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Summary: Floodplain ecosystems offer valuable
carbon sequestration potential. In comparison to
other terrestrial ecosystems, riparian forests have a
considerably higher storage capacity for organic
carbon (Corg). However, a scientific foundation for
the creation of large-scale maps that show the spa-
tial distribution of Corg is still lacking. In this paper
we explore a machine learning approach using re-
mote sensing and additional geographic data for an
area-wide high-resolution estimation of Corg stock
distribution and evaluate the relevance of individu-
al geofactors. The research area is the Danube
Floodplain National Park in Austria, one of the
very few pristine riparian habitats left in Central
Europe. Two satellite images (Ikonos and Rapid-
Eye), historical and current topographic maps, a
digital elevation model (DEM), and mean ground-
water level (MGW) were included. We compared
classifications of Corg stocks in vegetation, soils,
and total biomass based on two, three, four, and five
classes. The results showed that a spatial model of
Corg in riparian forests can be generated by using a
combination of object-based image analysis (OBIA)
and classification and regression trees (CART) al-
gorithm. The complexity of floodplains, where pat-
terns of Corg distribution are inherently difficult to
define, clearly exacerbated the challenge of achiev-
ing high classification accuracy. In assessing the
relevance of individual geofactors, we found that
remote sensing parameters are more important for
the classification of Corg in vegetation, whereas pa-
rameters from auxiliary geodata, e.g. elevation or
historical riverbeds, have more influence for the
classification of soil Corg stocks. This was also con-
firmed by a comparative linear multiple regression
analysis.

Zusammenfassung: Schätzung und Kartierung
von Kohlenstoffvorräten in Auwäldern mithilfe ei-
nes Ansatzes des maschinellen Lernens und ver-
schiedenartigen Geodaten. Auenökosysteme haben
ein hohes Speicherpotenzial für organischen Koh-
lenstoff (Corg), auch im Vergleich zu anderen terres-
trischen Ökosystemen. Allerdings fehlt eine wis-
senschaftliche Grundlage für die Schaffung von
großmaßstäbigen Karten, die die räumliche Vertei-
lung des Corg zeigen. In diesem Beitrag untersuchen
wir einen Ansatz des maschinellen Lernens mittels
Fernerkundungs- und zusätzlichen geografischen
Daten für eine flächendeckende hochauflösende
Abschätzung der Corg-Verteilung und bewerten die
Relevanz der einzelnen Geofaktoren. Das Untersu-
chungsgebiet ist der Nationalpark Donau-Auen in
Österreich, eines der wenigen unberührten Auen-
habitate in Mitteleuropa. Zwei Satellitenbilder
(Ikonos und RapidEye), historische und aktuelle
topografische Karten, das digitale Geländemodell
und Grundwasserdaten wurden einbezogen. Wir
verglichen die Klassifizierung des Corg-Gehalts in
Vegetation, Boden und Gesamtbiomasse in zwei,
drei, vier und fünf Klassen. Die Ergebnisse zeigen
ein räumliches Modell der Corg-Verteilung in Au-
wäldern mit der Kombination einer objektbasierten
Bildanalyse (OBIA) und einem CART (Klassifika-
tions- und Regressionsbaum) -Algorithmus. Die
Komplexität der Auen, in denen Muster von Corg-
Verteilung von Natur aus schwer zu definieren
sind, erschwerte es, eine hohe Klassifizierungs-
genauigkeit zu erzielen. Bei der Beurteilung der
Relevanz einzelner Geofaktoren zeigte sich, dass
die Fernerkundungsparameter wichtig für die
Klassifizierung von Corg in der Vegetation sind,
während die Höhe oder die Lage des historischen
Flussbetts mehr Einfluss auf die Klassifizierung
des Corg-Gehalts im Boden haben. Dies wurde auch
durch eine vergleichende lineare multiple Regres-
sion bestätigt.
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image analysis (OBIA) (KOLLÁR et al. 2011,
ROKITNICKI-WOJCIK et al. 2011, WAGNER 2009)
have been used for mapping of wetland habi-
tats. However, these studies related to the dif-
ferentiation of vegetation classes and did not
focus on the assessment of biomass or Corg.
In addition, various remote sensing anal-

yses of Corg stocks have been done for non-
floodplain habitats, but most of these stud-
ies have focused either on Corg stocks in soil
(BEHRENS & SCHOLTEN 2006, MCBRATNEY et
al. 2003) or in vegetation (AWAYA et al. 2004,
HILKER et al. 2008, OLOFSSON et al. 2008). So
far, no studies on the estimation of total Corg
stocks in riparian forests have been done. And
despite advances in remote sensing and geo-
data analysis, these techniques have not yet
been applied to the analysis and estimation of
area-wide Corg stocks in floodplains.
GOETZ et al. (2009) distinguished three ap-

proaches for using remote sensing data to
map carbon stocks. In the simplest method,
the stratify and multiply (SM) approach, e.g.
as used by MAYAUX et al. (2004) or SUCHEN-
WIRTH et al. (2012), a single value or a range of
values is assigned to each class of land cover,
vegetation type, or other site characteristic.
This approach is limited due to the range of
biomass within any given thematic class and
the ambiguities concerning the identification
of given types. The second approach, combine
and assign (CA), extends the SM approach to
a wider range of spatial data to improve clas-
sifications (GIBBS et al. 2007). It has the advan-
tage of using finer spatial units of aggregation
and weighted data layers, but is limited due
to the moot representativeness of class values
and difficulties in acquiring consistent infor-
mation as the study area size increases. The
third approach, direct remote sensing (DR),
uses machine learning techniques and extends
satellite measurements directly to maps, i.e.,
a classification algorithm is trained to devel-
op an optimized set of rules through iterative
repeated data analysis (BREIMAN 2001) for the
estimation of biomass and carbon (BACCINI
et al. 2012). This approach results in contin-
uous values for biomass based on easily un-
derstandable rules, such as those described for
the Amazon basin (SAATCHI et al. 2007), Rus-
sian forests (HOUGHTON et al. 2007), or the Af-
rican continent (WILLIAMS et al. 2007).

1 Introduction

Floodplain ecosystems offer valuable carbon
sequestration potential. Riparian forests have
a considerably higher storage capacity for or-
ganic carbon (Corg) than other terrestrial eco-
systems (CIERJACKS et al. 2010, HOFFMANN et
al. 2009, MITRA et al. 2005). Among the dif-
ferent floodplain compartments, it is essential
to pay special attention to riparian forest veg-
etation, but also to soils, which often dominate
Corg pools (BARITZ et al. 2010, HARRISON et al.
1995, HOFMANN & ANDERS 1996, KOOCH et al.
2012, LAL 2005).
Despite the importance of floodplains for

carbon sequestration, a scientific foundation
for creating large-scale maps showing the spa-
tial distribution of Corg is still lacking. Car-
bon distribution can be mapped at a global or
national level, but regional validation is usu-
ally not available (GIBBS et al. 2007, GROOM-
BRIDGE & JENKINS 2002, UNEP-WCMC 2008).
In particular, there are no maps showing the
actual allocation of the Corg storage within ri-
parian soils and vegetation at the local or re-
gional level. Various studies have focussed on
Corg stocks in ecosystems, such as in alder fens
(BUSSE & GUNKEL 2002), coastal plain flood-
plains (GIESE et al. 2000), boreal lakes in On-
tario (HAZLETT et al. 2005) or timber planta-
tions in Scandinavia (BACKÉUS et al. 2005, CAO
et al. 2010). In tropical and subtropical wet-
lands there has been research on mangroves
and shrimp farms in Thailand (MATSUI et al.
2009), seasonal sequestration in the Okavango
delta (MITSCH et al. 2010) and Panama (GRIMM
et al. 2008). CIERJACKS et al. (2011) provided
statistical models on the spatial distribution of
Corg stocks in Danubian floodplain vegetation
and soils. RHEINHARDT et al. (2012) used indi-
cators based on the distance to river for bio-
mass estimations in a river system in North
Carolina. However, these studies rely on data
collected by cost-intensive field surveys. For
improving the estimation of Corg, including
larger or less accessible wetland and riparian
areas, combined methods of remote sensing,
geographic information systems (GIS) and
machine learning are promising techniques.
A wide range of remote sensing methods

(FARID et al. 2008, MUNYATI 2000, OZESMI &
BAUER 2002) and in particular object-based
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2 Materials and Methods

2.1 Research Area

The research area has a size of 11.3 km2 and
is situated within the Danube Floodplain Na-
tional Park (Nationalpark Donau-Auen) in
Austria (16.66° E, 48.14° N). The national
park is located between the Austrian capital
Vienna and the Slovak capital Bratislava and
stretches along the river Danube for about
36 km (Fig. 1). The river has an average width
of about 350 m, and the banks are generally
fixed by riprap. Only a few human impacts on
the area happened apart from the construction
of the Hubertusdamm dike in the 19th centu-
ry to protect areas on the northern riverbank
from inundation. In the 1960s, natural forest
structures were altered by widespread plant-
ing of hybrid poplars (Populus x canaden-
sis), especially on the southern riverbank. In
1996, the area was declared a national park,
and thus commercial enterprises were banned
within its precincts. Despite of the mentioned
human interventions, the area remains one of
the last large pristine riparian habitats in Cen-
tral Europe and has been recognized by the In-
ternational Union for Conservation of Nature
(IUCN) as a Riverine Wetlands National Park,
Category II.
The national park’s environmental features

include the secondary streams (the Danube
river itself is an international waterway), side
channels and oxbow lakes, gravel banks, ri-
parian forests and meadows, reed beds and
xeric habitats. Within the forests, we can dif-

SUCHENWIRTH et al. (2012) used remote sens-
ing data and a digital elevation model to map
carbon densities in a floodplain. They used an
OBIA approach to classify vegetation types.
The total carbon storage of soils and vegeta-
tion was quantified using a Monte-Carlo sim-
ulation for all classified vegetation types, and
spatial distribution was mapped.
We want to improve this method by in-

cluding additional data and using a machine
learning technique. Due to the complexity
of the spatial distribution of Corg in the Dan-
ube floodplains (CIERJACKS et al. 2010, 2011,
SUCHENWIRTH et al. 2012), and the amount,
variety, and variable consistency of avail-
able data, our goal is to establish a machine
learning approach for an area-wide modeling
of Corg stocks. To include remote sensing data
and several additional geodata, we chose a
classification and regression tree (CART) ap-
proach (BREIMAN et al. 1984, LOH 2011).
The specific aims of this paper are as fol-

lows:
(1) to evaluate a machine learning algo-

rithm (CART) for estimating and mapping Corg
stocks in vegetation (Corg_veg), soil (Corg_soil) and
total biomass (vegetation, soil and deadwood;
Corg_tot) in riparian forests based on classifica-
tion accuracies, and (2) to rank the parameters
in terms of their ability to predict Corg.

Fig. 1: Research Area, green: Danube Floodplain National Park, red cross: locations of the ter-
restrial sample points training data, blue dot: test data. The red line represents the Hubertusdamm
dike. The grey box represents the outline of the subsets in Fig. 2.
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the height above ground has been included in
the knowledge-base. The following vegeta-
tion types were determined by OBIA from
the Ikonos image and the DEM: meadow, reed
bed, cottonwood, softwood and hardwood for-
ests (SUCHENWIRTH et al. 2012).
Historical and current topographic maps

were provided by the Austrian Federal Office
for Metrology and Survey (Österreichisches
Bundesamt für Eich- und Vermessungswe-
sen, BEV). The historical maps are derived
from three topographic land surveys, the First
(1764–1806), the Second (1806–1869) and the
Third Military Mapping Survey (1868–1880).
We digitized the riverbeds and channels as
well as oxbows and coded them, either if there
was a historic water body or not. A ground-
water model indicating median ground water
depth was provided by the Vienna University
of Technology.
During two terrestrial surveys in 2008

and 2010, a total of 104 samples from vegeta-
tion and soil were taken [69 samples in 2008
(CIERJACKS et al. 2010) and 35 samples in 2010
(RIEGER et al. 2013), Fig. 1]. All data were col-
lected in a stratified randomized sampling
design throughout the research area in 10 x
10 m plots. In each sample plot, forest stand
structure was measured and soil samples were
taken. A detailed description of the Corg calcu-
lation is given by CIERJACKS et al. (2010) and
RIEGER et al. (2013). These data were randomly
separated in training data (70 %) and test data
(30 %) for the classification.

2.3 Methods

We developed a spatial model for the estima-
tion and mapping of Corg stocks in soils and
vegetation based on a machine learning algo-
rithm. For this, we chose a classification and
regression tree (CART) approach. CART cre-
ates classification rules in the shape of a de-
cision tree. Decision trees show hierarchical
rules according to which a dataset is classi-
fied. At the beginning of a decision tree is the
basic population of the data. During the clas-
sification process, the dataset is divided ac-
cording to binary rules (BREIMAN et al. 1984,
LOH 2011, QUINLAN 1986). The advantages of
CART include the flexibility to handle a broad

ferentiate between hardwood forest (dominat-
ed by quercus robur, fraxinus excelsior and
acer campestre), softwood forest (dominated
by salix alba and acer negundo) and cotton-
wood forest (consisting of hybrid poplar plan-
tations of the 1960ies) (CIERJACKS et al. 2010).
The main soil type is haplic fluvisol (calcaric).
Calcaric gleysols are less important. The cli-
mate is continental with a mean annual tem-
perature of 9.8 °C and a mean annual precipi-
tation of 533 mm [Schwechat climate station,
48°07’ N, 16°34’ E, 184 m above sea level
(ZAMG 2002)].
The mean carbon storage in the area was

estimated as 359.1 Mg C ha-1 (472,186 Mg in
an area of 13.1 km2) by CIERJACKS et al. (2010).

2.2 Data

The following available comprehensive data
from the research area were included in
the analysis: two very high spatial resolu-
tion (VHSR) satellite images from Ikonos
and RapidEye sensor, historical and current
topographic maps, a digital elevation model
(DEM), and data on the mean groundwater
level (MGW).
We purchased a preprocessed cloudfree

Ikonos 2 image, recorded on April 22, 2009
with a spatial resolution of 1.0 m (panchro-
matic) and 4 m (multispectral), as well as a
satellite image from RapidEye recorded on
August 1, 2009 and processed at L3A with a
spatial resolution of 5.0 m (multispectral), pro-
vided by the German Aerospace Centre. Both
images were provided in the UTM WGS 1984
projected coordinate system and were repro-
jected into the Austrian MGI M34 projected
coordinate system. We used this local system
as the majority of local data was also projected
in this way.
In addition to the spectral values, several

ratios and texture parameters (HARALICK et
al. 1973) were calculated (Tab. 1). A digital
elevation model derived from lidar data was
used to compute height and slope. Increased
slope values can suggest former riverbeds of
the main stream or overgrown side channels,
which can serve as an indicator of softwood
(SUCHENWIRTH et al. 2012), which cannot be de-
tected directly through spectral values. Also
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Tab. 1: Available geodata, derived parameters and used abbrevations.

Available geodata Derived parameters Abbreviation
Ikonos image
(April 22, 2009)

RapidEye image
(August 1, 2009)

Blue channel
Green channel
Red channel
Near infrared channel
NDVI (normalized difference vegetation
index)
(TUCKER 1979, ROUSE et al. 1973)
Vegetation classification derived by OBIA
(SUCHENWIRTH et al. 2012)

Blue channel
Green channel
Red channel
RedEdge channel
Near infrared channel
NDVI
Transformed NDVI [((b5+b3)+0.5)0.5]
(DEERING et al. 1975)
modNDVI [(b5-b4)/(b5+b4-2*b1)]
(DATT 1999)
b4NDVI [(b5-b4)/(b5+b4)]
(GITELSON &MERZLYAK 1994)
Solar Reflectance Index [b5/b3] (ROUSE et al.
1973)
[b2-b1]
[b3-b1]
[b3-b2]
[b5-b4]
[b3/b1]
[b4/b2]
[b5/b2]

Texture parameters (HARALICK et al. 1973)
Gray-level co-occurrence matrix (GLCM)
homogeneity
GLCM mean
GLCM correlation
GLCM contrast
Gray-level difference vector (GLDV) entropy

Ikonblu
Ikongrn
Ikonred
Ikonnir
Ikonndvi

Classification

b1-REblue
b2-REgreen
b3-REred
b4-REredEdge
b5-REnir
RE_NDVI
tNDVI

modNDVI

b4NDVI

b4sri

b2mb1
b3mb1
b3mb2
b5mb4
b3db1
b4db2
b5db2

GLCM_Homogeneity

GLCM_Mean
GLCM_Correlation
GLCM_Contrast
GLDV_Entropy

Digital elevation
model

Elevation
Slope

DEM
slope

Historical and current
topographic maps

Existence of historic riverbed during:
First Military Mapping Survey (1773 – 1781)
Second Military Mapping Survey (1806 –
1869)
Third Military Mapping Survey (1868 –
1880)
Current distance to river based on current
topographic map ÖK50

hist1
hist2

hist3

dist

Ground water model Ground water level MGW
Corg ground survey
data from 2008 and
2010

Above ground carbon stocks
Below ground carbon stocks
Total carbon stocks

Corg_veg
Corg_soil
Corg_tot
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spectral band of the RapidEye and Ikonos sat-
ellite imagery, as well as each additional ge-
odata layer was weighted equally. However,
calculated indices or ratios were not further
weighted. Equal segmentation settings were
used for all classifications in order to facili-
tate the comparability of area units among the
classifications.
The internal CART algorithm was trained

with the respective quantile classes and ap-
plied onto the parameters using the “classi-
fier” tool in the software package eCognition
8.7.1, with a classifier depth of 10, a minimum
sample count of 6 and 9 cross validation folds.
To evaluate the accuracy of the individual

classifications, we calculated the overall ac-
curacy (OA). We additionally decided to fol-
low the suggestions of PONTIUS & MILLONES

(2011) who recommend the use of allocation
and quantity disagreement for accuracy as-
sessment rather than the use of kappa. The two
measures are described as follows:
a) Allocation disagreement (AD) is the num-
ber of pixels that have a less than optimal
spatial allocation in the comparison map
with respect to the reference map. Alloca-
tion disagreement is the distance above the
quantity disagreement line.

b) Quantity disagreement (QD) is the absolute
difference between the number of pixels of
a certain class in the reference map and the
number of pixels of the same class in the
comparison map.

The lower the values of allocation and
quantity disagreement, the better is the accu-

range of response types, such as numeric and
categorical data, the ease and robustness of
construction, and the ease of interpretation
(DE’ATH & FABRICIUS 2000).
For our work, we used the software pack-

age eCognition 8.7.1. It allowed us to combine
CART and OBIA and thus make use of the vast
amount of data including remote sensing and
other spatially continuous geodata. OBIA has
been successfully applied to classifications of
diverse habitats from wetlands (KOLLÁR et al.
2011, ROKITNICKI-WOJCIK et al. 2011) and flood-
plains (WAGNER 2009) to forests (CHUBEY et al.
2006) and drylands (LALIBERTE et al. 2007).
The CART approach in eCognition is based
on the original algorithms described by BREI-
MAN et al. (1984) and has been implemented
by the OPENCV-WIKI (2010) and eCognition
(ECOGNITION 2012).
The ground survey dataset containing to-

tal carbon stocks was grouped into classes
(Tab. 2) as were the separate stocks for vegeta-
tion and soil. We compared classifications of
above ground biomass (Corg_veg), below ground
biomass for soil depth up to 1 m (Corg_soil) and
total carbon stocks (Corg_tot) using classifica-
tions based on two, three, four and five quan-
tile classes. We used quantiles in order to have
equal numbers of samples for each class. We
applied this approach for different numbers of
classes to define an optimum number of class-
es with acceptable classification accuracy.
The OBIA was performed on a multireso-

lution segmentation with a scale parameter of
200 and the homogeneity criterion including
a shape of 0.1 and a compactness of 0.5. Each

Tab. 2: Corg ranges (Mg Corg ha-1) for Corg_veg, Corg_soil, and Corg_tot stocks for different numbers of
classes.

class Five quantile classes Four quantile classes Three quantile classes Two quantile classes

Corg_veg Corg_soil Corg_tot Corg_veg Corg_soil Corg_tot Corg_veg Corg_soil Corg_tot Corg_veg Corg_soil Corg_tot
1 < 55.0 <132.8 <231.0 < 75.0 <140.0 <255.5 < 86.5 <161.0 <281.0 <134.9 <186.4 <325.9

2 55.0
- 99.9

132.8
- 173.9

231.0
- 300.0

75.0
-135.0

140.0
- 186.5

255.5
- 326.9

86.5
- 180.0

161.0
- 203.2

281.0
- 373.0

>135.0 >186.5 >326.0

3 100.0
-134.0

174.0
- 197.3

300.1
- 360.9

135.1
- 200.0

186.5
- 227.0

327.0
- 407.0

>180.0 >203.2 >373.0

4 134.1
- 193.0

197.4
- 240.0

361.0
- 445.0

>200.0 >227.0 >407.0

5 >193.0 >240.0 >445.0
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normalized by the total number of the avail-
able parameters of a certain dataset. ERASMI et
al. (2013) described the concept as “normal-
ized importance”.

3 Results

3.1 Modelled Corg Distribution and
Accuracies

Fig. 2 shows the classification results in the
form of maps for a part of the research area.
The subset comprises all classes and all en-
vironmental features inside the research area.
We can see that Corg_veg stocks are equally scat-
tered across the area, while Corg_soil stocks in-
crease as the distance to the river increases.

racy. Both disagreement values are calculated
as percentages.
Furthermore, we calculated for each classi-

fication the root-mean-square error (RMSE),
frequently used to check the internal model
quality with the advantage of being indepen-
dent of the number of used classes (KANEVSKI
et al. 2009, RICHTER et al. 2012). For our appli-
cation, we used the arithmetic mean of each
class (of the training plots) as the estimated
value, and used the terrestrial value of each
test plot as the measured value.
To calculate the relevance of the individual

datasets, we summarized the use frequency
of the individual parameters, normalized by
the overall sum of all use frequencies. Addi-
tionally, we considered how many parameters
derived from a specific dataset were applied,

Fig. 2: Modelled distribution of Corg_veg, Corg_soil, and Corg_tot stocks for different numbers of classes.
The increasing amount of stored Corg is represented by colour graduations increases from pink to
red to brown.
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curacies for Corg_veg, Corg_soil, and Corg_tot stocks
revealed that the accuracy is highest for two
classes and lowest for five classes (Fig. 3).
Models with three or four classes range in be-
tween and represent a good compromise be-
tween complexity and acceptable accuracy.

The influence is less visible for Corg_tot but can
still be seen for a classification with four class-
es.
We compared the derived accuracies (OA,

AD, QD) for Corg_veg, Corg_soil, and Corg_tot stocks
for all numbers of classes (Fig. 3), as well as
RMSE. The comparison of classification ac-

Fig. 3: Overall accuracy, allocation, and quantity disagreement in percent for classifications of
Corg_veg, Corg_soil, Corg_tot based on five, four, three, and two classes.

Fig. 4: Root-mean-square error for classifications of Corg_veg, Corg_soil, Corg_tot based on five, four,
three, and two classes.
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For DEM parameters relevance ranged from
0 % (Corg_veg three classes; Corg_soil five classes)
to the highest overall share of 52.1 % (Corg_soil
two classes). The MGW reached the highest
parameter relevance for all classification runs
(32.7 % / 18.3 % / 26.2 %), with the relevance
ranging from 0 % (Corg_soil two and four class-
es; Corg_tot five classes) to 43.2 % (Corg_tot two
classes). For the “distance to river” param-
eter, the relevance ranged from 0 % (Corg_soil
two and four classes) to 50.4 % (Corg_soil five
classes), with this parameter achieving great-
er relevance when greater numbers of classes
are used. For the parameters based on the ex-
istence of historical riverbeds, the relevance
ranged from 0 % (Corg_veg two, three and four
classes; Corg_soil five classes; Corg_tot two, four
and five classes) to 36.0 % (Corg_soil two class-
es), and was important only when classifying
Corg_soil classes.
To illustrate the importance of single pa-

rameters, Figs 5a–c give an exemplary in-
sight of the parameter relevance of classifi-
cations with four classes for Corg_veg, Corg_soil,
and Corg_tot. For Corg_veg, there are 16 parame-
ters (RapidEye: 6; texture: 4; Ikonos: 2; DEM:
2; MGW and distance: 1 each), where the in-
dex b4db2 (i.e. RapidEye’s RedEdge divided
by green channel) is the most important with
more than 23 %. For Corg_soil, there are eleven

With regard to the model quality, we can
examine Fig. 4. Classifications with fewer
classes show higher RMSE values, e.g. more
than 90 for Corg_tot two quantile classes, than
classifications with more classes. The lowest
RMSE values are below 25 for Corg_soil with
four classes and Corg_tot with four classes.

3.2 Parameter Relevance

In the following we analyze the use frequen-
cy of the individual datasets and parameters.
Tab. 3 shows the results for classifications
with all quantile classes for Corg_veg, Corg_soil
and Corg_tot.
For RapidEye parameters, the relevance

ranged from 3.6 % (Corg_soil two classes) to
25.6 % (Corg_tot five classes). As the number of
classes grows, the parameter relevance rises.
For texture parameters, the relevance ranged
from 4.6 % (Corg_soil 5 classes) to 29.5 % (Corg_
veg four classes) with no clear indication of
which number of classes provided the best
results. The overall parameter relevance for
Ikonos was lower. It ranged from 0 % (Corg_
soil two or three classes) to 9.6 % (Corg_veg two
classes) which could be explained by the ac-
quisition date of April, when full leaf-out had
not occurred yet.

Tab. 3: Dataset relevance for classifications of Corg_veg, Corg_soil, and Corg_tot stocks.

RapidEye Texture Ikonos DEM MGW
Distance
to river

Historic
maps

Corg_veg 5cl 14.5 22.5 5.5 6.3 16.5 31.7 3.0
4cl 12.0 12.9 5.0 25.3 37.0 7.8 0.0
3cl 21.8 20.6 3.0 0.0 34.3 20.2 0.0
2cl 5.9 23.8 9.6 7.3 42.8 10.7 0.0

Average 13.5 20.0 5.8 9.8 32.7 17.6 0.7

Corg_soil 5cl 4.1 4.6 1.7 0.0 39.2 50.4 0.0
4cl 13.1 29.5 8.4 13.0 0.0 0.0 36.0
3cl 5.2 18.4 0.0 6.6 33.9 16.6 19.3
2cl 3.6 8.4 0.0 52.1 0.0 0.0 35.8

Average 6.5 15.2 2.5 17.9 18.3 16.7 22.8

Corg_tot 5cl 25.6 9.8 5.0 11.6 0.0 48.0 0.0
4cl 4.3 20.8 5.1 13.5 34.5 21.8 0.0
3cl 9.8 7.6 8.2 8.4 27.0 35.9 3.0
2cl 9.4 19.7 5.5 22.2 43.2 0.0 0.0

Average 12.3 14.5 6.0 13.9 26.2 26.4 0.7
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Fig. 5a: Parameter relevance for Corg_vet
classifications based on 4 quantile
classes (all abbreviations are explained
in Tab. 1).

Fig. 5b: Parameter relevance for Corg_soil
classifications based on 4 quantile
classes (all abbreviations are explained
in Tab. 1).

Fig. 5c: Parameter relevance for Corg_tot
classifications based on 4 quantile
classes (all abbreviations are explained
in Tab. 1).
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ta serve as proxies for recent environmental
conditions that control vegetation properties.
Soil organic matter, in contrast, can accumu-
late over hundreds of years. Thus relations of
Corg_soil stocks to recent environmental condi-
tions might not be expected. It is likely that the
variations in Corg_soil stocks found in our study
are mainly due to variations in the Corg stocks
of the upper soil horizons, which in turn are
affected by recent environmental conditions.
Furthermore, the position of historic river-
beds, a parameter with strong and long-lasting
influence on soil organic matter content, was
considered (Figs. 3 and 5b).
Predictably, an increase in the number of

classes goes along with a more speckled ap-
pearance of the classification and overall ac-
curacy decreases. Here, we have to keep in
mind that a classification with fewer classes
will automatically result in higher accuracy,
and therefore the differences simply reflect the
higher chance of misclassifications.
Similarly to the overall accuracy, alloca-

tion disagreement as well as quantity disa-
greement values decreased, i.e., the accuracy
improved, with fewer classes. An exception is
the very high quantity disagreement value for
Corg_veg based on two classes.
The RMSEs (Fig. 4) provides a measure in-

dependent of the number of used classes. The
RMSEs “mirror” the results of accuracy as-
sessment, with lower RMSEs for classifica-
tions with higher class numbers. Especially
for Corg_soil accuracies.
For assessing the performance of the CART

approach we also compared our results with
a linear multiple regression analysis for es-
timating Corg_soil, Corg_veg, and Corg_tot. Results
showed that for Corg_soil regression (model in-
tercept p = 0.0069; F = 3.3789) groundwater
level was the most important parameter (p =
0.0177; y = -11.275x + 1833.4; R2 = 0.8657).
For Corg_tot regression (model intercept p

= 2.3833-9; F = 6.5114), the green RapidEye
channel (p = 0.0145; y = -0.0756x + 584.28;
R2 = 0.5619) and the red Ikonos channel (p =
0.0188; y = -0.4198x + 426.33; R2 = 0.5244)
were the most important parameters.
For Corg_veg regression (model intercept p

= 1.7728-6; F= 7.7927), the green RapidEye
channel (p = 0.0099; y = -0.0482x + 335.83; R2
= 0.5301) and red Ikonos channel (p = 0.0081;

parameters (RapidEye: 4; texture: 2; Ikonos:
2; historical maps: 2; DEM: 1), of which hist3
(existence of riverbed between 1868 to 1880) is
the most relevant with almost 20 %. For Corg_
tot, there are in total nine parameters (Rapid-
Eye: 2; texture: 3; Ikonos: 1; MGW, DEM and
distance: 1 each), of which b2mb1 (RapidEye’s
green channel minus blue channel) is the most
important one with more than 22 %.

4 Discussion

4.1 Classification Results and
Accuracies

Our study provides a novel technique for
the estimation and mapping of Corg stocks in
floodplains based on remote sensing and ad-
ditional geodata. It could be used to generate
Corg inventories in other temperate wetlands,
especially forested floodplains where ground
assessment is difficult or impossible. The
visualization of the individual classes shows
complex distribution patterns of Corg stocks.
Despite of the cluttered structure and the het-
erogeneous distribution within the different
classes, the majority of classifications show
that higher Corg_soil stocks have developed at
a certain distance to the main riverbed of the
Danube and its side arms. This is best illus-
trated by classifications with two but also four
classes of Corg_soil. These lateral gradients were
also described by CIERJACKS et al. (2010, 2011).
In comparison, the patterns of Corg_veg and
Corg_tot were less predictable. Classifications
are very speckled for every model and a fully
consistent classification is difficult due to the
type of the terrain. This reflects the complexi-
ty of floodplain habitats in general, and the de-
tailed intricacy of riparian Corg stocks in par-
ticular and also has been shown by SAMARITA-
NI et al. (2011) and SUCHENWIRTH et al. (2012).
For the particular case of the Danube flood-
plain, this may also be related to the wide-
spread planting of hybrid poplars in the 1960s,
which altered the natural vegetation structure
of hardwood and softwood forests.
Surprisingly, the accuracy of the Corg_soil

stock models was similar to the accuracy of
the Corg_veg stock models. Predictive variables
derived from remote sensing and other geoda-
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accuracy is higher in comparison to a model
with five classes, but the complexity is bet-
ter represented than in a plain dichotomy of
data and space created by merely two class-
es. DILLABAUGH & KING (2008) found an op-
timal number of three classes for their clas-
sifications of biomass in riparian marshes in
Ontario.
Regarding our first research aim, a model

approach with four classes seems to perform
best. However, the concept of applying segre-
gative classes remains to a certain extent de-
batable. Therefore, an approach with classes
based on fuzzy logic (ZADEH 1989) should be
considered in future works to improve the pre-
dictive capability of the Corg model.
A general point of criticism might apply to

the question of why to classify a continuous
variable with separate classes. Even though
a continuous regression may seem more ap-
propriate, we wanted to create statistically set
classes and to follow the concept of different
Corg concentrations in different compartments
of the floodplains. For further planning appli-
cations, the regional managers would always
apply an ordinal scale, e.g. high, medium, low.
The provision of an estimate about the optimal
class size for Corgmight be valuable in terms of
its practical application.
A further point of debate remains the sam-

pling design. The random division of terres-
trial survey data into 70 % training data and
30 % test data and repeated analysis would
probably provide a better estimate about the
uncertainties within the calibration and vali-
dation data. Repeated measurements could
give an insight into the quality of the cal/val
information and, in consequence, provide
knowledge about the optimal sampling size
and spatial distribution of these data. In fur-
ther analysing steps a repeated calculation
with varying samples is envisaged.

4.2 Use of Parameters

Regarding the application of parameters and
their use frequency, classification of Corg_veg re-
lied to a higher percentage on remotely sensed
parameters like RapidEye, Texture, and
Ikonos than did the classification of Corg_soil or
Corg_tot stocks.

y = -0.3752x + 208.54; R2 = 0.5562) have the
highest importance among the parameters.
The regression confirms our findings that

remote sensing parameters are more impor-
tant for the classification of Corg_veg, where-
as parameters from auxiliary geodata have
more influence on the classification of Corg_soil
stocks.
It is worth discussing whether and which

other additional parameters should be taken
into consideration for the detection and mod-
elling of Corg distributions in floodplains. Data
on forest management practices or local sinks
may be considered but were not available on
a spatially inclusive and comprehensive level.
In general, ROCCHINI et al. (2013) argue that

the classification of remotely sensed images
for the derivation of ecosystem-related maps
which also includes the estimation of Corg is
commonly based on clustering of spatial en-
tities within a spectral space with the impli-
cation that it is possible to divide the gradual
variability of the Earth’s surface into a finite
number of discrete non-overlapping classes,
which are exhaustively defined and mutu-
ally exclusive. Given the continuous nature
of many ecosystem properties this approach
is often inappropriate; especially as standard
data processing and image classification meth-
ods involve the loss of information as contin-
uous quantitative spectral information is be-
ing degraded into a set of discrete classes. For
wetlands, OZESMI & BAUER (2002) pointed out
the limitations of remote sensing for classifi-
cation and suggest the use of multi-temporal
data for an improvement of classification ac-
curacy. For remote sensing in wetlands, ADAM
et al. (2010) attribute the frequently observed
limitations to the low spatial and spectral res-
olution in comparison to narrow vegetation
units that characterize wetland ecosystems.
There may also be concerns about the re-

liability of terrestrial data. Error propagation
may always be a source of uncertainty for the
mapping of ecosystems (ROCCHINI et al. 2013).
Our basic survey data have been collected
very densely and thoroughly, but transferabil-
ity to other terrains may become challenging.
Overall, we can conclude that the detection

of floodplain characteristics is a challenging
task. As for the appropriate number of classes,
we consider three or four to be optimal. The
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soil characteristics can only be explained in-
directly through vegetation. This is due to the
fact that Corg_soil reflects not only recent vege-
tation, but accumulations over centuries. This
is reflected in the high relevance of historical
maps for this factor (Fig. 5b) which emphasiz-
es the potential of soils to serve as a memory
of previous site conditions, such as historical
inundations and changes in riverbeds that of-
ten occurred prior to present-day land man-
agement practices.

5 Conclusion and Outlook

Our study provides a machine learning ap-
proach to model Corg stock distributions in
riparian forests. We aimed to evaluate a ma-
chine learning algorithm (CART) and deter-
mine the relevance of individual variables de-
rived from the geodata for the estimation.
Overall, a spatial model of Corg in riparian

forests could be generated using CART. With
the use of geographic datasets, it was possi-
ble to show the spatial distribution in terms
of a cartographic representation generated by
classification. Yet, classification accuracy re-
mains a challenge due to the high complexity
of floodplains where patterns of Corg distribu-
tion are inherently difficult to define.
The evaluation of the relevance of the in-

dividual parameters derived from the geoda-
ta revealed that remote sensing parameters
are more important for the classification of
Corg_veg, than for the classification of Corg_soil.
This is also the case for MGW and the dis-
tance to the river. In contrast, parameters de-
rived from auxiliary geodata such as DEM
and historical maps were more decisive for
the classification of Corg_soil than Corg_veg. Corg_tot
stocks fell in between in terms of application
frequency of remote sensing and other pa-
rameters. Therefore, depending on the tar-
get (Corg_soil or Corg_veg), different parameters
should be considered when analyzing the spa-
tial distribution of carbon storage.
The application of data-mining approaches

to remote sensing and other geodata is help-
ing to automate and facilitate estimations of
Corg in riparian forests. In addition, informa-
tion on vegetation structure might improve
the Corg_soil model. Each classification model

The fact that remotely sensed parameters,
especially RapidEye parameters, are the most
important factors for the classification of
Corg_veg provides further evidence of the rele-
vance of satellite imagery for the estimation
of biomass, including Corg (GIBBS et al. 2007,
NEEFF et al. 2005, RHEINHARDT et al. 2012).
SCHUSTER et al. (2012) in particular proved the
special relevance of the RedEdge channel for
vegetation classification. It is nevertheless re-
markable that MGW and the distance to the
river played a more dominant role in the clas-
sification of Corg_veg and Corg_tot stocks than
Corg_soil stocks, although one could assume that
median groundwater would be a comparative-
ly less decisive factor for vegetation than for
soil biomass and resulting Corg. Still, similar
findings for fine-root and above-ground bio-
mass which also clearly reflected ground-
water depths in the same study area support
our results (RIEGER et al. 2013). For the case
of distance to river, the differences within the
parameter relevance (Fig. 5b) for Corg_soil is a
specific characteristic and shows the variabil-
ity of classification models. While remotely
sensed parameters play the dominant role in
all classifications, it is striking that the most
important parameter for the Corg_soil classifica-
tion are the historical riverbeds (Figs. 5a–c).
The case is different for the classification

of Corg_soil stocks, where remote sensing based
rules had in some cases less than 50 % influ-
ence towards the classification. In contrast,
the application frequency of DEM and histori-
cal riverbeds – parameters not derived from
remote sensing – was more common for the
classifications of Corg_soil compared to Corg_veg.
These parameters have already been used
successfully in other studies (CIERJACKS et al.
2011, SAMARITANI et al. 2011) to determine Corg
stocks. Concerning the use of historical maps,
it should be kept in mind that our maps only
provide information on roughly the last 250
years, whereas Corg stocks in soil are the con-
sequence of geomorphologic and pedogenetic
processes that have taken place over centuries
and millennia.
In general, the assessment of the relevance

of individual parameters for the Corg model
showed that spectral information from remote
sensing provides direct information about
above ground biomass, while information on
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highlights the complex interrelations between
Corg stocks and the external geofactors. In par-
ticular, vegetation cover and resulting Corg_veg
seems to reflect recent site conditions while
Corg_soil reflects both recent conditions and
past processes. In this way, our model con-
tributes to a better understanding of the im-
portance and relationships of Corg cycling in
floodplain ecosystems. Consequently, this
work may serve as a local case study for a well
and densely-surveyed area and contribute to
improve methods of Corg estimation and mon-
itoring in other floodplain areas with similar
conditions in temperate climates. It might help
to improve formal frameworks such as Euro-
pean biomass inventory (GALLAUN et al. 2010),
REDD, and Kyoto protocols (BÖTTCHER et al.
2009, IPCC 2000, OBERSTEINER et al. 2009,
PAOLI et al. 2010, UNEP-WCMC 2008).

Acknowledgements

This study was funded by the German Re-
search Foundation (DFG; project number KL
2215/2-2). We acknowledge the DLR for the
RapidEye image as part of the RapidEye Sci-
ence Archive – proposal 454. We would like to
thank the administrators of the Danube Flood-
plain National Park for the provision of data,
the Austrian Forest Agency (ÖBf) for the pro-
vision of forest inventory data, and the TU Vi-
enna for the provision of a ground-water mod-
el. We would like to thank Dr. ARNE CIERJACKS
and ISAAK RIEGER for the provision of ter-
restrial survey data. We would like to thank
KELAINE VARGAS for improving the linguistic
quality of the English text.

References

ADAM, E., MUTANGA, O. & RUGEGE, D., 2010: Multi-
spectral and hyperspectral remote sensing for
identification and mapping of wetland vegeta-
tion: a review. – Wetlands Ecology and Manage-
ment 18 (3): 281–296.

AWAYA, Y., TSUYUKI, S., KODANI, E. & TAKAO, G.,
2004: Potential of Woody Carbon Stock Estima-
tion Using High Spatial Resolution Imagery: A
Case Study of Spruce Stands. – SHIYOMI, M.,
KAWAHATA, H., KOIZUMI, H., TSUDA, A. & AWAYA,
Y. (eds.): Global Environmental Change in the
Ocean and on Land: 425–440, Terrapub, Tokyo,
Japan.



Leonhard Suchenwirth et al., Estimation and Mapping of Carbon Stocks 347

of methods. – Carbon Balance and Management
4 (1): 2.

GRIMM, R., BEHRENS, T., MÄRKER, M. & ELSENBEER,
H., 2008: Soil organic carbon concentrations and
stocks on Barro Colorado Island – Digital soil
mapping using Random Forests analysis. – Geo-
derma 146 (1–2): 102–113.

GROOMBRIDGE, B. & JENKINS, M.D., 2002: World at-
las of biodiversity: Earth’s living Resources in
the 21st century. – Prepared by UNEP World
Monitoring Centre University of California
Press, Berkeley, CA, USA.

HARALICK, R.M., SHANMUGAM, K. & DINSTEIN, I.H.,
1973: Textural Features for Image Classification.
– IEEE Transactions on Systems, Man and Cy-
bernetics SMC-3 (6): 610–621.

HARRISON, A.F., HOWARD, P.J.A., HOWARD, D.M.,
HOWARD, D.C. & HORNUNG, M., 1995: Carbon
storage in forest soils. – Forestry 68 (4): 335–
348.

HAZLETT, P.W., GORDON, A.M., SIBLEY, P.K. & BUT-
TLE, J.M., 2005: Stand carbon stocks and soil car-
bon and nitrogen storage for riparian and upland
forests of boreal lakes in north-eastern Ontario. –
Forest Ecology and Management 219 (1): 56–68.

HILKER, T., COOPS, N.C., WULDER, M.A., BLACK,
T.A. & GUY, R.D., 2008: The use of remote sens-
ing in light use efficiency based models of gross
primary production: A review of current status
and future requirements. – Science of the Total
Environment 404 (2–3): 411–423.

HOFFMANN, T., GLATZEL, S. & DIKAU, R., 2009: A
carbon storage perspective on alluvial sediment
storage in the Rhine catchment. – Geomorphol-
ogy 108 (1–2): 127–137.

HOFMANN, G. & ANDERS, S., 1996: Waldökosysteme
als Quellen und Senken für Kohlenstoff – Fall-
studie ostdeutsche Länder. – Beiträge Forst-
wirtschaft und Landschaftsökologie 30 (1):
9–16.

HOUGHTON, R.A., BUTMAN, D., BUNN, A.G., KRANKI-
NA, O.N., SCHLESINGER, P. & STONE, T.A., 2007:
Mapping Russian forest biomass with data from
satellites and forest inventories. – Environmen-
tal Research Letters 2 (4), doi 10.1088/1748-
9326/2/4/045032.

IPCC, 2000: Special report on land use, land-use
change and forestry. – Cambridge University
Press, Cambridge, UK.

KANEVSKI, M., TIMONIN, V. & POZDNUKHOV, A.,
2009: Machine learning algorithms for spatial
data analysis and modelling. – EFPL Press,
Lausanne, Switzerland.

KOLLÁR, S., VEKERDY, Z. & MÁRKUS, B., 2011: For-
est Habitat Change Dynamics in a Riparian Wet-
land. – Procedia Environmental Sciences 7 (0):
371–376.

DATT, B., 1999: A New Reflectance Index for Re-
mote Sensing of Chlorophyll Content in Higher
Plants: Tests using Eucalyptus Leaves. – Journal
of Plant Physiology 154 (1): 30–36.

DE’ATH, G. & FABRICIUS, K.E., 2000: Classification
and regression trees: a powerful yet simple tech-
nique for ecological data analysis. – Ecology 81
(11): 3178–3192.

DEERING, D.W., ROUSE, J.W., HAAS, R.H. & SCHELL,
J.A., 1975: Measuring “forage production” of
grazing units from Landsat MSS data. – 10th In-
ternational Symposium Remote Sensing of En-
vironment II: 1169–1178.

DILLABAUGH, K.A. & KING, D.J., 2008: Riparian
marshland composition and biomass mapping
using Ikonos imagery. – Canadian Journal of Re-
mote Sensing 34 (2): 143–158.

ECOGNITION, 2012: eCognition Developer Reference
Book 8.8. – Trimble Germany GmbH, Munich.

ERASMI, S., RIEMBAUER, G. & WESTPHAL, C., 2013:
Mapping habitat diversity from multi-temporal
RapidEye and RADARSAT-2 data in Branden-
burg, Germany. – BORG, E., DAEDELOW, H. &
JOHNSON, R. (eds): 5th RESA Workshop, Neu-
strelitz, March 2013: 75–89, GITO Berlin.

FARID, A., GOODRICH, D.C., BRYANT, R. & SOROOSHI-
AN, S., 2008: Using airborne lidar to predict Leaf
Area Index in cottonwood trees and refine ripar-
ian water-use estimates. – Journal of Arid Envi-
ronments 72 (1): 1–15.

GALLAUN, H., ZANCHI, G., NABUURS, G.-J., HEN-
GEVELD, G., SCHARDT, M. & VERKERK, P.J., 2010:
EU-wide maps of growing stock and above-
ground biomass in forests based on remote sens-
ing and field measurements. – Forest Ecology
and Management 260 (3): 252–261.

GIBBS, H.K., BROWN, S., NILES, J.O. & FOLEY, J.A.,
2007: Monitoring and estimating tropical forest
carbon stocks: making REDD a reality. – Envi-
ronmental Research Letters 2 (4), doi
10.1088/1748-9326/2/4/045023.

GIESE, L.A., AUST, W.M., TRETTIN, C.C. & KOLKA,
R.K., 2000: Spatial and temporal patterns of
carbon storage and species richness in three
South Carolina coastal plain riparian forests. –
Ecological Engineering 15 (Supplement 1):
157–170.

GITELSON, A. & MERZLYAK, M.N., 1994: Spectral
Reflectance Changes Associated with Autumn
Senescence of Aesculus hippocastanum L. and
Acer platanoides L. Leaves – Spectral Features
and Relation to Chlorophyll Estimation. – Jour-
nal of Plant Physiology 143 (3): 286–292.

GOETZ, S., BACCINI, A., LAPORTE, N., JOHNS, T.,
WALKER, W., KELLNDORFER, J., HOUGHTON, R. &
SUN, M., 2009: Mapping and monitoring carbon
stocks with satellite observations: a comparison



348 Photogrammetrie • Fernerkundung • Geoinformation 4/2013

OLOFSSON, P., LAGERGREN, F., LINDROTH, A., LIND-
STRÖM, J., KLEMEDTSSON, L., KUTSCH, W. &
EKLUNDH, L., 2008: Towards operational remote
sensing of forest carbon balance across Northern
Europe. – Biogeosciences 5 (3): 817–832.

OPENCV-WIKI, 2010: Decision Trees. – http://
opencv.willowgarage.com/documentation/cpp/
ml_decision_trees.html (21.1.2013).

OZESMI, S.L. & BAUER, M.E., 2002: Satellite remote
sensing of wetlands. – Wetlands Ecology and
Management 10 (5): 381–402.

PAOLI, G., WELLS, P., MEIJAARD, E., STRUEBIG, M.,
MARSHALL, A., OBIDZINSKI, K., TAN, A., RAFIAS-
TANTO, A., YAAP, B., FERRY SLIK, J., MOREL, A.,
PERUMAL, B., WIELAARD, N., HUSSON, S. &
D’ARCY, L., 2010: Biodiversity Conservation in
the REDD. – Carbon Balance and Management
5 (1): 7.

PONTIUS, R.G. & MILLONES, M., 2011: Death to Kap-
pa: birth of quantity disagreement and allocation
disagreement for accuracy assessment. – Inter-
national Journal of Remote Sensing 32 (15):
4407–4429.

QUINLAN, J.R., 1986: Induction of decision trees. –
Machine Learning 1 (1): 81–106.

RHEINHARDT, R., BRINSON, M., MEYER, G. &MILLER,
K., 2012: Integrating forest biomass and distance
from channel to develop an indicator of riparian
condition. – Ecological Indicators 23 (0): 46–55.

RICHTER, K., ATZBERGER, C., HANK, T.B. & MAUSER,
W., 2012: Derivation of biophysical variables
from Earth observation data: validation and sta-
tistical measures. – Journal of Applied Remote
Sensing 6 (1): 063557–063551.

RIEGER, I., LANG, F., KLEINSCHMIT, B., KOWARIK, I. &
CIERJACKS, A., 2013: Fine root and aboveground
carbon stocks in riparian forests: the role of dik-
ing, environmental gradients and dominant tree
species. – Plant and soil: 1–13, Springer, doi
10.1007/s11104-013-1638-8.

ROCCHINI, D., FOODY, G.M., NAGENDRA, H., RICOTTA,
C., ANAND, M., HE, K.S., AMICI, V., KLEINSCHMIT,
B., FÖRSTER, M., SCHMIDTLEIN, S., FEILHAUER, H.,
GHISLA, A., METZ, M. & NETELER, M., 2013: Un-
certainty in ecosystem mapping by remote sen-
sing. – Computers & Geosciences 50: 128–135,
Elsevier.

ROKITNICKI-WOJCIK, D., WEI, A. & CHOW-FRASER, P.,
2011: Transferability of object-based rule sets for
mapping coastal high marsh habitat among dif-
ferent regions in Georgian Bay, Canada. – Wet-
lands Ecology and Management: 1–14.

ROUSE, J.W., HAAS, R.H., SCHELL, J.A. & DEERING,
D.W., 1973: Monitoring vegetation systems in
the Great Plains with ERTS. – Third ERTS Sym-
posium 1973: 309–317, Washington, DC, USA.

KOOCH, Y., HOSSEINI, S.M., ZACCONE, C., JALILVAND,
H. & HOJJATI, S.M., 2012: Soil organic carbon
sequestration as affected by afforestation: the
Darab Kola forest (north of Iran) case study. –
Journal of Environmental Monitoring 14 (9):
2438–2446.

LAL, R., 2005: Forest soils and carbon sequestra-
tion. – Forest Ecology and Management 220
(2005): 242–258.

LALIBERTE, A.S., RANGO, A., HERRICK, J.E., FRE-
DRICKSON, E.L. & BURKETT, L., 2007: An object-
based image analysis approach for determining
fractional cover of senescent and green vegeta-
tion with digital plot photography. – Journal of
Arid Environments 69 (1): 1–14.

LOH, W.-Y., 2011: Classification and regression
trees. – Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 1 (1): 14–23.

MATSUI, N., SUEKUNI, J., NOGAMI, M., HAVANOND, S.
& SALIKUL, P., 2009: Mangrove rehabilitation
dynamics and soil organic carbon changes as a
result of full hydraulic restoration and re-grad-
ing of a previously intensively managed shrimp
pond. – Wetlands Ecology and Management 18
(2): 233–242.

MAYAUX, P., BARTHOLOMÉ, E., FRITZ, S. & BELWARD,
A., 2004: A new land-cover map of Africa for
the year 2000. – Journal of Biogeography 31 (6):
861–877.

MCBRATNEY, A.B., MENDONÇA, SANTOS, M.L. &
MINASNY, B., 2003: On digital soil mapping. –
Geoderma 117 (1-2): 3–52.

MITRA, S., WASSMANN, R. & VLEK, P.L.G., 2005: An
appraisal of global wetland area and its organic
carbon stock. – Current Science 88, Bangalore,
India.

MITSCH, W., NAHLIK, A., WOLSKI, P., BERNAL, B.,
ZHANG, L. & RAMBERG, L., 2010: Tropical wet-
lands: seasonal hydrologic pulsing, carbon se-
questration, and methane emissions. – Wetlands
Ecology and Management 18 (5): 573–586.

MUNYATI, C., 2000: Wetland change detection on
the Kafue Flats, Zambia, by classification of a
multitemporal remote sensing image dataset. –
International Journal of Remote Sensing 21:
1787–1806.

NEEFF, T., DE ALENCASTRO GRAÇA, P.M., DUTRA, L.V.
& DA COSTA FREITAS, C., 2005: Carbon budget
estimation in Central Amazonia: Successional
forest modeling from remote sensing data. – Re-
mote Sensing of Environment 94 (4): 508–522.

OBERSTEINER, M., HUETTNER, M., KRAXNER, F., MC-
CALLUM, I., AOKI, K., BOTTCHER, H., FRITZ, S.,
GUSTI, M., HAVLIK, P., KINDERMANN, G., RAMET-
STEINER, E. & REYERS, B., 2009: On fair, effective
and efficient REDD mechanism design. – Car-
bon Balance and Management 4 (1): 11.



Leonhard Suchenwirth et al., Estimation and Mapping of Carbon Stocks 349

STROBL, J. (eds): Geospatial Crossroads @ GI_
Forum ‘09: 218–227, Wichmann, Heidelberg.

WILLIAMS, C., HANAN, N., NEFF, J., SCHOLES, R.,
BERRY, J., DENNING, A.S. & BAKER, D., 2007: Af-
rica and the global carbon cycle. – Carbon Bal-
ance and Management 2 (1): 3.

ZADEH, L.A., 1989: Knowledge Representation in
Fuzzy Logic. – IEEE Transactions on Knowl-
edge and Data Engineering 1 (1): 89–100.

ZAMG, 2002: Klimadaten von Österreich 1971–
2000. – Zentralanstalt für Meterorologie und
Geodynamik, Vienna, Austria.

Addresses of the Authors:

LEONHARD SUCHENWIRTH, MICHAEL FÖRSTER & BIR-
GIT KLEINSCHMIT, Technical University of Berlin,
Geoinformation in Environmental Planning Lab,
Straße des 17. Juni 145, 10623 Berlin, Germany,
e-mail: {leonhard.suchenwirth}{michael.foerster}
{birgit.kleinschmit}@tu-berlin.de

FRIEDERIKE LANG, University of Freiburg, Institute
of Soil Science and Forest Nutrition, Bertoldstraße
17, 79098 Freiburg, Germany, e-mail: fritzi.lang@
bodenkunde.uni-freiburg.de

Manuskript eingereicht: Februar 2013
Angenommen: April 2013

SAATCHI, S.S., HOUGHTON, R.A., DOS SANTOS ALVA-
LÁ, R.C., SOARES, J.V. & YU, Y., 2007: Distribu-
tion of aboveground live biomass in the Amazon
basin. – Global Change Biology 13 (4): 816–837.

SAMARITANI, E., SHRESTHA, J., FOURNIER, B.,
FROSSARD, E., GILLET, F., GUENAT, C., NIKLAUS,
P.A., PASQUALE, N., TOCKNER, K., MITCHELL,
E.A.D. & LUSTER, J., 2011: Heterogeneity of soil
carbon pools and fluxes in a channelized and a
restored floodplain section (Thur River, Switzer-
land). – Hydrology and Earth System Sciences
15 (6): 1757–1769.

SCHUSTER, C., FÖRSTER, M. & KLEINSCHMIT, B., 2012:
Testing the red edge channel for improving land-
use classifications based on high-resolution
multi-spectral satellite data. – International
Journal of Remote Sensing 33 (17): 5583–5599.

SUCHENWIRTH, L., FÖRSTER, M., CIERJACKS, A., LANG,
F. & KLEINSCHMIT, B., 2012: Knowledge-based
classification of remote sensing data for the esti-
mation of below- and above-ground organic car-
bon stocks in riparian forests. – Wetlands Ecol-
ogy and Management 20 (2): 151–163.

TUCKER, C.J., 1979: Red and photographic infrared
linear combinations for monitoring vegetation.
– Remote Sensing of Environment 8 (2): 127–
150.

UNEP-WCMC, 2008: Carbon and biodiversity: a
demonstration atlas. – UNEP-WCMC, Cam-
bridge, UK.

WAGNER, I., 2009: The Danube Floodplain Habitats
– application of the Object-based Image Analy-
sis approach. – CAR, A., GRIESEBNER, G. &


