
         PFG 2013 / 4, 0255 –0267
Stuttgart, August 2013

Article

Graphical Models in Geodesy and Photogrammetry

WOLFGANG FÖRSTNER,

Keywords: graphical models, Bayesian nets, Markov random fields, conditional random fields,
geodetic networks, bundle adjustment, iterative conditional modes, Gauss-Seidel iteration

Summary: The paper gives an introduction into

graphical models and their use in specifying stochas-

tic models in geodesy and photogrammetry. Ba-

sic task in adjustment theory can intuitively be de-

scribed and analysed using graphical models. The pa-

per shows that geodetic networks and bundle adjust-

ments can be interpreted as graphical models, both as

Bayesian networks or as conditional random fields.

Especially hidden Markov random fields and condi-

tional random fields are demonstrated to be versatile

models for parameter estimation and classification.

1 Introduction

For more than 50 years geodetic and pho-

togrammetric networks are classical tools for

point positioning and orientation determination.

They are characterized by a sparse link between

observed data, image coordinates, distances,

angles, height differences, or GPS-coordinates,

on one hand and unknown parameters, mostly

coordinates but also orientation parameters or

additional parameters on the other hand, to cap-

ture various systematic effects. The work horse

for determining the unknown parameters in a

statistically optimal manner is the classical ad-

justment theory, including its Bayesian variants

which allows for including prior information or

sequential estimation.

In the last decades so-called graphical mod-

els, especially Markov random fields, have

found their way into photogrammetric research,

mainly for image interpretation. In contrast to

simple pixel-wise or image region-wise clas-

sifiers these models allow for statistical mod-

elling the spatial neighbourhood between pix-

els or image regions, and lead to an increase in

classification performance.

The tools for finding optimal classifications

based on these graphical models are in no way

related to methods for solving large equation

systems. Even more, in most cases only approx-

imate solutions can be found and the statistical

properties of the results are difficult to charac-

terize.

Therefore the question arises: How is the re-

lation between the current methodology and the

new one? Do they address different problems?

Is there an overlap? Is the current methodology

a special case of the new one? The answer is

clear: Graphical models are a real generaliza-

tion of the well-known tools from statistics and

adjustment theory, in the way they are trained

and used in geodesy and photogrammetry. If

a new methodology comes up, which claims to

be a true generalization of the current one, it

has to prove (a) that the current methods can

be derived from the new ones by specialization

and (b) that there is a relevant potential for suc-

cessfully solving new problems, which cannot
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Zusammenfassung: Graphische Modelle in Geodäsie 
und Photogrammetrie. Der Beitrag gibt eine Ein-
führung in Graphische Modelle und ihren Einsatz 
zur Erstellung probabilistischer Modelle in der 
Geodäsie und der Photogrammetrie. Grundaufgaben 
der Ausgleichungsrechnung lassen sich intuitiv be-
schreiben und analysieren. Der Beitrag zeigt, wie 
geodätische/photogrammetrische Netze als�������
netze oder Markoff-Zufallsfelder interpretiert 
werden können. Besonders bedingte Zufallsfelder 
erweisen sich als flexibel für die Modellierung und 
die Optimierung von Parameterschätz- und Klassifi-
kationsaufgaben. 
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be tackled by the current methodology. The pa-

per mainly addresses the first point. The second

point is sketched and proven in some of this is-

sue’s articles.

Graphical models are probabilistic models

on graphs, the nodes representing single or ag-

gregated random variables, and the edges repre-

senting probabilistic relationships between the

random variables. In case these relations are

directed, the networks fall into the category

of Bayesian networks, otherwise they are so-

called Markov random fields. In the above

mentioned application of interpreting images,

the random variables in the graphical models

are discrete, explaining the conceptually dif-

ferent procedures for finding optimal solutions.

However, graphical models are not restricted to

model and analyse situations with discrete ran-

dom variables, i.e. classification tasks, but also

can handle problems with continuous variables.

A prominent example is the classical Kalman

filter, see Fig. 1. It is a graphical model. It con-

l l l l ll
1 62 3 4 5

x x x x xx
1 62 3 4 5

Fig. 1: A hidden Markov-chain as a special
continuous Bayesian network used as basic
model in Kalman filtering. The joint probabil-
ity of all nodes can be factorized into p(l,x) =

p(x1)
∏6

t=2 p(xt|xt−1)
∏6

t1
p(lt|xt), each factor

depending only on one or two variables. This
eases learning and reasoning. The naming
Markov-chain indicates, that (1) the time series
follows the Markov-property, i.e. future states do
only depend on the present, not on past states,
and (2) the structure of the underlying graph of
the unknown states (white) is a chain, i.e. only
has nodes with maximum two neighbours.

tains two types of nodes xt and lt. The nodes

xt represent the unknown state, shown in white,

varying over time, building a so-called hidden

Markov chain, as the new state only depends

on the previous state, and not on older states.

The nodes lt represent the observations at time

t. Here, we assume observed values are avail-

able, therefore the nodes are shown in grey.

The methods for optimal estimation, predic-

tion and filtering of such a Bayesian network

are well known, not only in geodesy and pho-

togrammetry.

This paper wants to uncover more correspon-

dences between graphical models and geode-

tic and photogrammetric parameter estimation

problems, namely showing the close relation

between geodetic networks and photogrammet-

ric blocks and so-called conditional random

fields, which have shown their power in image

interpretation during the last years.

The paper does not go into the details of

graphical models, which are documented in

quite a number of lectures, e.g. BILMES (2000),

MURPHY (1998) and books, e.g. PEARL

(1988b), LI (2000), BISHOP (2006), WINKLER

(2006).

The paper is organized as follows. We first

give a short introduction into graphical models,

relating the concepts to basic statistical tasks

in geodetic education. Using several exam-

ples, we show the close relation between ad-

justment theory and Bayesian networks. Us-

ing a simple four-node network we on one hand

demonstrate the versatility of graphical models

to describe the probabilistic models for geode-

tic networks and for image interpretation, on

the other hand uncover the intimate link be-

tween independence relations in Markov ran-

dom fields and the sparsity of classical normal

equation matrices.

2 Graphical Models

2.1 Motivation

The complexity of probabilistic models in-

creases exponentially with the number of vari-

ables if no structure is imposed. Take as an ex-

ample a small binary image of 326×119 pixels

as shown in Fig. 2. In order to describe the joint

Fig. 2: Binary image with 326× 119 pixels.

probability of all N = 326 × 119 = 38794
pixels, one would need an enormous number of

2N − 1 = 238794 − 1 ≈ 1011678 probabilities

P (x1, ..., x38794). The number of high resolu-

tion colour images is even larger. In order to get

an impression of the size of this large number
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1011678, one can relate it either to the compara-

bly really microscopic number of 1078 atoms

in the universe, or to the a bit larger number

10130 of possible images taken at any micro-

meter within the universe at any microsecond

of its estimated lifetime in one of 100 million

directions.

Probabilistic models with a large number of

variables usually reveal an internal structure,

which therefore needs to be exploited. The

structure on one hand results from the object

modelled. As an example take the model of

time-dependent processes, which refers to the

states in a sequence of points in time, see Fig.

1, or take the stochastic model of human body

configuration in image analysis, which is re-

lated to the pose of connected limbs.

As geodesists and photogrammetrists we

usually work with a simplified assumption

about the distribution, a Gaussian distribution.

As a consequence the number of parameters

necessary to specify the distribution only in-

creases quadratically with the number of pa-

rameters, which for a million variables would

require the specification of ≈ 1012 entries in the

covariance matrix. The ability to approximate

covariance matrices using covariance functions

of large point clouds suggests that in some ap-

plications much less parameters are necessary

to arrive at an adequate stochastical model. An-

other geodetic approach to reduce the complex-

ity of a stochastical model is the concept of pri-

mary errors, which allows to explain correla-

tions in high dimensional covariance matrices

using only a few causing effects.

2.2 Definition and Types

A graphical model is a probabilistic model

where the dependence structure between the

variables is described by a graph G(N ,E).
The nodes n ∈ N represent stochastical vari-

ables, the edges e = (ni, nj) ∈ E represent

probabilistic relations.

A node may represent a single random vari-

able, say x, following some distribution, e.g.

specified by x ∼ px(x). It may be a set or

vector x of variables or even a more complex

structure of random variables. Random vari-

ables are indicated by an underscore. The in-

dex x in px indicates the name of the variable

the density function refers to, which we omit, in

case there is no confusion. The graphical pre-

sentation shows the name, say x, and possibly

the type of the random variable, e.g. x if it is

a vector. The random variables may be discrete

or continuous, or mixed. The distribution of the

variables may be completely unknown, partially

or fully known. This flexibility of course re-

quires to specify the content of the nodes in the

legend of the graphical model. In the follow-

ing we will assume the nodes to either represent

a vector of continuous random variables, e.g.

standing for measurements or parameters useful

in parameter estimation problems, or a discrete

random variable, e.g. standing for a class name

out of a given set of possible classes useful in

classification or interpretation problems.

The variable of a node may be either un-

known, then the node is drawn with a white

background, or it is observed, equivalent to hav-

ing a sample value of the underlying distribu-

tion, then it is drawn with a grey background.

The edges of the graph are either directed or

undirected. Directed edges are used, in case one

wants to specify conditional probabilities.

Fig. 3 shows several graphical models with

two nodes. For directed networks we show var-

ious variants with observed nodes and repeti-

tions.
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a) b) c) d) e)
N
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Fig. 3: Graphical models with two nodes. White
nodes: unobserved. Grey nodes: observed.
Black node: fixed value. Undirected edge:
p(x, y) is part of the model. Directed edge:
p(y|x) is part of the model. The rounded box indi-
cates that the two-node network exists N -times.

The essential idea of graphical models is

that the joint probability distribution p(x) =
p(x1, x2, ..., xn, ..., xN ) can be written as a

product

p(x1, x2, ..., xn, ..., xN ) =
1

Z

∏
i

fi(Xi) (1)

of functions fi of small subsets Xi =
{xi1 , ..., xiNi

} of variables, and these sets Xi

can be seen in the graph. The functions either
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result from some statistical knowledge or just

can be chosen such that large values of fi sup-

port the joint probability p(x). The constant

Z, the so-called partition function, sometimes is

necessary to guarantee that the resulting proba-

bility density fulfills
∫
p(x)dx = 1.

In the following we show that classical mod-

els in geodesy and photogrammetry can be

modelled using graphical models.

2.3 Bayesian Nets

2.3.1 The model for collocation

In time series often a noisy signal is observed,

and the original signal is to be recovered. The

problem is known as collocation in geodesy

and photogrammetry, see MORITZ (1978, sec-

tion 4), KRAUS (1972). The signal, say x,

is assumed to be a random vector. Its covari-

ance structure usually is described using co-

variance functions, a modelling tool also hav-

ing found its place in pattern recognition via so-

called Gaussian processes, see RASMUSSEN &

WILLIAMS (2005). The signal is contaminated

by noise, say n. The noise is assumed to be in-

dependent of the signal and again, in case it is

vector valued, may be correlated. The resulting

observed signal, say y, is a function of the un-

known random signal x and the noise n, say by

addition. The Bayesian network in Fig. 4 is a

graphical model for this situation. Observe, the

model only specifies the principal relationship.

The joint probability of all three variables can

y

y

nx y

y

nx

Fig. 4: A model for filtering a noisy signal. The
signal x is contaminated by noise n, indepen-
dent on x. The contaminated signal is y, de-
pending on both x and n. Left: model prior to
an observation. Right: The situation where the
contaminated signal is observed: In case certain
characteristics of the signal x and the noise n are
known, both can be recovered from the observed
signal y.

easily derived from the graph. The nodes with

no parents, x and n are assumed to be indepen-

dent and follow some distribution, the nodes y
is depending on these two nodes, and the con-

ditional probability p(y|x,n) is assumed to be

part of the model. Thus, the joint probability of

all three variables is

p(x,n,y) = p(x) p(n) p(y|x,n) (2)

indicating no specific density p(x) and p(n)
for the independent variables nor for the condi-

tional probability p(y|x,n). Thus, when spec-

ifying the model, there is no need to specify the

densities.

In case all variables are zero mean Gaussian

distributed and the contamination model is ad-

ditive, i.e. y = x+n, the covariance matrix of

the joint vector [x,n,y]T would be

D

⎛⎝⎡⎣ x
n
y

⎤⎦⎞⎠=

⎡⎣ Σxx 0 Σxx

0 Σnn Σnn

Σxx Σnn Σxx + Σnn

⎤⎦
(3)

which follows from variance propagation.

Given an observed value y for the contami-

nated signal, using Bayesian theorem in the

form p(x,n|y) = p(y|x,n)p(x)p(n)/p(y)
one in the general setting can derive the density

p(x|y) of the signal given y and the density

p(n|y) of the noise given y.

In the case of normally distributed variables,

with

Σyy = Σxx + Σnn (4)

we obtain the classical result

E

([
x|y
n|y

])
=

[
Σxx

Σnn

]
Σ−1

yy y (5)

and

D

([
x|y
n|y

])
=

[
Σxx

Σnn

]
Σ−1

yy [Σxx|Σnn]

(6)

indicating the derived signal and noise variables

x|y and n|y are 100 % correlated.

This result can be directly transferred into a

rule interpreting the independence relations in a

Bayesian network. In a three-node network of

the type in Fig. 4 left, the parent nodes x and n
are independent of y, whereas in the right net-

work the parent nodes x and n are condition-

ally dependent given y. This result is indepen-

dent of the type of density functions involved.

The conditional dependency can be used to in-

fer from a subsequent observation of one of the
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two causing variables to the other variable – a

special case of PEARL’s (1988a) so-called ex-
plaining away. Similar interpretation rules ex-

ist for chains and can be used to analyse more

complex networks.

2.3.2 The concept of primary errors

A well-established geodetic principle to obtain

a probabilistic model for the observations with

only a few parameters is the concept of primary

errors (PELZER 1974): Correlations in the high-

dimensional covariance matrix of observations

are explained by a few, say K unknown effects

p
k
, which, besides individual random perturba-

tions e, influence all N variables ln. This also

is the basis for modelling systematic image er-

rors using additional parameters in bundle ad-

justment. With the, in general unknown, mean

values y
n

the general model reads as

p(ln|yn,p) =
∏
n

p(yn)
∏
k

p(ln|pk)p(pk)

(7)

or in an additive setting

ln = y
n
+

K∑
k=1

hnkpk (8)

the random variables y
n

∼ N (μn, σ
2
en) and

p
k

∼ N (0, σ2
pk
) being statistically indepen-

dent. Variance propagation yields the full rank

covariance matrix

Σll = Diag([σ2
yn
]) + H Diag([σ2

pk
])HT

(9)

with H = [hnk]. The number of parame-

ters for specifying this model is in the order of

O(NK), making the model specification effi-

cient if K � N . The random variable l can

easily be described by the graphical model in

Fig. 5.

The exchangeability of the functional (8)

and the stochastical model, using Σll from

(9), has been discussed in the early days of

aerial triangulation, see ACKERMANN (1965)

and SCHILCHER (1980).

The graphical model makes the difference of

modelling systematic errors, as done in bun-

dle adjustment, transparent: Systematic errors

usually are modelled with the second term∑K
k=1 hnkpk, then the causing effects are made

N

y

l
K
p

h

Fig. 5: Graphical model for describing the uncer-
tainty of the N correlated random variables ln us-
ing the primary error concept: The individual ele-
ments ln depend on individual random variables
y
n

and common systematic effects p
k

weighted
by hnk. The rounded boxes indicate that the in-
ternal structure, namely l depending on y and h
on one hand and p and h on the other hand, are
repeated N and K times respectively as made
explicit in (8).

explicit. But they also can be modelled us-

ing a fully correlated observation vector with

covariance matrix Σll in (9), see SCHILCHER

(1980), then not making the causing effects ex-

plicit. Modelling systematic errors in the func-

tional model or the stochastical model only is

equivalent, if the expected values E(p
k
) = 0

for the systematic effects are zero and constant

over time. Obviously, modelling the system-

atic errors in the functional model not only re-

quires less parameters to be specified compared

to modelling them in the stochastical model, but

also allows to model time dependent effects, see

SCHROTH (1986) and to estimate their mean

values and thus learn the parameters from data

within a self-calibration.

2.3.3 The Gauss-Markov model

The Gauss-Markov model is the work horse

in statistical estimation. In its simplest form

it could be written as p(l|x) only specifying

the conditional probability for the observations

given the parameters, thus being of type b) in

Fig. 3. As soon as the observations l are

available, we obtain the graphical model d),

and using the Bayesian theorem we can derive

the unknown parameters as argmaxxp(x|l) =
argmaxxp(l|x)p(x) in case some prior infor-

mation p(x) about the parameters x is avail-

able. Self-calibrating bundle adjustment could

be modelled a bit more expressivly, making the

effect of the three parameter types, scene co-

ordinates k, orientation parameters t, and ad-

ditional parameters p onto the observed image

coordinates l explicit, see Fig. 6.
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k

l

t p

Fig. 6: Graphical model for bundle adjust-
ment with coordinates k, orientation parame-
ters t and additional parameters p influencing
the observations li, e.g. the image coordi-
nates. The joint probability is p(l,k, t,p) =
p(k)p(t)p(p)

∏
i p(li|k, t,p)

0σ

N
x

e w

ly

a

Fig. 7: Gauss-Markov model as Bayesian net-
work. The black nodes represent given infor-
mation, here the coefficients a of the (rows of
the) design matrix, the weights w and the vari-
ance factor σ0. The observations l result from a
contamination of the unknown predicted observa-
tions, denoted by y, and the unknown measure-
ment deviations e. The rounded box indicates the
probabilistic model within the box is repeated N -
times, indicating the independence of the N ob-
served values l. In addition to the N fitted ob-
servations y and the measurement deviations e
the parameter vector x, which couples the fitted
observations via the given coefficients a, is un-
known. Observe, this model contains the additive
filtering model as core.

In case we want to model more details of the

Gauss-Markov model, see Fig. 7, we can spec-

ify the dependency on the rows an of the de-

sign matrix, make the error free observations

yn = aT
nx and the measurement deviations en

explicit, and specify the individual weights wn

and the common factor σ0 to obtain

ln = aT
nx+ en σ2

n = σ2
0/wn (10)

together with the prior information

x ∼ N (x0,Σx0x0) (11)

e.g. representing the coordinates of the control

points together with their uncertainty, assum-

ing very large covariances for the new unknown

scene points. The joint probability is given in

the factorized form

p(l,x) = p(x)
∏
n

p(ln|x) . (12)

Observe, the Gauss-Markov model contains the

filtering model from Fig. 4 as central part

within the area with dashed boundary in Fig. 7,

here in the form l = y + e.

We will not discuss general Bayesian nets

here. Finding the optimal parameters in

Bayesian nets with a tree structure, such as all

examples, is linear in the number of nodes, if

the number of variables per node is fixed. This

high efficiency is exploited e.g. in Kalman fil-

tering.

2.4 Markov Random Fields

Markov random fields are graphical models

with undirected edges. Undirected graphs ap-

pear in image processing, image analysis, point

cloud processing, but also in geodetic and pho-

togrammetric networks.

In image processing the graph is induced by

the regular structure of the pixels, yielding a

regular pattern, see Fig. 8, 	
��� left. In im-

x x

Fig. 8: Graphs of photogrammetric models as
basis for Markov random fields. Left: pixel grid,
neighbouring or adjacent pixels are assumed to
have the same colour or the same class label.
Right: region adjacency graph, neighbouring re-
gions are assumed to have the same class la-
bel (image and segmentation from SCHINDLER &
FÖRSTNER (2013)).

age analysis one often starts with partitioning

the image into regions, the region adjacency
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graph then may be the building block for im-

age interpretation, which is equivalent to as-

signing a class name to each region, see Fig.

8, 	
��� right. In point cloud processing the

graph may result from a triangulation or a seg-

mentation. Bundle adjustment, see Fig. 9

links the observed image coordinates xij , not

to be confused with the unknown parameters,

with scene coordinates ki and orientation pa-

rameters tj via the collinearity constraints 0 =
collij(xij ,ki, tj).

ijx’

1 2 3

k k 43 k k k

t t t

k

3

k

21

5432121

ttt

kkk 5

k k
kk

k

t
t

t

1
2

3 4

5

1
2

3

Fig. 9: Graphs of photogrammetric models as
basis for Markov random fields. Bundle adjust-
ment. Lower left: with 3-cliques (cliques with
three nodes) linking the observations xij with
the coordinates and the transformation parame-
ters (some of the connections are shown dotted
to keep the figure readable). Lower right: with
2-cliques (cliques with two nodes) linking coor-
dinates and transformation parameters, observa-
tions as given values are eliminated, see DEL-
LAERT & KAESS (2006).

A Markov random field having nodes xi is

characterized by the following property: The

probability for a node p(xi|X \ xi) given the

values of all other nodes is identical to the con-

ditional probability p(xi|Ni) given its neigh-

bours:

p(xi|X \ xi) = p(xi|Ni) . (13)

This is a generalization of the Markov property

of time series where the current state xt only

depends on the previous thus neighbouring one

xt−1, explaining the name for the type of graph-

ical model.

The joint probability p(x1, ..., xN ) of all

variables xn in a Markov random field can be

written as the product of factors ψi(Xi) depend-

ing on the cliques in the corresponding graph,

the clique Ci being a fully connected subgraph,

i.e. a subgraph, where all nodes are connected,

inducing the set Ci = {xi1 , ..., xiNi
}:

p(x1, ..., xN ) =
1

Z

∏
i∈C

ψi(Ci) . (14)

The functions ψi(Ci) are called potential func-

tions and are assumed to be positive for all val-

ues the variables in the clique may have. They

conceptually are no probabilities.

A probability of the structure (14) is called

a Gibbs-distribution. The structure of this dis-

tribution is equivalent to the Markov prop-

erty in (13). This follows from a theorem by

HAMMERSLEY & CLIFFORD (1971), see also

BUSCH (1992). In Fig. 8 the 	
��� left network

for the image grid shows only two-cliques, the

	
�er right network of the region adjacency

graph shows two- and three-cliques and the net-

work for the adjustment in Fig. 9 shows three-

cliques or two-cliques, depending on whether

the observational nodes are included or ex-

cluded in the model.

2.4.1 Types of Markov random fields

There are different classes of Markov random

fields (MRF), depending on the way observa-

tions are handled. For simplicity we refer to the

grid type graph with maximal two-cliques, see

Fig. 10.

xi iy

ix
xi

y

Fig. 10: Types of MRF’s. Left: Markov random
field as prior. Middle: hidden Markov random
field, containing directed edges to the observa-
tions yi. Right: Conditional random field.

A Markov random field may be used for

modelling the prior distribution of the image:

p(x) =
1

Z

∏
(i,j)∈E

ψij(xi, xj) (15)
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where only the potential functions ψij(xi, xj)
need to be specified such that likely config-

urations of pairs (xi, xj) obtain large values

ψij(xi, xj) > 0. The key publication by

GEMAN & GEMAN (1984) of the school of

Grenander (GRENANDER 1976), addressed the

problem of image restoration as a global op-

timization problem solved by stochastic relax-

ation in a Markov Chain Monte Carlo scheme.

A hidden Markov random field makes ex-

plicit the fact, that the class labels for the pix-

els are unknown. The naming disregards the

fact that the edges to the observed nodes are di-

rected. The observations yi depend on the cor-

responding class labels xi. Thus, the total prob-

ability p(x,y) of the network is

p(x)p(y|x) = (16)

1

Z

∏
i

p(yi|xi)
∏

(ij)∈E

ψij(xi, xj)

where the prior p(x) is the simple Markov

random field (15). The likelihood p(y|x)
can be factorized into a product of factors

ψi(xi, yi) := pi(yi|xi) for given observations

only depending on individual nodes.

Often one wants to use observations yi which

are taken from a region around the i-th pixel.

Then they are not any more independent. This

is the reason why one uses

Conditional random fields proposed by

LAFFERTY et al. (2001) in the area of language

processing and introduced to image analysis

problems by KUMAR & HEBERT (2006) under

the label discriminative random fields, though

already e.g. GIMEL’FARB (1996) used models

of this structure for texture analysis. The main

idea is the following: one directly models the

posterior probability by conditioning the prob-

abilistic relations in the cliques, here between

neighbouring pixels, on the given observations

p(x|y) = (17)

1

Z

∏
i∈C1

ψi(xi,y)
∏

(ij)∈C2

ψ(xi, xj ,y)

where the one-cliques C1 contain all nodes, and

the two-cliques C2 all edges.

In all cases it is useful to replace the prod-

uct of the probabilities and potentials by a sum

of the negative logarithms. The negative log-

arithm of a probability can be interpreted as

the (self-) information I(x) = − log p(x), be-

ing the relative surprise when observing the

sample (SHANNON & WEAVER 1949). Cor-

respondingly the negative logarithm E(x) =
− logψ(x) of the potentials is called the en-

ergy, as the concept has been developed in

physics. Thus, the complete models can be

written as sums.

When neglecting the given observed, fixed

values y, for the conditional random field

model (17) we obtain

I(x|y) = logZ +
∑
i∈C1

Ei(xi) (18)

+
∑

(ij)∈C2

Eij(xi, xj) .

2.4.2 Tasks

Having fixed the structure of the model several

tasks need to be addressed.

Inference. The first task is inference: In case

the model is fully specified, one is interested

in an estimate x̂ for the optimal set of values

for the unknowns {xi}, e.g. the one which

maximizes the probability p(x|y), leading to

the maximum a posteriori (MAP) estimate, or,

equivalently, the one which minimizes I(x|y).
If the xi represent class labels in an image, this

will lead to an optimal labelling of all pixels or

regions of the image. If the xi represent the

continuous values of the intensities of the pix-

els, one might obtain an optimal restoration of

the image.

The problem in general is intractable, i.e. the

computing time increases exponentially with

the number of nodes, which is plausible when

regarding the large search space, see the dis-

cussion of the number of images above. Only

in very special cases finding the optimum is

tractable: (a) in case the variables are contin-

uous and follow a Gaussian distribution, the

optimal solution can be achieved by solving a

large linear equation system, (b) in case the

variables are binary and the potential functions

obey certain conditions, the problem can be
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mapped to a network algorithm, namely find-

ing the maximum flow or the minimal cut in a

network (BOYKOV & KOLMOGOROV 2004). In

all other cases only suboptimal algorithms exist

(BISHOP 2006).

None of the algorithms yields the probability

p(x|y) as this would require the determination

of the normalization constant Z, which is Z =∑
x p(x|y), the sum over all possible images.

One simple algorithm uses the Markov prop-

erty and iteratively determines the locally best

estimate given all neighbours:

x̂
(ν+1)
i = argmaxxi

p
(
xi | N (ν)

i

)
(19)

where (ν) indicates the iteration number. The

algorithm is known as iterative conditional
modes (ICM). It often yields good results, but

may get stuck in a local minimum of I(x|y).
We will relate this algorithm to one used in ad-

justment theory.

As graphical models factor the joint proba-

bility into small factors, see (1) and its special-

ization for Bayesian nets and Markov random

fields, see (16), they can be represented as so-

called factor graphs, which allow for a homo-

geneous algorithmic handling of Bayesian nets

and Markov random fields (KSCHISCHANG et

al. 2001).

Learning. The second task is learning. It re-

sults from the difficulty in specifying the poten-

tials in real world problems completely. Take

an example: As we are free to choose the po-

tential functions we could use posterior prob-

abilities p(xi|yi) and p(xi, xj |yij) of classi-

fiers for labels xi or label pairs (xi, xj). Both

depend on the corresponding observed features

yi and yij , and possibly global parameters yg ,

collected in the vector y. Usually they are

parametrized, e.g. in case one uses a maximum

likelihood classifier based on a Gaussian dis-

tribution. Then the parameter vector u would

contain the mean vectors and covariance matri-

ces of the classifier to be learnt. Thus, we would

obtain

ψi(xi|u) (20)

= p(xi|yi,u1)ψij(xi, xj |yij ,u2)

where the parameters u = (u1,u2) need to

be learned from the data. The complete model,

now written using negative logarithms then is

I(x|y,u) = logZ(u) + (21)

+
∑
i∈C1

Ei(xi,u1) +
∑

(ij)∈C2

Eij(xi, xj ,u2)

where the normalization factor 1/Z(u) also de-

pends on the unknown parameters. Given a

large enough set of training data (xi,yi) and

(xi, xj ,yij) the task is to learn, i.e. to estimate

optimal parameters for u. Again, the problem

of estimating optimal parameters is intractable

in general and only suboptimal solutions are

known.

The following example wants to demonstrate

the possibility to map classical geodetic net-

works to Markov random fields

2.5 A Four-Node Network

In order to demonstrate the flexibility of graph-

ical models, especially of conditional random

fields, we use a four-node graph with one edge

missing as an example. We do not show the ob-

servational nodes, which would be linked to all

four nodes, see Fig. 11.

2.5.1 A levelling network

The graph with four nodes representing

the 1-cliques C1 = {1, 2, 3, 4} and five

edges representing the 2-cliques C2 =
{(1, 2), (2, 3), (3, 4), (1, 4), (2, 4)}, has two 3-

cliques C3 = {(1, 2, 4), (2, 3, 4)} as there are

only two fully connected triangles. Interpret-

ing the graph as a levelling network restricts

the modelling to 1- and 2-cliques, as we only

have measured heights li, i = 1, 3 of the two

control points and the five height differences

lij , (i, j) ∈ C2.

We now model the joint probability with

maximal cliques, thus by 2-cliques only. This

is achieved by taking the potentials for the ob-

served control points into on the potential of

one of the corresponding the 2-cliques. The

joint probability therefore is

p(x) = p(x1, x2, x3, x4)

∝
∏

(i,j)∈C2

ψij(xi, xj)

∝ ψ12(x1, x2).....ψ34(x3, x4) .
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34

1 2

34

1 2

34

Fig. 11: Left: Leveling network as a conditional
random field. The triangles indicate reference
points with given heights h1 and h3, in princi-
ple being uncertain. The two unknown heights
h2 and h4 are indicated by white circles. The
edges in the graph indicate probabilistic relations
between the two nodes in concern, which practi-
cally express the uncertainty of the five observed
height differences. No observations relate three
heights simultaneously, i.e. only two-cliques in
the graph give rise to potentials. Middle: Angular
network as a conditional random field. The trian-
gles now represent control points in 2D with their
uncertain Cartesian coordinates x1 and x3. The
coordinates x2 and x4 are unknown. The five
edges in the graph again represent probabilis-
tic relations between the corresponding nodes.
Each angle measurement is indicated by arrows
and depends on three points. Only two three-
cliques in the graph give rise to potentials. Right:
Classification of four parcels as a conditional ran-
dom field. The nodes represent the unknown
classes of the four fields. There may be prior
probabilities on the classes, known from the type
of geographic region. The edges again proba-
bilistically constrain the corresponding classes,
stating neighbouring fields to more likely belong
to the same class than to different classes, which
may be made dependent on observations, e.g. of
the appearance of the field boundaries.

In order to choose adequate potential func-

tions we assume the heights and the height dif-

ferences to be normally distributed

li ∼ N (μxi , w
−1
xi

) , i ∈ C1 (22)

lij ∼ N (μxj − μxi , w
−1
ij ) , (i, j) ∈ C2

where we used the weights w = 1/σ2. There-

fore, we choose the following potential func-

tions, being able to neglect the constant factors

of the normal distribution

ψ12 = e
− 1

2 (x2−x1−l12)
2w12e

− 1
2 (x1−l1)

2w1

ψ14 = e
− 1

2 (x4−x1−l14)
2w14 (23)

ψ23 = e
− 1

2 (x3−x2−l23)
2w23

ψ24 = e
− 1

2 (x4−x2−l24)
2w24

ψ34 = e
− 1

2 (x4−x3−l34)
2w34e

− 1
2 (x3−l3)

2w1 .

Observe, we only used 2-cliques and integrated

the prior information about the control points

into one of the neighbouring 2-cliques. The

potential functions essentially depend on the

weighted squares of the differences vi and

vij between the unknown parameters and the

measurements. Taking negative logarithms we

therefore obtain the – not really surprising – re-

sult: We need to find the minimum of

I(x|l) =
∑

(i,j)∈C2

wijv
2
ij(xi, xj) (24)

here with v2 := −2 logψ, thus v212 and v234
containing the squared residuals at the con-

trol points. The leveling network is a special
Markov random field, namely a Gaussian ran-
dom field.

We now apply the iterative conditional mode

algorithm to this problem. The normal equation

system, resulting from setting ∂I/∂x = 0 and

assuming weights wi = wij = 1 is⎡⎢⎣ 3 −1 0 −1
−1 3 −1 −1
0 −1 3 −1
−1 −1 −1 3

⎤⎥⎦
⎡⎢⎣ x1

x2

x3

x4

⎤⎥⎦ =

=

⎡⎢⎣ −l12 − l14 + l1
l12 − l23 − l24
l23 − l34 + l3
l34 + l14 + l24

⎤⎥⎦ =

⎡⎢⎣ h1

h2

h3

h4

⎤⎥⎦ . (25)

The best estimate for the individual unknowns,

given the others, therefore are

x
(ν+1)
1 =

1

3
(h1 + x

(ν)
2 + x

(ν)
4 )

x
(ν+1)
2 =

1

3
(h2 + x

(ν+1)
1 + x

(ν)
3 + x

(ν)
4 )

x
(ν+1)
3 =

1

3
(h3 + x

(ν+1)
2 + x

(ν)
4 )

x
(ν+1)
4 =

1

3
(h4 + x

(ν+1)
1 + x

(ν+1)
3 + x

(ν+1)
2 )

again with the iteration index (ν). This method

of solving the normal equations iteratively is

known as Gauss-Seidel method. It is guaran-

teed to converge in this case, as the normal

equation matrix is symmetric and positive defi-

nite. This criterion of course is difficult to gen-

eralize for non-Gaussian situations. This pro-

cedure is equivalent to the so-called method of
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iterative conditional modes for iteratively find-

ing the optimal solution in a general Markov-

random field using (13) in the form (BUSCH

1992)

x
(ν+1)
i := argmaxxi

p(xi | N (ν)
i (xi)) . (26)

A final remark refers to the sparsity of the

model. In spite of the small size of the net-

work the graph is not fully connected, as edge

(1, 3) is missing. This is reflected in the zero-

entry N13 = 0 of the normal equation ma-

trix. The zero at the (1, 3) position indicates

that given the other variables x2 and x4 the

variables x1 and x3 are independent: formally

p(x1, x3|x2, x4) = p(x1|x2, x4)p(x3|x2, x4),
as then the resulting normal equation system for

x1 and x3 is diagonal. This is indicated by the

boldtype numbers in the normal equation ma-

trix in (25). The conditional independence re-

sults in a sparse graphical model. In adjustment

theory it regularly is exploited for increasing

the efficiency of computation of large networks.

The sparseness of the normal equation matrix

however is an indication for the sparsity of the

complete model resulting from the type of mea-

suring design, which therefore in a natural way

leads to a sparse graphical model.

2.5.2 An angular network

We now use the same graph to represent a 2D

network with measured angles. The nodes then

represent random 2-vectors xi. The observa-

tions lijk are the angles lijk := αijk = φjk −
φji and depend on the coordinates of the points.

Thus, we will need the two 3-cliques to repre-

sent the probability of the complete network:

p(x|l) (27)

=
1

Z
ψ124(x1,x2,x4)ψ234(x2,x3,x4) .

We assume the control point coordinates to be

Gaussian distributed

li ∼ N (μxi
, w−1

i I2) , i = 1, 3 . (28)

Again we assume the angular measurements to

be normally distributed

lijk ∼ N (αijk(xi,xj ,xk), w
−1
ijk) (29)

with (i, j, k) ∈ A = {(4,1,2), (1,2,4), (2,4,1),

(3,4,2), (4,2,3)} . This yields the potentials

ψ124(x1,x2,x4) = (30)

e
− 1

2 (|α421−l421|2w421+|α142−l142|2w142)

.e− 1
2 (|α214−d214|2w214+|x1−l1|2w1)

and

ψ234(x2,x3,x4) = (31)

e
− 1

2 (|α243−l243|2w243+|α324−l324|2w324)

.e− 1
2 (|x3−l3|2w3) .

2.5.3 A classification network

We finally use the graph for modelling a classi-

fication task. Let four agricultural fields be ar-

ranged as shown in the Fig. 11 right. The graph

then represents the region adjacency.

One usually takes some spectral or texture

features yi in each region from the underly-

ing image (not shown) as observations, and per-

forms a Bayesian classification, i.e. labelling of

the regions. This is achieved by maximizing the

posterior probability p(xi|yi) ∝ p(yi|xi)p(xi)
using the likelihood L(xi) := p(yi|xi), which

is to be learnt from training data and some prior

p(xi) on the occurrence of the different classes

xi ∈ {1, 2, ...}. It corresponds to four inde-

pendent Bayesian nets of the type Fig. 3 d.

The joint prior of all four nodes just is p(x) =∏4
i=1 p(xi), as the class membership or the la-

belling of the regions is assumed to be indepen-

dent.

In case one can assume neighbouring re-

gions often belong to the same class, a simple

model for the prior would therefore be to as-

sume neighbouring regions are likely belonging

to the same class, and unlikely belonging to dif-

ferent classes. Assuming the probability for the

complete network for both cases should differ

by a factor 10, this can be expressed by the po-

tential function for each edge

ψ(xi, xj) =

{
1, if xi = xj

0.1, if xi �= xj
. (32)

The prior for all nodes then is

p(x) =
1

Z

∏
(ij)∈C2

ψ(xi, xj) (33)
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which leads to the complete probability

p(x,y) =
1

Z

∏
i∈C1

p(xi|y)
∏

(ij)∈C2

ψ(xi, xj) .

(34)

This is the so-called Potts model for the prior in

classification using a Markov random field. As

discussed above, finding an optimal labelling is

intractable. Examples with a small network are

given by KORČ (2012).

3 Outlook and Conclusion

Graphical models are a powerful tool for com-

municating between users of a statistical model

and experts in statistics. The paper showed var-

ious examples for models used in geodesy and

photogrammetry where graphical models give

insight into the internal structure of the mod-

els, especially making fixed, observed and un-

known parameters explicit and showing the in-

dependence assumptions made.

For a graphical model, where the relation-

ships are linear and the distributions are Gaus-

sian, reasoning, especially optimization, leads

to a linear equation systems guaranteeing a

unique solution. For statistical optimization

problems resulting from a graphical model in

general no unique method exists. This does not

only hold for parameter estimation problems,

e.g. in the presence of outliers, but – with only

few exceptions – for all classification problems

due to the discrete nature of the search of the

parameter space.

The paper shows various relations between

modelling and estimation in geodetic and pho-

togrammetric networks. The parsimony of the

used models results from the special structure

of most networks. Interpreting such networks

as Markov random fields allows one to see

the more general structure of the problems at

hand. Examples are the modelling of cycle slips

in GPS observations, where discrete and con-

tinuous variables occur simultaneously, or the

change of the type of distribution, e.g. from

Gaussian to Laplace, or the type of prior knowl-

edge. These abilities not only build a bridge be-

tween models in geometry and in classification,

but also between photogrammetry and remote

sensing.
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