtain σ̂2

2 and the theoreti-
cal covariance matrix Σ2.

To validate the agreement of such two groups
of observations concerning one of the two mod-
els M1 and M2 we analyse the change of en-
tropy caused by adding new observations:

ΔhM = h(N (μ̂2, Σ̂2))−h(N (μ̂1, Σ̂1)) (4)

The parameters of a model M typically are
given by adjustment theory. Thus, we know the
variance factor σ̂2 and the empirical covariance
matrix Σ̂ = σ̂2Σ. Using (3) we get

ΔhM = 0.5 log
(
σ̂2
2/σ̂

2
1

)
︸ ︷︷ ︸

Δh0

+0.5 log(|Σ2|/|Σ1|)︸ ︷︷ ︸
−Δhg

(5)
The first term Δh0 is closely related to the
Fisher test statistic

σ̂2
2/σ̂

2
1 ∼ F(ΔR,R1) (6)

with redundancy R1 and ΔR = R2 − R1,
which is used to test whether the second set of
observations fits the model estimated by the first
set. It reflects the increase of randomness due
to including new observations. The term Δhg

reflects the increase in randomness due to the
geometric change of the model.

Therefore, we argue in the sense of hy-
pothesis testing. Given a threshold TS =
F ��(S,ΔR,R1) with significance level S by the
inverse of Fisher distribution, there is no sta-
tistical reason to reject the hypothesis that both

sets of observations fit the model if

Δh0 < 0.5 log TS (7)

which means that both sets of observations fit
the model due to uncertainty in estimated pa-
rameters.

To bound the risk of large changes in geome-
try we further bound the increase of entropy by
Δhg. BEDER (2005) found this bound to be at
the same order of magnitude as the increase of
Δh0. We use Tg = T0+

1
2 logTS with a model

dependent additional constant T0 which we em-
pirically found to be equal to the number of pa-
rameters of the current model, e.g. T0 = 2 in
case of lines or T0 = 5 in case of ellipses. This
compensates for a decrease in condition num-
ber of the covariance matrix caused by merging,
therefore increasing with the number of param-
eters.

In case R1 = 0 we cannot use an estimated
variance factor σ̂2

1 , but use the theoretical value
σ2
1 instead. Thus, (5) degenerates to

ΔhM = 0.5 log
(
σ̂2
2/σ

2
1

)
+0.5 log(|Σ2|/|Σ1|).

(8)
Now� the ratio σ̂2

2/σ
2
1 ∼ χ2

R2
and we derive the

threshold TS from the inverse of χ2distribution.
Please note, that the proposed approach is

asymmetric in evaluation of Xn,n+1 and Xn+1,n.
The���s�mme����������
����������������	����
checking whether the smaller of two neighbour-
ing segments can be merged with the larger one,
thus the larger segment is taken to be M *

1 .

3.3 Model Selection

We have seen how to use the variation of en-
tropy to merge neighbouring segments to lines
or ellipses, respectively. But the entropy crite-
rion may not favour one of these two models.
Then we select the one with smallest descrip-
tion length. This happens in case of long seg-
ments having very small curvature. Here the
segments may be approximated either by a long
line or by an ellipse segment having small cur-
vature.

We evaluate the description length for
merged models from their residuals. We
use the modified Akaike criterion (AKAIKE
1974) MDLAIC = −2 log p(l|θ̂) + 2U using

��

 ��  �

 �

 ��

 ���
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a1 e1 i1 a2 e2 i2

b1 f1 k1 b2 f2 k2

c1 g1 l1 c2 g2 l2

d1 h1 m1 d2 h2 m2

Fig. 2: Comparison to ELSD under different noise conditions (Best viewed in colour). a∗: given
image. b∗ - d∗: σn = 10, 20,40 grayvalues. e∗ - h∗: our final results.�������������������������������������������!"��#�$�������%���	��	������������������	��	�����'���
����
���

the log-likelihood function of data l and esti-
mated parameters θ̂ and the number of parame-
ters U . In case of normally distributed observa-
tions the log-likelihood function is equal to the
sum of weighted squared residuals and we get

MDLAIC = Ω2 + 2U. (9)

Now, after having collected all criteria,
we start the simplification of the given pre-
segmentation. This is done in a greedy man-
ner where we try to simplify the polygon while
considering given pixel chains and while keep-
ing the change of geometry slow.

3.4 Algorithm

For each segment o ∈ O we initialize lines
ln and ellipses Cn, if possible, i.e. we es-
timate model parameters {θ1}n, covariances
{Σ1}n and residuals {v}n. Let us call them
models M l

n and M C
n , respectively. For all

neighbouring elements we propose merging,
i.e. estimate parameters {θ2}n,n+1, covari-
ances {Σ2}n,n+1 and residuals {v}n,n+1 of all

potentially merged models. Let us call them
models M l

n,n+1 and M C
n,n+1, respectively. For

these models M *
n and M *

n,n+1 we evaluate
TS = F ��(S,ΔR,R1), Δh0 and Δhg using (5)
or (8). To simplify notation, we avoid the index
(n,n+1) in the following. If Δh0 < 1

2 log TS

and Δhg < T0+
1
2 logTS we add the proposed

model to the set of merging proposals P .
We require the geometrical change to be as

small as possible when merging two segments.
Therefore� we may choose the model M from
P with smallest Δhg. But note that we can not
compare changes in entropy between line and
ellipses. These are different models of different
complexity, thus we are not allowed to pick the
model with smallest Δhg from the whole set P .
In a greedy process we start with lines, i.e. first
merging all lines, which fulfil the requirements
and afterwards merging all ellipses. More pre-
cisely, we pick these proposed merged line l ∗

from segments on and on+1 with smallest Δhg.
If merging these two segments to an ellipse is
a valid choice, too, we choose the line model if
MDL(l ∗) < MDL(C ∗).

 n

 �

 �

 ��
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After merging two segments, we update Δh
for all affected segments and again pick the
best proposal concerning Δhg . If there are no
line proposals left we continue with ellipses the
same way, except from evaluating MDL.

All segments left, e.g. those segments that
could not merge, are tested whether their curva-
ture is significantly different from 0. If so, they
become an ellipse, if not they become a line. To
be precise, we perform variance propagation on
the curvature and perform hypothesis tests on
the 95% significance level.

4 Results

This section presents some results. We give de-
tails about parameters, show the resulting seg-
ments and discuss the success of the merging
step by means of some statistics. We compare
our results to those from ELSD (elliptical line
segment detector) (PATRAUCEAN et al. 2012)
as this is state of the art and there exists code
as well as an online demo t
 process�
wn����
��es������������ed ��arameters.

Parameter��etting

There are just a few parameters to choose and
these are well understandable and stable for all
tested images.

From experiments we found the standard de-
viation of edge pixels σe = 0.1 [pixel]. For this
we set the tolerance t for the pre-segmentation
using circlePeucker to t = 3 · σe. Due
to compression artefacts and image distortions,
lines in images often are not that smooth and
we set the variance for grouping a factor three
larger than σe. Thus, for fitting and merging
lines and ellipses, the uncertainty of each pixel
is assumed to be isotropic Σpp = (3 · σe)

2I2.
The significance level for the Fischer-test-

statistic in (7) is set to S = 0.95. The additive
constant for evaluating the bound of Δhg in (5)
is set to the number of parameters of the current
model, T0 = U .

As our purpose is the segmentation of given
pixel chains and not the interpretation of the im-
age the identification of spurious scatter is out
of scope. Our algorithm works stable even for
very small chains. Nevertheless, to simplify the
visualization we do not show short pixel chains,
say shorter than 10 or 20 [pixels], depending on
the structure of the image.

Synthetic�$ata

First we investigate the noise sensitivity of the
procedure using synthetic images, see Fig. 2.
When changing the noise σn of an image from
σn(0) to σn(k) the standard deviation�
������
��xels by σe(σn(k)) =

����������� where we assumed the noise of the
����� to be σn(0) = 2 [gr]. The parameters

��edge detection are not changed.

Please note that the proposed algorithm
works quite stable up to a certain degree of
noise. As long as the contrast is high, geometric
elements are reliable and accurate detected.

Douglas-Peucker vs. circlePeucker

Next we show the effect of the circle-version
of the Peucker-Algorithm. We compare the
results of circlePeucker to the original
Douglas-Peucker algorithm when used as pre-
segmentation for the final merging step. The
results are given in Fig. 3 and Tab. 1.

Fig. 3 shows the results for two natural im-
ages when using the classical Douglas-Peucker
algorithm and the new circlePeucker, re-
spectively, as pre-segmentation for the final
merging step as described in��ec��
� 3. We see
that both algorithms perfectly approximate the
given data. This is due to the tight threshold for
the maximum distance to a fitted geometric el-
ement which is the same in both cases. But we
realize, just by visual inspection, that our new
segmentation reduces the number of segments
significantly. For a quantitative evaluation of
this reduction, we count the total number of seg-
ments for each processed image when using the
original Douglas-Peucker and our new segmen-
tation, respectively. Tab. 1 gives these numbers
for each processed image together with the total
number of evaluated pixel chains and the final
number of segments after the merging step. We
see that the new circle-based pre-segmentation
reduces the number of segments by almost 50 %
compared to the line-based Douglas-Peucker al-
gorithm. The merging step further reduces the
number of segments by about 25 %.

We show some of the advantages of
pre-segmentation using circlePeucker by
some details. E.g. the capital O of the STOP-
sign actually consist� of four arcs instead of

√
1 +

σ2
n
(k)

σ2
n
(0) · σe(0)
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a1 b1 c1

d1 e1 f1

a2 b2 c2

d2 e2 f2

Fig. 3: Pre-segmentation circlePeucker vs. Douglas-Peucker (Best viewed in colour). a∗: Given
images as used in *+/#+4��+7 et al. (2012). b∗: Pre-Segmentation using Douglas-Peucker.
c∗: Pre-Segmentation using circlePeucker. e∗ and f∗: Final segmentation using b∗ and c∗,
respectively. d∗ results by ELSD. Colours, see Figs. 1 and 2.

Tab. 1: Statistics of simplification. The number of objects in the first column refers to the number
of evaluated pixel chains per image. The second column gives the number of line segments using
the classical Douglas-Peucker (DP) algorithm. The third column gives the number of circle segments
using circlePeucker (new). Fourth and fifth column give the number of segment���or��:����
	�
��gmentation��esults.

No. segments
No. pre-segmentation final

objects DP new DP new

worm (Fig��!) 187 1961 834 839 613
stop (Fig��!) 159 1233 560 608 458
window (Fig��") 331 2226 868 941 726
icosahedron (Fig��") ����1071�������#991��������$177���������%517������!235
arcade (Fig��%) ����844�������"908���������&563���������%675������&242
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Fig. 4: More results on real images (Best viewed
in colour). Arcade. From top to bottom: given im-
age, our final result using circlePeucker for
pre-segmentation, result of ELSD. Colours, see
Figs. 1 and 2.

one ellipse. When using circlePeucker
we get this result exactly. While using
Douglas-Peucker tends to approximate arcs by
lines, obviously. The main reason for this
is the identification of break points candidates
when evaluating the pre-segmentation. Obvi-
ously, circlePeucker identifies points of
changing curvature more likely than Douglas-
Peucker. The same effect can be observed for
the boundary lines around the worm.

Comparison to ELSD

We give two more results on natural images in
Figs. 4 and 5 and compare our results to those

from from ELSD (PATRAUCEAN et al. 2012)
in Figs. 2 to 5. Let us take the worm of the
book cover shown in Fig. 3. ELSD resolves
nearby edges, e.g. the black boundaries of the
worm. The pre-processing of our method iden-
tifies these as (dark) lines, which are then sim-
plified. The slightly curved boundaries of the
letters W or B are straightened by ELSD, while
better resolved by our method. ELSD simpli-
fies too much, e.g. the ellipse of O in the
STOP-sign. While ELSD detects the lines inde-
pendently, our method segments the edge pixel
chains, therefore at sharp corners occasionally
an additional short segment is preserved, e.g.
the rectangles within Fig. 2.

To summarize we see, the pre-segmentation
using circlePeucker correctly identifies
arc segments and especially their breakpoints.
By itself these are promising results and im-
prove the standard algorithm in terms of reduc-
ing the number of breakpoints of a given poly-
gon while preserving the geometry.

The merging step identifies elliptical arcs
correctly and further reduces the number of seg-
ments of most given pixel chains. Lines are
identified in most cases, if not this might be due
to distortions, especially for long lines.

5 Conclusion

We presented a line simplification approach
which approximates given pixel chains by a se-
quence of lines and elliptical arcs. For this we
proposed an adaption to Douglas-Peucker’s al-
gorithm for the use of circles instead of straight
lines. Furthermore, we developed an approach
for the simplification of such a segmentation
by merging neighbouring segments due to their
agreement to a joint geometric model in terms
of bounded variation of entropy. The approach
depends on just a few parameters which are
clearly explained by a priori knowledge about
edge detection accuracy. Depending on the as-
sumed edge accuracy we showed very accurate
results. We showed the effects of polyline seg-
mentation and simplification on several images
with comparable good results referring to an
state of the art algorithm. We proved the suc-
cess of merging in terms of the reduction rate
of number of segments per object. We believe
that the final segmentation gives rise to useful
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Fig. 5: More results on real images (Best viewed in colour). Left: Gothic window. Right: cropped
icosahedron. From top to bottom: given image, our final result using circlePeucker for pre-
segmentation, result of ELSD. Colours, see Figs. 1 and 2.
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high level image features as input for an image
interpretation system.
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