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Summary: Data partitioning is a common problem
in the field of point cloud and image processing ap-
plicable to segmentation and clustering. The gen-
eral principle is to have high similarity of two data
points, e.g. pixels or 3D points, within one region and
low similarity among regions. This pair-wise simi-
larity between data points can be represented in an
attributed graph. In this article we propose a novel
graph partitioning algorithm. It integrates a sampling
strategy known as farthest point sampling with Dijk-
stra’s algorithm for deriving a distance transform on
a general graph, which does not need to be embedded
in some space. According to the pair-wise attributes
a Voronoi diagram on the graph is generated yielding
the desired segmentation. We demonstrate our ap-
proach on various applications such as surface trian-
gulation, surface segmentation, clustering and image
segmentation.

Zusammenfassung: DijkstraFPS: Graphpartitio-
nierung in Geometrie und Bildverarbeitung. Daten-
partitionierung ist eine elementare Aufgabe im Be-
reich Punktwolken- und Bildverarbeitung, vor allem
zur Segmentierung und zum Clustern. Das generel-
le Prinzip ist es, hohe Ähnlichkeit zwischen zwei
Datenpunkten derselben Region und geringe Ähn-
lichkeit zwischen verschiedenen Regionen zu errei-
chen. Diese paarweise Ähnlichkeit kann als attri-
butierter Graph auf den gegebenen Daten repräsen-
tiert werden. In diesem Artikel stellen wir einen
neuen Graphpartitionierungsalgorithmus vor. Er inte-
griert eine Samplingstrategie namens Farthest Point
Sampling mit dem Verfahren von Dijkstra zur Ab-
leitung einer Distanztransformation auf einem allge-
meinen Graphen, der nicht in einen Raum eingebettet
sein muss. Gemäß der paarweisen Attribute wird ein
Voronoi-Diagramm auf dem Graphen generiert, das
die gewünschte Segmentierung liefert. Wir demons-
trieren unseren Ansatz für verschiedene Anwendun-
gen, wie die Oberflächentriangulierung, die Ober-
flächensegmentierung, das Clustering und die Bild-
segmentierung.

1 Introduction

In the fields of point cloud and image pro-
cessing many applications require the partition-
ing of the underlying data as a pre-processing
step. For both, surface and image segmenta-
tion, a 2D manifold is to be partitioned into
non-overlapping regions. But also line parti-
tioning, reconstructing, i.e. triangulating, sur-
faces as well as clustering data points in high
dimensional feature space involve partitioning
the geometric or the feature space.

The number of possible partitionings of a
dataset is extremely large. Already for a bi-

nary partitioning of an image with N pixels into
foreground and background one has 2N possi-
ble partitionings. Therefore, no generally opti-
mal technique for partitioning exists.

Methods for partitioning fall into two types.
Split and/or merge techniques start from a
dissimilarity and/or similarity measure within
and/or between regions which are iteratively
found by splitting the complete dataset and/or
by merging the individual elements. A large
number of partitioning techniques exists, e.g.
based on quad- or octrees, normalized cuts
(SHI & MALIK 2000) – which are only optimal
for one partitioning – or graph-cut based meth-
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ods (BOYKOV & FUNKA-LEA 2006) – which
are only optimal for binary partitioning and spe-
cial similarity functions. Split and merge tech-
niques are only describable by the local proper-
ties of the individual iteration steps and do not
possess a global property.

Partitioning can be interpreted as clustering
in a feature space, the features depending on
the original data (FORSYTH & PONCE 2002).
This immediately suggests to seek for modes
of the density function induced by the features
and finding the valley lines (COMANICIU &
MEER 2002). The principle of watershed algo-
rithms is the inverse (SZELISKI 2010): Regions
are catchment areas bounded by the watershed
lines of a gradient image, the gradient measur-
ing the dissimilarity between neighbouring el-
ements (VINCENT & SOILLE 1991, MEINE &
KÖTHE 2005). The quality of the mean shift
and watershed partitioning depends on the abil-
ity to define problem adequate features, why
these methods often lead to oversegmentation,
i.e. a too large number of regions requiring a
subsequent merging step. However, both meth-
ods can be described by the global properties of
their solution.

A segmentation is either used to reduce the
complexity of subsequent algorithms as the
number of basic elements usually is several or-
ders of magnitudes larger than the number of
regions, recently consequently named super-
pixels (VEKSLER et al. 2010, MESTER et al.
2011, ACHANTA et al. 2012). Alternatively,
segmentation is understood as a first step to-
wards a symbolic image description, where the
regions are basic units for a subsequent image
interpretation. In the last years this lead to the
concept of semantic image segmentation, where
the segmentation is understood and realized as
supervised classification (ROTHER et al. 2004,
ROSCHER 2012, ARBELAEZ et al. 2012).

Most techniques can be interpreted as graph
partitioning. The graph is either given by the
structure of the data as for digital images, or de-
rived from the data by some similarity measure
based on geometry alone as in point cloud pro-
cessing, on feature similarity as in clustering, or
on semantic closeness as in semantic segmenta-
tion.

We propose a new efficient split and merge
type graph partitioning algorithm, which itera-

tively determines a set of Voronoi cells based on
an application dependent metric. The strength
of the algorithm lies in its ability to overwrite
the partitioning of the previous step within the
sequence of split and merge steps. Due to a
careful choice of the similarity metric for the
graph’s edge attributes we are able to control
the alignment of Voronoi edges according to
our objective. We will describe how to choose
the edge attributes for different applications like
curve and surface reconstruction, curve and sur-
face segmentation, clustering and image seg-
mentation.

In section 2 we will recapitulate previous
work on marching front based sampling and
partitioning methods before we formulate a
generalized graph partitioning algorithm in sec-
tion 3. We demonstrate our graph partitioning
method on various applications in section 4 and
conclude in section 5.

2 Background and related Work

Our graph partitioning method is based on com-
puting Voronoi diagrams on an edge attributed
graph, the attributes containing some applica-
tion dependent distance between two nodes. In
discrete geometry there are two common algo-
rithms for deriving a distance map: Dijktra’s
algorithm (DIJKSTRA 1959) and fast marching
method (FMM, SETHIAN 1996).

Given one or more seed points, Dijkstra’s al-
gorithm computes the shortest path along exist-
ing graph edges from each vertex to its closest
seed point yielding a distance map. Implicitly
this yields path lengths, also called intrinsic or
geodesic distances. Note that the distance is not
necessarily the spatial distance, but the sum of
all edge attributes along the path.

FMM, especially its formulation for meshed
manifolds (KIMMEL & SETHIAN 1998), com-
putes surface intrinsic distances on meshed sur-
faces. In contrast to Dijkstra’s algorithm, how-
ever, paths can pass through triangles, thus are
not restricted to triangular edges. Technically,
both Dijkstra’s algorithm and FMM solve the
so-called Eikonal equation |∇d(x)| = F (x)
with the boundary condition d(x0) = 0. In
terms of distances on meshed manifolds its in-
terpretation is as follows: Given a seed point
x0 and a function F defining the friction at
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(a) Fast marching (b) Dijkstra

(c) Adaptive friction (d) Second front

(e) 20 iterations (f) Final segmentation

Fig. 1: (a): Demonstration of surface segmen-
tation as proposed in

Starting from a random seed point
the geodesic distance to each other surface
point is computed via fast marching

(b): The distance is colour-
coded from near (blue) to far (red). This dis-
tance map can be approximated with Dijkstra’s
algorithm. (c): Using a curvature adaptive fric-
tion function F (x) we obtain small increases
along planar regions and large gradients at sharp
edges. (d): Adding the farthest point as new
seed point and repeating Dijkstra’s algorithm we
obtain a segmentation into two segments. (e):
The second wave front stops somewhere in the
middle when newly computed distances exceed
distances from the first iteration. After 20 iter-
ations we clearly observe an oversegmentation.
(f): To eliminate small segments along the edges
we proposed a decremental segmentation step
yielding the desired result with 6 segments only.
The combination of incremental and decremental
segmentation turned out to increase both robust-
ness to data noise and independence of the ran-
dom location of the first seed point

each point x on the manifold, FMM yields the
distance map d(x) such that the gradient mag-
nitude |∇d(x)| is identical to the local fric-
tion F (x). Then, the distance d(x) is pro-
portional to the arrival time of a propagating
wave front starting at point x0 in case the lo-
cal friction is inversely proportional to the local
speed of the wave front. Both algorithms run in
O(N logN) on sparse graphs, Dijkstra’s algo-
rithm of course only achieving an approximate
solution.

Exploiting FMM for calculating exact dis-
tance maps on surfaces, MOENNING & DODG-
SON (2003a,b) propose a strategy for surface
segmentation called fast marching farthest point
sampling (FastFPS). It tries to find a set of
seed points such that the corresponding Voronoi
cells correspond to the desired partitioning of
a surface. Their method starts from a random
seed point x0. Every next seed point will be
the point x∗ with largest distance after updat-
ing the distance map d via FMM. After N it-
erations they obtain N seed points xn, n =
1 . . . N , a distance map representing the dis-
tance to the closest of all N seed points and
implicitly a Voronoi segmentation. PEYRÉ &
COHEN (2004, 2006) apply a similar farthest-
point strategy on meshed surfaces for segmen-
tation, re-meshing and surface flattening using
geodesic distances.

In SCHINDLER & FÖRSTNER (2011) we
proposed FPS with Dijkstra’s algorithm to ro-
bustly segment meshed surfaces (Fig. 1), taking
into account the sub-optimality of Dijkstra’s al-
gorithm to generate a distance map. We also
proposed an application specific stopping crite-
rion to automatically determine a suitable num-
ber of seed points N . Such a stopping criterion
can be found for other applications as well, but
is out of scope of this paper. Further, we in-
troduced a decremental segmentation strategy:
We iteratively remove small segments by set-
ting their vertex distances to infinity and re-run
Dijkstra’s algorithm starting from neighbouring
segments.

Although FMM yields more accurate results,
it is limited to manifolds. Dijkstra’s algo-
rithm approximates the geodesic distance, but
for densely sampled manifolds the differences
are small (Figs. 1a and 1b). More decisive,
Dijkstra’s algorithm does not require the un-
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derlying graph to be embedded in some space.
Thus, in case the graph is embedded, i.e. its
nodes possess coordinates on a line, a surface
or in a volume, one may partition the line, the
surface or the volume according to the metric.
Otherwise one may just partition the nodes of
the graph according to distances encoded in the
edges. This increases the flexibility of the pro-
posed approach.

Here we transfer the idea of surface segmen-
tation using FPS to a graph partitioning pro-
cedure. Therefore, we replace FMM by Dijk-
stra’s algorithm to be able to handle more gen-
eral graphs which are not embedded in some
space. In the following, we present the novel
algorithm, called DijkstraFPS, and demonstrate
it with various applications in geometry and im-
age processing.

3 Graph Partitioning

DijkstraFPS can be seen as a general graph par-
titioning algorithm, detached from the underly-
ing semantics. We assume that the semantics
of the partitioning problem can be coded in the
distances between the nodes of a general graph.
It does not need to be embedded in some space.

The procedure is given in Algorithm 1. It as-
sumes, all pair-wise distances are pre-computed
and encoded as edge costs between adjacent
pairs of nodes.

The decremental segmentation step is almost
identical. Only the FPS (lines 3–5 in Algorithm
1) are modified: Instead of initializing the front
Q with the farthest point s ← argmaxn dn
with distance ds ← 0 and label ls ← l+,
we initialize the front Q with the neighbouring
vertices n of the smallest segment l− with dis-
tance dn ← ∞ and label ln ← undefined. The
Dijkstra step (lines 6–13) will propagate the
front into the unlabelled region l− and update
all corresponding vertices.

Observe, only the distances of those vertices
are updated which are closer to the current seed
node (line 11), whose number diminishes with
each additional seed node.

Fig. 2 illustrates the partitioning of a syn-
thetic example graph with 7 nodes connected
by 12 weighted edges. After three incremen-
tal Dijkstra steps (Figs. 2b–2d) one decremen-
tal step (Fig. 2e) is performed. Note that with

In: neighbours N , costs F , #segments Linc
Out: node distances d, node labels l

1 distances d ← ∞, labels l ← undefined;
2 for l+ ← 1 to do
3 pick new seed s ← argmaxn dn;
4 distance ds ← 0 and label ls ← l+;
5 initialize new front Q ← {s};
6 while front is not empty: Q �= {} do
7 select node u ← argminq∈Q dq;
8 remove u from front Q ← Q \ u;
9 foreach neighbour v ∈ Nu do
10 new distance d′v ← du + F v

u ;
11 if new distance d′v < dv then
12 update dv ← d′v , lv ← lu;
13 add to front Q ← Q∪ v;

DijkstraFPS graph partitioning all boundaries
are possibly subject to change in a following
Dijkstra step.

Within this paper we will restrict to undi-
rected graphs only. Directed graphs, however,
work as well, i.e. the propagation is cheaper in
one direction than the other. Moreover, edge
costs do not have to fulfill the triangle inequal-
ity of a metric space nor has the graph to be Eu-
clideanly embeddable. Only negative costs are
disallowed to avoid infinite loops during Dijk-
stra’s algorithm.

Many applications suggest an embedding of
the graph into a surface or a volume, leading to
a graph based on a triangulation or tetrahedral-
ization. Fig. 3 depicts two possible graph struc-
tures for a set of given 2D points. The triangle-
based graph structure introduces one node per
triangle (Fig. 3a). When labeling triangles via
DijkstraFPS we obtain a segmentation bound-
ary along triangular edges. The vertex-based
graph structure introduces one node per vertex,
i.e. 2D point, (Fig. 3b) yielding a segmentation
boundary along Voronoi edges. In the following
section 4 we will demonstrate both and point
out when to use which structure.

 
Linc 

 
  

 
 

Algorithm 1: DijkstraFPS graph partitioning. 

New seed nodes s are added iteratively by 
choosing the farthest node w. r. t. node 
distances � (FPS, lines 3–5) that are constantly 
updated using Dijkstra’s algorithm (lines 6–13) 
with edge costs vFu , yielding a labelling �. 
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(b) 1st Dijkstra step from random seed node
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(c) 2nd Dijkstra step from farthest node from (b)
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(d) 3rd Dijkstra step from farthest node from (c)
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(e) Decremental step removing green segment

Fig. 2: Graph partitioning via DijkstraFPS. (a):
Synthetic example graph with edge costs. The
costs are computed as the absolute value of gray
value differences. (b)–(d): Result of a Dijkstra
step traversing from the very left node and incre-
mentally summing up edge weights. The shortest
path to each node is indicated by the blue arrows
and leads to a distance printed within the circular
nodes. The farthest point is the one with distance
d = 0.44. A second Dijkstra step starts at this far-
thest node and updates node distances until an
update would increase the distance value, e.g.
to the left 0.00 + 0.50 > 0.06. A third Dijkstra
step starts at the centre node and again updates
node distances creating a third segment shown
in green. (e): Decremental step removing the
green segment. All green distances are initialized
to ∞ and Dijkstra starts propagating a front from
neighbouring segments. The boundary slightly
changes compared to (c).

(a) Triangle-based (b) Vertex-based

Fig. 3: Two possible graph structures for em-
bedded graphs, here for 2D points (black dots).
Graph nodes (circles) are either (a) Delaunay
triangles or (b) Voronoi vertices. A possible
segmentation boundary is shown as bold poly-
line along the Delaunay triangulation (a) or the
Voronoi diagram (b).

4 Applications

The DijkstraFPS graph partitioning algorithm
is applicable to many problems that can be ex-
pressed as attributed graph. In this section we
will demonstrate four examples: surface trian-
gulation by partitioning the 3D space and curve
reconstruction by partitioning the 2D space,
surface segmentation by partitioning a triangu-
lated 2D manifold and curve segmentation by
partitioning a 1D polyline, clustering by parti-
tioning points in an nD – possibly non-metric –
space, and image segmentation by partitioning
pixels or superpixels of the 2D image plane.

In this article we ignore the possibility to
formulate an application-specific stopping cri-
terion (SCHINDLER & FÖRSTNER 2011). In-
stead, we will define the number of segments
of the incremental (Linc) and decremental (Ldec)
segmentation manually.

4.1 Surface Triangulation

The problem of triangulating a surface given an
unordered set of 3D points is also known as
meshing or surface reconstruction. The points
are to be connected by triangles such that the
triangulation approximates the original surface
well. The problem can be easily transferred to
2D space where the boundary is a curve.

The underlying assumption is that the points
sample the curve densely enough. A common
measure for characterizing the sampling density
is the ε-sampling: It depends on the local fea-
ture size of a point x on a curve γ. Given the
medial axis as the set of points with more than
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(a) 40 points on a circle
with 2.5 % noise and 4
auxiliary corner points
(Linc = 20, Ldec = 2)

��(b) 1000 points on a
��sphere with 1 % noise
��and 8 auxiliary points
��(Linc = 30, Ldec = 2)

Fig. 4: Reconstruction results with the triangle-
based graph structure (Fig. 3a). The original
point cloud is shown with blue dots, the Delaunay
triangulation with thin lines (omitted in 3D) and
the boundary as bold polyline in 2D and surface
in 3D.

one closest point on the curve γ, the local fea-
ture size lfs(x) is the Euclidean distance of x
to the medial axis. Then a set of points X is
an ε-sample of a curve γ if every point x ∈ γ
on the curve γ is within distance ε · lfs(x) of
some point in X (EDELSBRUNNER 1998). We
will use this concept to empirically characterize
the success of a segmentation procedure by the
maximum value ε may have, as larger values of
ε correspond to lower sampling density.

The idea of determining a 2D polyline or 3D
surface triangulation via partitioning is to di-
vide the space into simplices and to partition
these simplices into “inside” and “outside”. In
3D space we reconstruct a surface by partition-
ing a Delaunay tetrahedralization or the corre-
sponding 3D Voronoi complex. In 2D this cor-
responds to the reconstruction of a curve by par-
titioning a Delaunay triangulation or the corre-
sponding 2D Voronoi complex (Fig. 3).

We choose to work with the Delaunay and
Voronoi diagrams, since they are commonly
used for this application. They were first ex-
ploited for surface reconstruction by BOIS-
SONNAT (1984) and led to the concept of α-
shapes (EDELSBRUNNER & MÜCKE 1994), r-
regular shapes (ATTALI 1997) and the crust
(AMENTA et al. 1998) with various deriva-
tives like conservative crust (DEY et al. 1999),
power crust (AMENTA et al. 2001) and eigen-
crust (KOLLURI et al. 2004).

(a) Sampled curve with increasing ε-sampling

(b) Delaunay triangulation and curve recon-
struction

Fig. 5: (a): Dependence on sampling density.
The original 2D cloud of 200 points samples a
curve with increasing ε-sampling. (b): The curve
reconstruction using the triangle-based partition-
ing approach (Fig. 3a, Linc = 100, Ldec = 2)
yields correct results until it breaks at a point with
ε = 1.02, as the sampling density on the right-
hand side of the curve is not high enough any-
more referring to its increasing curvature.

Since the partitioning divides all data points
into two segments, the resulting boundary sur-
face will be a closed surface within the Delau-
nay triangulated sampling volume.

We want to support the wave front to travel
from an inside triangle to another inside or from
an outside triangle to another outside, but hin-
der crossing the boundary. Under the above-
mentioned sampling assumption a triangle edge
that belongs to the boundary will be relatively
short (Fig. 4a). Thus we construct our graph
with edge costs simply being the inverse length
of the common triangular edge. The inverse
edge length can be raised to an exponent ≥ 2 in
order to put more weight on very short edges,
i.e. approximating an L∞-norm.

The Delaunay triangulation is always
bounded by the convex hull. If the desired
segmentation boundary is part of the convex
hull, it is not surrounded by triangles and thus
can not be the boundary between differently
labelled triangles. Therefore, we add auxiliary
points to the original point cloud to extend the
convex hull and avoid the boundary problem
(Fig. 4a).

Fig. 4 shows results obtained with the de-
scribed graph structure and edge costs on a syn-
thetic 2D as well as on a 3D dataset. The point
clouds are a circle with 40 points and a sphere
with 1000 points disturbed with Gaussian noise.
The circle is correctly reconstructed even when
further reducing the number of points. The
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(a) 40 points on a circle
with 2.5 % noise and 4
auxiliary corner points
(Linc = 20, Ldec = 2)

��(b) 1000 points on a
��sphere with 1 % noise
��and 8 auxiliary points
��(Linc = 30, Ldec = 2)

Fig. 6: Reconstruction results with the vertex-
based graph structure (Fig. 3b). The original
point cloud is shown with blue dots, the Delaunay
triangulation with thin lines (omitted in 3D) and
the boundary as bold polyline in 2D and surface
in 3D. The boundary polyline/surface is drawn by
linking edge centres of differently labelled ver-
tices with the triangular/tetrahedral centroid.

topology of points on the surface of a sphere is
a bit more complicated leading to some points
not included in the triangulation. Their large
deviation from the underlying surface contra-
dicts the above-mentioned sampling assump-
tion. The overall shape, however, is preserved.

In Fig. 5 we investigate the dependence on
a dense sampling. The point cloud is gen-
erated as (x, y) = (−t2/2,− sin(10t)) with
200 uniformly sampled values t ∈ [0, 2π].
Since the x-intervals decrease from left to right,
the local ε-sampling increases. The recon-
struction via partitioning the Delaunay com-
plex is shown as a bold line. It yields visu-
ally correct results until it breaks at a point
with ε = 1.02. In comparison: The pop-
ular Crust (AMENTA et al. 1998) and Power
Crust (AMENTA et al. 2001) algorithms guaran-
tee correct results only for ε < 0.252 – TCHER-
NIAVSKI & STELLDINGER (2008) even claim
ε < 0.1 – while Cocone (AMENTA et al. 2000)
and Tight Cocone (DEY & GOSWAMI 2003) re-
quire ε < 0.06. Of course our test is much
weaker than a theoretical proof, but still indi-
cates robustness to rather low sampling density.

The alternative vertex-based structure would
be the dual graph: Instead of representing tri-
angles by nodes we use the vertices and link
them by graph edges equivalent to the Delau-

nay edges. This representation might be bet-
ter suited if the boundary sample points are dis-
turbed by random noise such that an approxima-
tion is desired. By partitioning the vertices into
inside and outside we obtain a boundary curve
lying in between data points.

Graph edges crossing the boundary curve are
usually rather short (Fig. 6a). Thus we de-
fine the edge costs as the inverse length of the
crossed triangle edge.

Fig. 6 shows results obtained with this al-
ternative graph structure on the very same syn-
thetic datasets as in Fig. 4. The boundary is cor-
rectly reconstructed in between the given data
points.

4.2 Surface Segmentation

The problem of segmenting a surface requires
an algorithm to partition a surface into usu-
ally compact segments with similar elements
– w. r. t. pre-defined properties. Here, we as-
sume the surface to be represented by a triangu-
lar mesh, at each vertex being isomorphic to a
disk.

To our knowledge there is only one other
work that applies a front propagation method
to surface segmentation: PAGE et al. (2003)
use FMM as a final region growing step called
“marching watersheds”, referring to the pop-
ular watershed segmentation (BEUCHER &
LANTUEJOUL 1979) that has been imple-
mented for meshed surfaces by MANGAN &
WHITAKER (1999).

For segmenting a surface in 3D space we
will work with the very same graph structure
as for reconstructing a boundary curve in 2D
since we again want to partition a 2D manifold.
Now, however, the manifold is non-planar and
we exploit other geometric properties for defin-
ing edge costs.

For many applications in surface reconstruc-
tion and object modelling one wants to par-
tition a triangular mesh into piece-wise pla-
nar regions. Thus we introduce high costs for
graph edges linking non-planar nodes. For the
triangle-based graph structure it is natural to
compute triangle normals and derive costs from
the angle between two of them. For the vertex-
based graph structure vertex normals are needed
that can be computed via principal component
analysis from neighbouring points (HOPPE et
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al. 1992), possibly robustified by computing
the coordinate-wise median (ROUSSEEUW &
LEROY 1987, section 3.2.1) of multiple neigh-
bouring normals (SCHINDLER & FÖRSTNER
2011).

Analogous to partitioning adjacent triangles
in 3D space we can partition straight line seg-
ments in 2D space as it is commonly done
using the Ramer-Douglas-Peucker algorithm
(RAMER 1972, DOUGLAS & PEUCKER 1973).
Again the edge costs are derived from the angle
between two line segments or – in the vertex-
based graph structure – between two points.

Fig. 7 shows resulting segmentations in both
2D and 3D as well as for both graph struc-
tures. In the 2D examples the line and ver-
tex normals are shown as red and blue arrows,
respectively. The final segmentation is indi-
cated with coloured triangles, lines and vertices.
Even though both the cube and the square have
rounded corners and the points are disturbed by
3 % (square) and 1 % (cube) Gaussian noise, the
DijkstraFPS segmentation yields visually pleas-
ing results.

Fig. 8 shows the segmentation result on a real
dataset: It was reconstructed from 159 images
using Bundler (SNAVELY et al. 2006), PMVS2
(FURUKAWA & PONCE 2010) and Poisson sur-
face reconstruction (KAZHDAN et al. 2006).

4.3 Clustering

Within this section we focus on clustering data
points via graph partitioning. We choose to cre-
ate undirected links between each graph node
and its k = 25 nearest neighbours (k-NN).
In contrast to, e.g. Delaunay triangulation the
complexity for k-NN is independent of the di-
mensionality. Edge costs are the squared Eu-
clidean distance, possibly raised to an exponent
≥ 2.

We compare DijkstraFPS to common clus-
tering algorithms on two synthetic datasets
(Tab. 1):

The k-means algorithm (MACQUEEN 1965
iteratively computes the mean coordinates per
class and updates class labels according to the
closest mean. In case of different scatter the
second step yields incorrect labels (dataset A).

The Expectation–maximization (EM) algo-
rithm (DEMPSTER et al. 1977) not only esti-
mates the means but also the class variances,

(a) Linc = 10, Ldec = 4 (b) Linc = 10, Ldec = 4

(c) Linc = 50, Ldec = 6 (d) Linc = 50, Ldec = 6

Fig. 7: Segmentation of a polyline in 2D space
(top row: 24 points on a square, 3 % noise) and
a surface in 3D space (bottom row: 240 points on
a cube, 1 % noise) using the triangle-based (left)
and vertex-based (right) graph structure. Edge
costs are defined as the angle of the two normals.
The normals are either computed for triangles, for
lines or for vertices, depending on the dimension-
ality and the graph structure. In the 2D case they
are shown as red and blue arrows. The resulting
segmentation is indicated as coloured triangles,
lines and points, respectively, as well as a bold,
black boundary.

thus yields correct results (up to one falsely
classified point) for dataset A. If it, however,
assumes Gaussian distributions, it does not suc-
ceed with dataset B.

The mean shift clustering (COMANICIU &
MEER 2002) iteratively replaces points by the
centre of neighbouring points within a certain
radius. It yields correct results for dataset A,
but possibly too many clusters in the second ex-
ample depending on the chosen radius. Here,
a larger radius yields a similar result like k-
means.
DijkstraFPS returns perfect point labels on

both datasets shown in Tab. 1, certainly ben-
efiting from the long edges between points of
different clusters. On datasets with touching
or overlapping distributions DijkstraFPS might
fail.
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Fig. 8: Surface segmentation on a visually recon-
structed, meshed point cloud.

4.4 Image Segmentation

FPS has been used for progressive image sam-
pling by ELDAR et al. (1997). As “far-
thest point” they choose a vertex of the Eu-
clidean Voronoi diagram that maximizes some
weighted distance function. Combining FPS
with a marching scheme like FMM or Dijk-
stra’s algorithm we can approximate the non-
Euclidean Voronoi diagram and thus derive not
only a suitable image sampling but an image
segmentation as well.

The graph structure is inherently given by the
pixel grid. One can, however, choose between
a 4-neighbourhood (pixels horizontally and ver-
tically connected), an 8-neighbourhood (pixels
additionally diagonally connected) or a trian-
gulation (diagonal connections in one direction
only).

In contrast to other image segmentation al-
gorithms we can use arbitrary colour similar-
ity measures as edge costs and thus are not
restricted to gray images or Euclidean colour
spaces. We compute the Euclidean distance of
two pixels in the hue-saturation-value (HSV)
colour cone.

Fig. 9 shows three segmentation results.
While FLOWER 1 and FLOWER 2 are suc-
cessfully segmented, the approach fails for
FLOWER 3. Instead of segmenting “flower”
and “not flower” the unsupervised segmentation
draws the boundary along the dark bold edges
in the background.

Since the DijkstraFPS graph partitioning is
not restricted to a regular pixel grid, we can
work with irregular image regions such as su-
perpixels. Further we can generate superpixels
with DijkstraFPS by partitioning the image into
more than two segments, e.g. 30 segments as

(a) FLOWER 1
(Linc = 100, Ldec = 2)

(b) FLOWER 2
(Linc = 100, Ldec = 2)

(c) FLOWER 3
(Linc = 200, Ldec = 2)

Fig. 9: DijkstraFPS image segmentation. Three
test images are segmented using our proposed
graph partitioning scheme. Edge costs are com-
puted as squared Euclidean distances in hue-
saturation-value (HSV) colour space. While
FLOWER 1 (a) and FLOWER 2 (b) are perfectly
segmented, in FLOWER 3 (c) the dark back-
ground edges attract the segmentation boundary
more.

indicated by the white boundaries in Fig. 10a.
Then we build a second graph with only 30
nodes and edges according to the superpixel ad-
jacencies in the image. Edge costs are derived,
e.g. from the average colours of the superpix-
els. As can be seen from the green boundary in
Fig. 10a the final segmentation is very accurate
due to the flexibility of 30 initial segments but
also robust due to the larger number of pixels
that contribute to the superpixel colour. Results
for two images from the Berkeley Segmentation
Dataset and Benchmarks 500 (BSDS500 AR-
BELAEZ et al. 2011) are given in Figs. 10c and
10d.

For large images DijkstraFPS is rather slow,
since it is very general and not optimized for
the regular image grid. Of course other super-
pixel generating algorithms (LEVINSHTEIN et
al. 2009, ACHANTA et al. 2012) can be used
and might save significant computing time. The
second segmentation step would be performed
using DijkstraFPS. An evaluation of different
superpixel schemes combined with our Dijk-
straFPS graph partitioning might be reasonable
but is out of scope of this article.
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(a) FLOWER 3
(Linc = 200, Ldec = 30)

(b) FLOWER 4
(Linc = 100, Ldec = 5)

(c) 196027 (ARBE-

LAEZ et al., 2011)
(Linc = 200, Ldec = 5)

(d) 210088 (ARBE-

LAEZ et al., 2011)
(Linc = 100, Ldec = 10)

Fig. 10: Progressive image segmentation. (a):
FLOWER 3 image from Fig. 9c segmented into 30
segments, shown with white boundaries. Then
a graph with only 30 nodes is built from the ob-
tained segmentation and again partitioned using
DijkstraFPS, yielding the green boundary. (b), (c)
and (d): More examples.

5 Conclusion

We proposed a new graph partitioning scheme
based on Dijkstra’s distance transform and far-
thest point sampling (DijkstraFPS) and showed
how to construct graphs for solving various
problems in geometry and image processing.
The partitioning is guided by pre-defined edge
costs that do not have to follow a Euclidean
metric. The method is not restricted to a bi-
nary partition but can yield multiple segments,
possibly in terms of an oversegmentation or – in
terms of image segmentation – superpixels. The
latter themselves can be nodes of a subsequent
graph partitioning.

As shown in SCHINDLER & FÖRSTNER
(2011) the algorithm can be augmented with an
automatic, application-specific stopping crite-
rion. Establishing such criteria for each above-
mentioned application remains future work.

There is much space for improving the pro-
posed edge costs. We focused on demonstrating
the diversity of DijkstraFPS graph partitioning

Tab. 1: Clustering results of three common clus-
tering algorithms and our DijkstraFPS graph par-
titioning. DijkstraFPS (Linc = 10, Ldec = 2)
yields 100 % correct results in both examples.
The ellipses are 1-σ confidence intervals.
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rather than on fine-tuning for specific applica-
tions.

Other possible applications of the method
include triangulation and segmentation of full
wave-form lidar point clouds, segmentation of
radar images, hierarchical image segmentation
as indicated in section 4.4, segmentation of im-
age sequences and image segmentation based
on texture similarity, which of course have to
be empirically compared to standard algorithms
used in that application.
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