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Summary: This paper contributes an assessment
for estimating rice (Oryza sativa L., irrigated low-
land rice) biomass by canopy reflectance in the
Sanjiang Plain, China. Hyperspectral data were
captured with field spectroradiometers in experi-
mental field plots and farmers’ fields and then ac-
companied by destructive aboveground biomass
(AGB) sampling at different phenological growth
stages. Best single bands, best two band-combina-
tions, optimised simple ratio (SR), and optimised
normalized ratio index (NRI), as well as multiple
linear regression (MLR) were calculated from the
reflectance for the non-destructive estimation of
rice AGB. Experimental field data were used as the
calibration dataset and farmers’ field data as the
validation dataset. Reflectance analyses display
several sensitive bands correlated to rice AGB, e.g.
550, 670, 708, 936, 1125, and 1670 nm, which
changed depending on the phenological growth
stages. These bands were detected by correlograms
for SR, NRI, and MLR with an offset of approxi-
mately ± 10 nm. The assessment of the three meth-
ods showed clear advantages of MLR over SR and
NRI in estimating rice AGB at the tillering and
stem elongation stages by fitting and evaluating the
models. The optimal band number for MLR was set
to four to avoid overfitting. The best validatedMLR
model (R2 = 0.82) at the tillering stage was using
four bands at 672, 696, 814 and 707 nm. Overall,
the optimized SR, NRI, and MLR have a great po-
tential in non-destructive estimation of rice AGB at
different phenological stages. The performance
against the validation dataset showed R2 of 0.69 for
SR and R2 of 0.70 for NRI, respectively.

Zusammenfassung: Reflexionsanalyse zur Ab-
schätzung der Biomasse von Reis in unterschiedli-
chen phänologischen Stadien. Dieser Beitrag ver-
sucht eine Bewertung zur Biomassenabschätzung
von Kulturreis (Oryza sativa L., bewässerter Flach-
land-Kulturreis) mit Hilfe von Bestandsreflexion in
der Sanjiang Ebene, China. Hyperspektrale Daten
wurden in Freilandexperimenten und in Feldern
von Landwirten mit Feldspektroradiometern ge-
messen. Nach den Spektralmessungen wurde die
oberirdische Biomasse destruktiv in unterschiedli-
chen phänologischenWachstumsstadien gemessen.
Beste einzelne Bänder, beste Zweibandkombinatio-
nen, optimierter Simple Ratio (SR) und Normali-
sierter Ratio Index (NRI), sowie Multiple Regressi-
onsanalyse (MLR) wurden anhand von Reflexions-
daten der Freilandexperimente berechnet. Die Da-
ten von den Feldern der Landwirte wurden als Va-
lidierungsdatensatz verwendet. Die Reflexionsana-
lysen zeigen mehrere zur Biomasse korrelierend
sensitive Bänder, z. B. 550 nm, 670 nm, 708 nm,
936 nm, 1125 nm und 1670 nm, welche sich in Ab-
hängigkeit von phänologischen Wachstumsstadien
änderten. Diese Bänder wurden mittels Korrelo-
gramme für SR, NRI und MLR mit einem Versatz
von ca. ± 10 nm detektiert. Die Bewertung der drei
Methoden zeigte deutliche Vorteile von MLR ge-
genüber SR und NRI in der Biomassenabschätzung
für Reis im Bestockungs- und Ährenschwellensta-
dium. Die optimale Bandanzahl für MLR wurde
auf vier festgesetzt, um eine Überanpassung zu
vermeiden. Das beste MLR-Modell (R2 = 0.82)
zum Bestockungsstadium basiert auf vier Bändern
(672 nm, 696 nm, 814 nm und 707 nm). Die Analy-
se von hyperspektralen Reflexionsdaten zur Opti-
mierung von VIs oder MLR hat ein großes Potenti-
al in der Biomassenabschätzung für Reis in unter-
schiedlichen phänologischen Stadien. Dies wird
durch die gute Übertragbarkeit (R2 = 0.69 für SR
und R2 = 0.70 für NRI) der optimierten Modelle in
die landwirtschaftliche Praxis unterstrichen.
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timate AGB on a large scale using airborne
or satellite-borne remote sensing data by ap-
plying evaluated models. The hyperspectral
satellite EnMap, which is scheduled for 2016,
will provide data with two separate sensors for
the aquisition of VNIR and SWIR in the spec-
tral domain of 420 nm – 2450 nm with 30 m
ground resolution similar to the Hyperion
data (SCHWIND et al. 2012). By simulating the
spectral properties of EnMap with field spec-
troradiometer data, models can be developed
and evaluated for EnMap-based estimation of
AGB (KAUFMANN et al. 2010).
The relationship between reflectance and

agricultural crop characteristics has been in-
vestigated in many studies in the last decades
(THENKABAIL et al. 2000). Most of those stud-
ies focused on nitrogen, leaf area index (LAI),
or yield estimation, but rarely on AGB esti-
mation, since there is a strong correlation be-
tween LAI and AGB (SHIBAYAMA & AKIYAMA
1989, FILLELA & PENUELAS 1994). Studies that
use hyperspectral ground data to estimate
AGB have been carried out for grass, wheat,
and for rice (RICHARDSON et al. 1983, SHIBA-
YAMA & AKIYAMA 1986, ANDERSON & HANSON
1992, SERRANO et al. 2000,HANSEN & SCHJOER-
RING 2003, LI et al. 2010,WANG et al. 2008, BA-
JWA et al. 2010).
The common method to estimate AGB

from reflectance is based on the application,
improvement, or development of spectral in-
dices (SIs). Optimised or improved standard
SIs such as SR and NRI represent best band
selections based on correlograms (THENKABAIL
et al. 2000, STROPPIANA et al. 2009, KOPPE et
al. 2010). In addition, MLR has been applied
in several studies, since this method provides
flexibility in the choice of bands (SHIBAYAMA&
AKIYAMA 1989, TAKAHASHI et al. 2000,YU et al.
2013). Futhermore, MLR is more reliable than
SIs that is saturated at high LAI levels (YANG
& CHEN 2004, HABOUDANE et al. 2004). It is
simpler and more flexible for the adoption by
growers and crop consultants than partial least
square (PLS) (BAJWA et al. 2010).
Many AGB studies were conducted in

greenhouses under controlled conditions or
the spectral reflectance was measured in the
laboratory (SONG et al. 2011), but not in the
field. Furthermore, most results, proposed SIs,
or developed models were not validated us-

1 Introduction

In the field of crop science, the aboveground
dry biomass (AGB) and nutrient use efficien-
cy are considered to be the major factors for
determining the final yield (RAUN & JOHNSON
1999). AGB influences at each phenological
stage the amount of grain production, since
the yield is defined as the amount of grain,
straw, and AGB. Furthermore, knowledge of
crop development characteristics and its spa-
tial and temporal variation in the field are use-
ful for determining crop requirements such as
N-fertilisation as closely as possible and for
achieving acceptable yields, e.g. for rice (FAG-
IERA 2007).
Traditional methods to estimate AGB in-

volve direct destructive measurements in the
field, which are time-consuming, expensive,
and require intensive field work. In the con-
text of precision agriculture, proximal sens-
ing is a promising and well investigated tool
to avoid the destructive approach (GEBBERS &
ADAMCHUK 2010). Field canopy reflectance can
be measured with portable handheld or mobile
spectroradiometer, e.g. Yara N-Sensor (AGRI-
CON 2013) and can be used to support farm-
er’s decisions on crop management such as
fertilisation, pest management, or irrigation.
Hyperspectralmeasurements in the field can

also be used as groundtruth or for model de-
velopment in analysing satellite imagery. The
disadvantage of hyperspectral and multispec-
tral satellite images is the high dependence on
a clear sky at the image aquisition time, while
spectroradiometers can be used in the field
with some cloud cover for approximately 3–4
hours around solar noon. Spectroradiometers
are fast and the most important non-destruc-
tive devices. They have a continuous acquisi-
tion of all reflectance values in a given spec-
tral range of 350 nm – 2500 nm with a high
spectral resolution of < 2 nm – 5 nm (MILTON

et al. 2009, ORTENBERG 2011).
In many studies, the in-field reflectance

measurements are acquired and required for
calibrating satellite-borne hyperspectral data
using, e.g. EO-1 Hyperion imagery (PSOMAS
et al. 2011, KOPPE et al. 2012) or of airborne-
based data, e.g. HyMap imagery (CHO & SKID-
MORE 2009). The goal of these studies is to es-
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about 109,000 km2. The area is characterised
by a sub-humid continental monsoon climate.
The mean annual temperature is about 2 °C
and the mean precipitation sums up to 550 mm
per year. The frost-free period is about 130
days long. The rice fields belong to the north-
ernmost cropping rice system in China and to
the northernmost ones worldwide. The rice is
sown in mid-April (in heated greenhouses), is
transplanted after the frost period to the field
from the middle to the end of May, and is har-
vested around end of September. The fields
are controlled flooded and manured with N-
fertiliser before transplanting the seedlings.
Four to five seedlings (120–150 seedlings/m2)
are planted at one position forming a so-called
hill. The irrigation is usually stopped 30 days
before harvest.
Two field experiments were carried out at

two sites (Keyansuo and Qixing research sta-
tion) in Jiansanjiang and were used as the cali-
bration dataset. They represented a wide range
of growth conditions by N-fertiliser input con-
ducted in a split-plot design: 0, 60, 75, 90, 105,
120, and 150 kg N ha-1 in 2007 (146 plots), and
0, 35, 70, 105, and 140 kg N ha-1 in 2008 (88
plots) and 2009 (95 plots). The plot size was
approximately 20 m² each. The widely used
rice variety Kongyu131 (28 hills/m2) was cul-
tivated in all experiments. In addition to the
experimental fields, 9 farmers’ fields were se-
lected in 2007–2009 and used as the valida-
tion dataset. They were managed by the farm-
ers according to their usual practices. The size
of these fields varied from 12 to 27 ha, where
each field contained several plots with a mean

ing an independent dataset to test the trans-
ferability of the models. Previous studies have
often focused only on calibrating wavebands
to a crop parameter, and have not adequately
evaluated the performance of their results in
an independent dataset (LU 2006, CHO& SKID-
MORE 2009).
The main two objectives of this study are

(i) to investigate the potential for rice AGB es-
timation from the canopy reflectance and (ii)
to develop and evaluate the proposed AGB
estimation models. The first step contains an
analysis of the AGB variation, the analysis of
the relationship between canopy reflectance
and N-application and AGB. In a second step,
three methods to estimate AGB by the reflec-
tance are tested with a calibration dataset us-
ing experimental field data: Single bands, best
two band-combinations (SR and NRI), and
MLR. Finally, the three methods are trans-
ferred to an independent dataset using farm-
ers’ field data under conventional manage-
ment.

2 Material and Methods

2.1 Study Area and Experimental
Design

The research was carried out at the Qixing
farm (47.2 °N, 132.8 °E) in Jiansanjiang, Hei-
longjiang Province, Northeast China. The
farm is located in the Sanjiang Plain (Fig. 1),
which is an alluvial plain from three rivers
(Heilongjiang, Songhua, Wusuli), and covers

Fig. 1: Study area in the north-east corner of China.
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Ten sample counts in the spectrum averag-
ing (settings in the ASD software) were re-
peated at 6 positions per plot. They were av-
eraged per plot in order to reduce the atmos-
pheric influence, e.g. clouds and wind, and
field conditions, e.g. planting in rows. Overall,
approximately 14,000 spectra (unaveraged)
were collected from 2007 to 2009.

2.3 Aboveground Biomass (AGB)
Collection

The AGB was measured destructively by clip-
ping three (booting to heading stage) to five
(tillering to stem elongation stage) hills of the
measured rice plants. All plant samples were
rinsed with water, the roots were clipped, and
then the samples were divided in their plant
organs leaf, stem and head. They were oven
dried at 105 °C for 30 minutes, and dried at
70 °C until constant weight. The AGB was
weighed later. In this study, the combined to-
tal dry AGB was used and not the individual
AGBs from the different organs (leaf, stem,
head). Altogether, 1,685 AGB samples were
collected from the tillering to heading stages.

2.4 Spectral Indices (SIs) and
Stepwise Multiple Linear
Regression (MLR)

Single bands or combinations of up to four
different bands were tested for their explana-
tory value. In addition, spectral indices rep-
resenting two bands were analysed: simple
ratio (SR) and normalised difference veg-
etation index (NDVI). They are widely used
for the prediction of biophysical quantities of
crops and were developed by JORDAN (1969)
and ROUSE et al. (1974). In this study, the fo-
cus is on using the best band-combinations to
optimise the SR and NDVI for AGB estima-
tion due to the saturation of the NDVI (HA-
BOUDANE et al. 2004). The optimised NDVI is
also known as normalised ratio index (NRI)
and was suggested to determine the best band-
combinations (THENKABAIL et al. 2000, SIMS &
GAMON 2002). All possible combinations were
computed from the wavelengths in the domain
of 350 nm – 1800 nm. The two band-combi-

size of 1,400 m2. In most cases, the cultivar
Kongyu131 was planted.

2.2 Hyperspectral Data Collection

Hyperspectral and agronomic data were col-
lected in 2007–2009. Before taking the spec-
tral reflectance, the average number of tillers
in each hill was determined per plot in order
to measure the reflectance of representative
plants (Fig. 2). Canopy spectral reflectance
was measured with two non-imaging passive
sensors by ASD (Analytical Spectral Devices,
Inc., Boulder, CO, USA): QualitySpec® Pro in
the wavelength domain of 350 nm – 1800 nm
in 2007 and 2009, and FieldSpec3® Pro in the
wavelength domain of 350 nm – 2500 nm in
2008. Both devices have a sampling interval
of 1.4 nm in the VNIR and 2 nm in the SWIR
domain. The measurements were taken from
9 a.m. to 1 p.m. LMT, mostly under cloudfree
conditions in the field. Every 10 to 15 minutes,
calibration measurements were taken with a
white reference panel (BaSO4) and were re-
peated depending on illumination changes. A
default viewing angle (α) of 25° and a measur-
ing height (h) of 1 m above the canopy created
a field of view (A) of 0.15 m2 with a radius (r)
of 22 cm (1) and (2).

r(m) = h × tan(α │2) (1)

A(m2) = π × r2 (2)

Fig. 2: Hyperspectral data collection in paddy
rice (distance to canopy: 0.3 m).
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2.5 Data Analysis and Statistics

Original spectral data were used to average
the six spectra per plot. The spectra were not
smoothed, but significant outliers were ex-
cluded from the analysis. In addition, the
stepwise MLR provided a method of feature
reduction and a statement about the optimal
band number to estimate AGB. Basic analy-
ses were conducted like descriptive statistics
of AGB, analyses of canopy spectra under dif-
ferent N-rates, and growth stages before using
the data as a calibration dataset. The calibrat-
ed models were validated using an indepen-
dent dataset to test the transferability of the
models. The following statistic parameters,
root-mean-square error (RMSE) and relative
error (RE) against the observed mean, were
used to calculate the fitness between the ob-
served and estimated data. All statistical anal-
yses were conducted in SPSS 20.0 and Statis-
tica 6.0 (STATISTICA 2013).

3 Results

3.1 Temporal AGB Variation

AGB production and development are de-
pendent on crop growth conditions such as
weather, soil and nutrition. Tab. 1 illustrates
the temporal AGB variation in diverse years
and growth stages for the experimental sites.
Generally, AGB production tends to increase
from the tillering to the heading stage. Over-
all, it ranges from 0.1 t/ha to 14.1 t/ha across
all stages and years. The rice crop had a high
variation in AGB (CV > 30 %), especially dur-
ing the early growth stages. During the later
stages booting and heading, the variation was
lower (CV < 30 %). Temporal variation be-
tween the three years is significant. In 2009,
the temperature was lower than in the previ-
ous years, so the AGB production was lower
with a mean AGB value of 0.8 t/ha – 7.0 t/ha.
Highest values were observed in 2008.

nations were calculated with a self-developed
Java program, analysed and plotted as a con-
tour diagram using MATLAB 7.0 software
(MATLAB 2013). Due to the noises caused
by water absorption in the SWIR domain, the
bands from 1330 nm to 1480 nm, and 1770 nm
to 1800 nm were excluded from the analyses.
Only the best two band-combinations are pre-
sented in the results. The SR and NRI equa-
tions are defined as (3) and (4):

1

2

SR ρ
ρ

= ; where ρ1 > ρ2 (3)

1 2

1 2

NRI ρ ρ
ρ ρ

−=
+

; where ρ1 > ρ2 (4)

where
ρ reflectance value

For the analysis of AGB in relation to one
feature, irrespectively if a single band or index
was used, correlation analysis was applied.
The method attempts to model the relationship
between two or more variables by fitting a lin-
ear regression equation to observed data. Sin-
gle bands, but also combination of two, three,
and four different bands were tested using a
stepwise multiple linear regression (MLR).
This allows selecting predictors of depend-
ent variable based on statistical criteria. The
observed data is the dependent variable of the
model. In this study, the AGB is the depend-
ent variable and the single bands are the inde-
pendent variables. In total, 1,250 bands were
analysed in SPSS 20.0 (SPSS 2013) and the
best MLR models are presented in the results.
The MLR equation is defined as (5):

1 21 2 ib b i by a b b bρ ρ ρ= + × + × + + × (5)

where
y multiple linear regression

(MLR)
a mathematical constant
b1, b2, …, bi coefficients
ρb1, ρb2, …, ρbi reflectances
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clustered here as one spectrum. Mostly, the
differences between the first (0 kg·N/ha) and
the second N-rate (35 kg·N/ha) were not sig-
nificant in the reflectance. Similarities were
also observed for the fourth (105 kg·N/ha) and
fifth (140 kg·N/ha) N-rate.
Rice canopies showed a diverse reflectance

at different growth stages. As an example, a
dataset of four stages in 2008 was used to dis-
play the response of a rice crop from the til-
lering to the heading stage (Fig. 3, right). At an
early phenological stage, the reflectance was
mainly influenced by the soil and water of the
paddy field, where the AGB production was
low due to low LAI.
Generally, the reflectance increased from

the tillering to the booting stage and de-
creased from the heading stage due to starting
senescence of the plant. Maximum reflectance
was observed at the booting stage. The can-
opy LAI and the biochemical components of
the plant changed at different growth stages,
which evidently influenced the reflectance.

3.2 Canopy Reflectance Spectra
under Different N-rates and at
Different Growth Stages

The reflectance spectra of the rice canopies
clearly indicated differences in AGB or LAI
that resulted from different N-rates and at var-
ious phenological growth stages. The spectra
of the experiment plots with five different N-
rates at the booting stage in 2008 were taken
as an example to display the response pattern
of canopy reflectance (Fig. 3, left). Generally,
the reflectance spectra tended to increase with
rising LAI in the NIR (700 nm – 1100 nm)
and SWIR (1100 nm – 1800 nm) regions,
whereas the opposite occurred in the VIS
(500 nm – 700 nm) region. The canopy LAI re-
sponded to N-application. Higher reflectance
response occurred with lower N-application.
Especially, in the green (500 nm – 600 nm)
and red (600 nm – 700 nm) regions, obvious
visible differences were detected. There was
a high increase in the five spectra in the Re-
dEdge region (670 nm – 740 nm), which were

Tab. 1: Descriptive statistics of AGB on the experimental fields.

Stage n Min Max Mean SD CV
(t/ha) (t/ha) (t/ha) (t/ha) (%)

20
07

Tillering 146 0.1 2.0 0.9 0.46 46.5

Stem Elongation 74 1.6 5.7 3.4 0.88 26.1

Booting 49 2.9 7.5 5.6 1.05 18.8

Heading 114 3.3 12.4 7.6 1.96 26.1

20
08

Tillering 40 0.1 1.8 0.9 0.46 50.5

Stem Elongation 40 0.9 2.9 1.6 0.49 31.3

Booting 88 2.9 8.8 5.3 1.36 25.6

Heading 88 4.4 14.1 9.0 1.83 20.4

20
09

Tillering 91 0.2 1.6 0.8 0.34 41.3

Stem Elongation 95 0.3 2.2 1.2 0.52 42.0

Booting 95 1.4 6.6 3.5 1.26 36.1

Heading 95 4.6 9.7 7.0 1.15 16.5

A
ll

Tillering 277 0.1 2.0 0.9 0.43 46.3

Stem Elongation 209 0.3 5.7 2.1 1.19 58.0

Booting 232 1.4 8.8 4.7 1.57 34.0

Heading 297 3.3 14.1 7.8 1.87 24.1

n = Number of samples, SD= Standard deviation, CV= Coefficient of variation
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result of low crop development at this growth
stage. Highest R values were recorded at the
stem elongation stage and across all stages.
Maximum negative R values were observed at
tillering and across all stages at wavelengths
of 670 nm, which corresponds to high solar
radiation absorption by chlorophyll pigments.
In the RedEdge region, a high increase of R
values was detected, which is coincident with
reflectance increase of vegetation in this do-
main.
Greatest positive R values were observed

in the NIR shoulder at the stem elongation

3.3 Relationship between AGB and
Spectral Reflectance

The correlation coefficients between AGB
and canopy reflectance at different phenologi-
cal stages and in different years are presented
in Fig. 4. First of all, the correlation between
AGB and reflectance at different stages is de-
scribed (Fig. 4, left). The pattern of the R (cor-
relation coefficient) curves was similar at the
different stages and across all stages except
for the heading stage. Lowest absolute R val-
ues were observed at the tillering stage as a

Fig. 3: Left: changes of rice canopy reflectance with varied N-rates at the booting stage in 2008,
right: changes in reflectance at different growth stages in 2008.

Fig. 4: Left: the correlation coefficients (R) between AGB and canopy reflectance at different phe-
nological stages, right: in different years.



358 Photogrammetrie • Fernerkundung • Geoinformation 4/2013

R2 values except at the stem elongation stage.
Moreover, they are similar in the band-com-
binations ± 20 nm). At the tillering stage, the
SR (ρ822, ρ716) has the best performance (R2 =
0.58). At the stem elongation stage, the NRI
(ρ1678, ρ1575) displayed the best results (R2 =
0.75) versus other stages (Tab. 2, Fig. 5). At
the booting stage, SR (ρ695, ρ513) and NRI (ρ695,
ρ515) performed similarly (R2 = 0.54) using al-
most equal bands. Due to the changes in the
canopy reflectance by biochemical compo-
nents of the plant, all AGB predictors result
in lower R2 values (< 0.3) at the heading stage.
However, across the whole monitored sea-

son, high R2 values were observed (R2 > 0.6)
for a high sample number (n = 1015). SR (ρ713,

stage and at wavelengths of 936 nm across all
stages. Two peaks are noticeable in the SWIR
domain. The first one is located as a local
minimum in the reflectance at wavelengths
of 1125 nm at the booting and heading stag-
es, which is not detected in the early stages
of tillering and stem elongation. Additional-
ly, the plotted R curves show some noises in
the SWIR domain for the booting and head-
ing stage. The noises were only observed in
the 2007 data due to partly cloudy sky dur-
ing the measurements. As a second peak, a lo-
cal maximum in the R curves is observed at
wavelengths of 1670 nm at tillering and stem
elongation.
The plotted curves for the correlation coef-

ficients (R) between AGB and canopy reflec-
tance show strong differences from year to
year (Fig. 4, right). In general, the relationship
seems to be diverse in all three years. Across
all years, the highest R values are observed
(R > 0.75), and in 2007 the lowest (R > 0.6).
In summary, sensitive bands are located at
around 550, 670, 708, 936, 1125 and 1670 nm.

3.4 Model Calibration by single
Bands, SR and NRI

The coefficient of determination between
AGB and single bands, best SR, and best NRI
was calculated. The best single bands and
two band-combinations are shown in Tab. 2 at
each growth stage and across all three years.
Generally, the best SR and NRI always pro-
duce higher R2 values as one single band. SR
and NRI show a very similar performance in

Tab. 2: Single bands, SR and NRI model calibration at different growth stages (2007–2009 pooled
data).

Single Band SR NRI
ρ1 ρ1/ρ2 (ρ1-ρ2)/(ρ1+ρ2)

Stages
(2007–2009) n ρ1 R2 ρ1, ρ2 R2 ρ1, ρ2 R2

Tillering 277 672 0.344 822,716 0.582 799,711 0.559

Stem Elongation 209 780 0.487 1760,1325 0.528 1678,1575 0.758

Booting 232 854 0.443 695,513 0.541 695,515 0.541

Heading 297 380 0.066 800,789 0.218 800,789 0.293

All 1015 936 0.629 713,550 0.757 713,533 0.743

Fig. 5: Best two band-combinations for NRI at
the stem elongation stage.
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ρ550) showed its best performance here (R2
= 0.75). The best single band was 936 nm (R2
= 0.62), which is also important for the MLR
models.

3.5 MLR Model Calibration

MLR analyses were conducted in two direc-
tions: i) assessment of the optimal band num-
ber, ii) MLR-models with 1–4 single bands.
Generally, with respect to the first direction,
the MLR models explain 50–93% of the var-
iation in AGB (Fig. 6). The highest perfor-
mance was observed at the stem elongation
stage (R2 = 0.93 with 18 bands), the lowest at
the heading stage (R2 = 0.50 with 17 bands).
At the tillering stage, the R2 reached a value
of 0.82 with 19 bands and at the booting stage,
a value of 0.60 with 7 bands. The accuracy of
the MLR models was quite good. Across all
stages, 35 bands explained 88% of the bio-

Fig. 6: Relationship between band number and
performance (R2) of the MLR models.

Tab. 3: Stepwise MLR models at diverse growth stages (MLR = multiple linear regression, adj. =
adjusted, SE = Standard error of the estimator).

Stage Model Bands Regression equation R² R² adj. SE

Tillering MLR-1 1 AGB = 1.638 - 19.715 ρ672 0.334 0.332 0.348

n = 277 MLR-2 2 AGB = 1.051 - 16.182 ρ672 + 2.369 ρ1052 0.498 0.494 0.303

MLR-3 3 AGB = 1.189 + 12.021 ρ672 + 4.321 ρ1052 - 28.093 ρ696 0.536 0.530 0.292

MLR-4 4 AGB = 0.824 - 31.879 ρ672 + 70.423 ρ696 + 12.658 ρ814 - 60.408 ρ707 0.641 0.636 0.257

Stem MLR-1 1 AGB = -0.190 + 9.658 ρ780 0.487 0.485 0.858

Elongation MLR-2 2 AGB = 0.220 + 91.228 ρ780 - 86.560 ρ763 0.633 0.629 0.728

n = 209 MLR-3 3 AGB = 0.518 + 72.709 ρ780 - 63.048 ρ763 -22.077 ρ1489 0.679 0.674 0.682

MLR-4 4 AGB = 1.277 + 26.058 ρ780 - 24.207 ρ763 - 66.429 ρ1489 + 30.298 ρ1662 0.744 0.739 0.611

Booting MLR-1 1 AGB = 1.374 + 8.697 ρ854 0.443 0.441 1.180

n = 232 MLR-2 2 AGB = 1.772 + 17.572 ρ854 - 19.088 ρ729 0.533 0.529 1.083

MLR-3 3 AGB = 1.555 + 24.049 ρ854 - 14.718 ρ729 - 10.531 ρ1172 0.545 0.539 1.071

MLR-4 4 AGB = 1.147 + 28.131 ρ854 - 20.997 ρ729 - 12.945 ρ1172 + 69.257 ρ377 0.560 0.552 1.056

Heading MLR-1 1 AGB = 9.970 - 256.497 ρ380 0.066 0.062 1.816

n = 297 MLR-2 2 AGB = 7.798 - 255.759 ρ380 + 5.190 ρ1083 0.119 0.113 1.766

MLR-3 3 AGB = 7.842 - 263.838 ρ380 + 20.485 ρ1083 - 16.632 ρ1003 0.166 0.157 1.722

MLR-4 4 AGB = 6.445 - 488.717 ρ380 + 26.101 ρ1083 - 23.102 ρ1003 + 349.618 ρ406 0.203 0.192 1.686

All MLR-1 1 AGB = -1.534 + 20.179 ρ936 0.629 0.628 1.889

n = 1015 MLR-2 2 AGB = -0.111 + 29.231 ρ936 - 25.930 ρ1659 0.745 0.745 1.565

MLR-3 3 AGB = 0.137 + 46.188 ρ936 - 24.244 ρ1659 - 18.150 ρ762 0.757 0.756 1.529

MLR-4 4 AGB = 0.481 + 37.904 ρ936 - 30.875 v1659 - 27.087 ρ762 + 18.429 ρ1027 0.771 0.770 1.485
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are characterised by four features: Linear rise,
saturation, again linear rise and finally as-
ymptotic trend. Despite the stepwise increas-
ing of bands, the performance of the models
showed an indication of overfitting (after 2–3
bands). iii) For this reason, the optimal num-
ber was set to four. The best MLR models are
listed in Tab. 3 separately for each stage and
across all stages.

mass variability. However, the results indi-
cated that the best MLR model was depend-
ent on the number of independent variables.
A higher number of variables cause higher R2
values, but the number of bands has a limit.
Fig. 6 demonstrates the relationship between
the band number and the performance of the
MLR models at each stage. The relation is il-
lustrated as a curve for each stage. The curves

Tab. 4: Calibration results versus validation results (NRI = normalized ratio index, SR = simple
ratio, MLR = multiple linear regression).

Calibration dataset (2007–2009) Validation dataset

Stage R2 Model (ρ) RMSE RE R2 Stage

0.56 NRI (799,711) 0.58 54.8 0.70

0.58 SR (822, 716) 0.57 53.9 0.69

Tillering 0.30 MLR-1(672) 0.66 57.6 0.29 Tillering

n = 277 0.44 MLR-2 (672, 1052) 0.61 53.0 0.55 n = 92

0.47 MLR-3 (672, 1052, 696) 0.56 53.0 0.62

0.56 MLR-4 (672, 696, 814, 707) 0.47 44.5 0.82

0.76 NRI (1678, 1575) 1.25 59.4 0.38

0.53 SR (1760, 1325) 1.36 64.8 0.45

Stem Elongation 0.49 MLR-1 (780) 1.88 89.3 0.18 Stem Elongation

n = 209 0.63 MLR-2 (780, 763) 1.28 60.8 0.31 n = 130

0.68 MLR-3 (780, 763, 1489) 1.15 54.8 0.51

0.74 MLR-4 (780, 763, 1489, 1662) 1.16 55.1 0.42

0.54 NRI (695, 515) 1.89 49.3 0.00

0.54 SR (695, 513) 3.49 90.8 0.00

Booting 0.44 MLR-1 (854) 1.89 49.3 0.14 Booting

n = 232 0.53 MLR-2 (854, 729) 2.07 53.8 0.06 n = 257

0.54 MLR-3 (854, 729, 1172) 1.98 49.7 0.12

0.56 MLR-4 (854, 729, 1172, 377) 1.86 48.4 0.11

0.29 NRI (800, 789) 2.73 51.3 0.19

0.22 SR (800, 789) 2.76 51.9 0.19

Heading 0.02 MLR-1 (380) 3.12 58.6 0.01 Heading

n = 297 0.04 MLR-2 (380, 1083) 3.12 58.6 0.01 n = 191

0.05 MLR-3 (380, 1083, 1003) 3.09 58.1 0.02

0.06 MLR-4 (380, 1083, 1003, 406) 2.86 53.8 0.12

0.74 NRI (713, 533) 2.86 76.0 0.42

0.76 SR (713, 550) 2.76 77.9 0.70

All 0.60 MLR-1 (936) 2.57 72.7 0.48 All

n = 1015 0.72 MLR-2 (936, 1659) 2.42 68.4 0.53 n = 670

0.74 MLR-3 (936, 1659, 762) 2.44 68.9 0.54

0.75 MLR-4 (936, 1659, 762, 1027) 2.49 70.2 0.55
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ing in experiments and large scale in farmers’
fields). When the SR-, NRI-, and MLR-mod-
els were evaluated with data from farmers’
fields, the R2 values were significantly small-
er (0.38–0.51 at the stem elongation stage and
0.42–0.70 across all stages). However, at the
tillering stage, the R2 values were significantly
higher (0.62–0.82) than the calibration values.

4 Discussion and Conclusion

In comparison to reflectance-based estima-
tion of AGB for wheat or other cereals, the es-
timation of rice AGB is linked with a lower
relationship between reflectance and AGB re-
sulting in a lower R2 performance of the mod-
els. Single bands, optimised SR and NRI, as
well as MLR-based methods were able to ex-
plain 80 % – 90 % of the biomass variability in
wheat, e.g. ZHU et al. (2008), BAO et al. (2009),
KOPPE et al. (2010), but only 60 % – 80 % in
rice, e.g. PATEL et al. (1985), SHIBAYAMA & AKI-
YAMA (1989), TAKAHASHI et al. (2000),WANG et
al. (2008), and BAJWA et al. (2010).
In this study, the performance of the inves-

tigated indices SR and NRI (R2 = 0.75) was
in the range of published studies, while MLR
performed better (R2 = 0.93). The bands ofNRI
were similar as in the study of STROPPIANA et
al. (2009) for rice AGB across all stages. Their
analysis indicated highly correlated AGB (R2
> 0.9) in the RedEdge. In the case of MLR, the
optimal bands in this investigation were com-
parable to those by WANG et al. (2008). They
also set the optimal band number to four to
estimate AGB of rice, and they detected sev-
eral bands in the SWIR domain. There was a
clear cluster of SWIR bands, especially at the
stem elongation stage, when the rice AGB was
highly correlated with LAI (GNYP et al. 2012).
These bands represent the maximum reflec-
tance in the 1500 nm – 1800 nm domain and
are sensitive to lignin, starch and protein (KU-
MAR et al. 2003).
Furthermore, one key objective of our study

was the transfer of the optimised SIs and new-
ly developed MLR models, which were in-
vestigated from data collected in field experi-
ments, to real practice: Farmers’ rice fields un-
der conventional management. In this study,
the up-scaling from the experimental to the

The results indicate that regression equa-
tions and the significant bands vary between
the phenological stages. The performance of
the models was improved by adding stepwise
an additional independent band. For example
at stem elongation, the R2 values increased
from 0.48 (MLR-1) to 0.74 (MLR-4) and
across all stages from 0.62 (MLR-1) to 0.77
(MLR-4). Due to the high sample number, all
results are significant at p < 0.0001 except for
the heading stage. It is striking that many of
the bands are located in the NIR and SWIR
domain, but only some in the VIS domain.

3.6 Calibration against Validation

The calibrated (SR-, NRI-, MLR-) models
were validated by an independent dataset
(Tab. 4). Generally, the models using 2–4 sin-
gle bands are the most promising for estimat-
ing AGB. Only one band explained AGB vari-
ability the least. In the case of MLR, the mod-
els tended to overfit already when fitting with
2–3 bands. This caused a slight increase of the
R2 and the RMSE values, though more bands
were used for modeling.
At the tillering stage, the top identi-

fied models all used RED (672 nm, 692 nm)
and NIR bands (707 nm – 1052 nm),
while at the stem elongation stage NIR
bands (763 nm, 780 nm) and SWIR bands
(1325 nm – 1760 nm) dominated, and across
all stages GREEN bands (533 nm, 550 nm),
NIR bands (713 nm – 1027 nm) and a SWIR
band (1659 nm) were selected. In most cases,
the validated MLR-models provided the best
results with highest R2 values (R2 = 0.82 at the
tillering stage, R2 = 0.51 at the stem elonga-
tion stage). The performance of the models
at the booting and heading stages was worse
(R2 < 0.19). In addition, the RMSE values in-
creased till to 3.49 t/ha. These models are use-
less for regionalisation. Across all stages, the
SR showed its best performance (R2 = 0.70).
The RMSE values are reasonable, but the RE
shows relatively high values (RE > 40 %). This
fact can be explained through the different
management of the experimental fields (man-
ual work by fieldworkers) and farmers’ fields
(mechanical work by tractors and airplanes)
and the different plot size (small scale farm-
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be a problem. Up-scaling from small experi-
mental to larger farmers’ fields often yielded
lower model predictability, e.g. LI et al. (2010)
and PSOMAS et al. (2011), like in this study at
the stem elongation stage.
Several different calculations could have

been carried out in this study to partially avoid
overfitting with MLR. For example, prior
studies have shown that PLS, support vector
machine (SVM), principle component analy-
sis (PCA) and neural network approaches can
also partly help to avoid this problem. In addi-
tion, the comparison of estimation of fresh and
dry AGB would be of great value, since sev-
eral studies displayed a better predictability
of fresh rice AGB, e.g. YANG & CHEN (2004).
Due to the changing of the reflectance char-
acteristics in the different plant organs, the
AGB estimation should be investigated in the
different organs leaf, stem and head as well.
Future studies should involve data from large
fields for calibration and for validation, which
should be independent of each other. Moreo-
ver, sensor fusion could improve the valida-
tion as well, as shown for the radar and hy-
perspectral data combination by KOPPE et al.
(2012). Better development or validation of re-
liable models could be also achieved by cross-
validation and bootstrapping (RICHTER et al.
2012).
After several improvements, the models

of this study, especially these with high pre-
dictability at the tillering and stem elongation
stages, could be tested by EnMap or other sen-
sors from the space. This study showed the
high potential in estimating dry AGB by MLR
with 3–4 independent bands, but also by SR
and NRI. These bands could be easily tested
and evaluated for a larger area by UAVs (un-
manned aerial vehicles) carrying hyperspec-
tral sensors or cameras, or by satellite-borne
hyperspectral sensors such as EO-1 Hyperion
and EnMap, or the airborne sensor HyMap.
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